
 99 TECH TIPS
For Serious Programmers

—Patrick O’Brien and Karl Peterson
GET THE LATEST
VB-RELATED FILES
You can get the latest Microsoft files for VB as well as other
Microsoft products on CompuServe in the Microsoft Libraries
Forum (GO MSL). The MSL includes updated help compilers,
setup kits, updated VBRUNX00.EXE files, database files (such as
the compatibility layer that will allow you to use Access 2.0 files),
and many others. You can also download the latest Visual Basic
Knowledge Base file, which includes invaluable information
about programming in VB. (The Knowledge Base is available as
text and help files. The help file is more useful but takes longer
to download.)

Four other CompuServe areas are of interest to VB program-
mers. The Windows Component Forums (COMPA and COMPB)
are vendor forums where you can get customer support (and
updated files) from a wide range of VBX/OCX makers. The
Microsoft Basic (MSBASIC) Forum and this magazine’s VBPJFO
Forum have areas that help with your development questions
and provide VB-related files. All four forums include a wealth of
shareware, source code samples, and information about pro-

WELCOME TO THE VBPJ
TECHNICAL TIPS SUPPLEMENT!

We survey our readers often, and one of the most consis-
tently high-scoring replies to our surveys is, “Give us tips,
tricks, and workarounds for making our VB programs
smaller, faster, and more powerful!” Actually, we dedi-
cate the features and columns of each issue to fulfilling
this request because it’s the core of our charter.

However, when reviewing our latest reader survey, we
decided, “Because our readers want tips and tricks, why
not put together an entire supplement that’s nothing but
insights, nuggets, and workarounds for improving VB pro-
grams and the programming process itself?” Violá. We
contacted programmers far and wide, using CompuServe,
the Internet, e-mail, and old-fashioned telephone calls—
beating the bushes for every tip we could find.

And find them we did. We received far more than
we could publish. We mused over them, sent them to
members of the VBPJ Technical Review Board for
critique and analysis (our Review Board members also
included their favorites). We whittled and hacked until
we had our favorite 99 tips (plus 11 bonus tips we just
couldn’t leave out).

If these tips don’t improve your VB programs and make
you a better VB programmer, nothing will. Enjoy.
2 MARCH 1995 Supplement to Visual Basic Programmer’s Jour

gramming tools.
On the Internet, check out the USENET newsgroup
comp.lang.basic.visual, as well as related newsgroups such as
comp.lang.basic.visual.database and comp.lang.basic.visual.misc.
These areas aren’t as well attended (or organized) as the four
CompuServe forums, but they contain a great deal of useful in-
formation. (CompuServe users can get to Internet sites by typ-
ing GO INTERNET.) Make sure to download the latest FAQ (or
Frequently Asked Questions) list from the anonymous ftp archive
site rtfm.mit.edu. All parts of the VB FAQ are in the directory
pub/usenet/comp.lang.basic.visual.

Another source of VB tips is Dave McCarter’s “Visual Basic
Tips and Tricks” help file. It’s called VBTTXX.ZIP (where “XX” is
the version number). It’s been uploaded to a number of sources,
including the VBPJFO forum.

—VBPJ Staff

USING DATABASE TRANSACTIONS
When you first start using the VB database functions, you might
wonder why they call its engine JET—it seems to not fly. Using
database transactions (search the online help for BeginTrans)
might at first seem like a technique you wouldn’t want to use,
but it can significantly speed up your database manipulations.
An easy way to get up to speed with this functionality is to put a
BeginTrans statement just before your dynaset update code and
a CommitTrans statement just after it.

—Michiel de Bruijn

CLOSE VB BEFORE COMPILING
When you’re finished tinkering with your apps, close and restart
VB before making the final EXE. This simple action can reduce
the size of your EXE by 10 to 30 percent (many professional
programmers also recommend restarting Windows before build-
ing an EXE). If you don’t close and restart VB, your EXE may
contain some garbage: VB doesn’t fully clean up all the data struc-
tures or variables you used during development.

Restarting VB also safeguards against some mysterious GPFs.
If you have an app that runs fine in the development environ-
ment but GPFs when it’s run as an EXE, try closing and restart-
ing. Another option is to compile from the “command line.” To
do so from either Program Manager or File Manager, select Run
from the File menu, and enter:

C:\VB\VB.EXE /MAKE D:\APPPATH\MYPROJ.MAK
nal ©1991–1995 Fawcette Technical Publications H O M E

 99 TECH TIPS
For Serious Programmers

—Paul D. Sherriff/Visual Basic Power Guides
USING RELATIVE REFERENCES FOR
FLEXIBLE DIRECTORY STRUCTURES
You can use relative references to specify file paths in your MAK
file. For example: Path="..\SETUP\DISK1." When you use rela-
tive references, you can move entire directory structures in File
Manager without having to rebuild your MAK files.

—Craig Goren

ACTIVATING THE PREVIOUS
INSTANCE OF YOUR APP
There are many times when you may not want to allow more
than one instance of your application to be launched. In such
cases, your program needs to determine if an instance is already
running and, if so, activate and close the previous instance. If no
previous instance is detected, the program continues normally.

The AnotherInstance function determines if the program is
already running. If it is, the previous instance is activated and
the function returns True. If no previous instance is running, the
function returns False. You should call this function when your
program starts, preferably from Sub Main. If it returns True, then
the program should terminate:

'Activates the previous instance
Function AnotherInstance ()

Dim appTitle$

If App.PrevInstance Then
appTitle$ = App.Title
'Get our application name
App.Title = "~!@#$%^&"
'Set new instance name to unlikely value
AppActivate appTitle$
'Activate previous instance
AnotherInstance = True

Else
AnotherInstance = False

End If
End If

AnotherInstance works by checking the PrevInstance prop-
erty of the App object. If PrevInstance is not zero, then the pro-
gram is already running. In this case, the function activates the
previous instance using AppActivate. Note that AppActivate ac-
tivates the application with the specified window caption. To
prevent AppActivate from activating the current instance, the
Title property must be set to a value that is not likely to be the
actual caption. Note that this also means that this technique
will not work if your application modifies the window caption
Supple©1991–1995 Fawcette Technical Publications H O M E

(Title).
—Jonathan Wood
CREATING DISABLED OR
ETCHED ICONS
Here’s how to create an etched or disabled icon using an icon
editor:

1. Change all filler color to light gray.
2. Change the outline to dark gray (usually from black).
3. Change every dark gray pixel to white if the pixel to its south

east is light gray.
—Craig Goren

THE MOVE METHOD IS FASTER
To move a control or form to a new location, you can set the Left
and Top properties to new values:

frmCustomer.Left = frmCustomer.Left + 100
frmCustomer.Top = frmCustomer.Top + 50

Using the Move method, however, is about 40 percent faster:

frmCustomer.Move frmCustomer.Left + 100, frmCustomer._
Top + 50

—Paul D. Sherriff/Visual Basic Power Guides

DEBUGGING EVENTS WHEN
THEY’RE ACTING FUNNY
Use Debug.Print “Entering event ...” without breakpoints to trace
events if they seem to act funny. Don’t use break points with
MsgBoxes—they can alter the event sequence.

—Craig Goren

COMMENTS DON’T INCREASE
EXE SIZE
VB strips comments out in the final .EXE file, so use as many
comments as you need.
ment to Visual Basic Programmer’s Journal MARCH 1995 3

 99 TECH TIPS
For Serious Programmers
DEVELOP UNDER WINDOWS NT
Why not develop under Windows NT 3.5? You can crash as often
as necessary <g>, and just double-click to restart VB, with virtu-
ally no need to reboot. Remember to delete temporary files cre-
ated by VB (~VB*.* files in the TEMP directory) before restart-
ing it (in either Windows or Windows NT).

Another advantage to developing under NT is that you know
it will work for the users—and you know there will be a few, at
least—who run that OS. Be sure to test the final application un-
der Windows 3.x, however. You’ll find few incompatibilities, com-
pared to apps developed in Windows running in NT, but they
can occur, especially as you become accustomed to unlimited
system resources.

—Karl E. Peterson

HELP SEARCH ON THE MENU BAR
Ever wanted to add a “Search for Help on...” item in the menu
bar? Here’s the secret:

'Declares and Constant for Help Menu
Declare Function WinHelp% Lib "User" _

(ByVal hWnd%, ByVal HelpFile$, ByVal helpcode%, _
ByVal helpdata&)

Declare Function WinHelpByString% Lib "User" _
Alias "WinHelp" (ByVal hWnd%, ByVal HelpFile$, _

ByVal helpcode%, ByVal helpdata$)
Const HELP_PARTIALKEY = &H105
'call the search engine in winhelp

Sub mnuSEARCH_Click ()
Dim R%
R% = WinHelpByString(Me.hWnd, App.HelpFile, _

HELP_PARTIALKEY, " ")
End Sub

—Dr. B. Leckett

EMULATING OVERSTRIKE MODE
IN TEXT BOXES
Windows text boxes always work in insert mode and don’t pro-
vide an overstrike mode. However, overstrike mode can easily
be emulated as shown here:
4 MARCH 1995 Supplement to Visual Basic Programmer’s Jour

Sub Text1_KeyPress (KeyAscii As Integer)
If KeyAscii >= 32 Then
If Text1.SelLength = 0 Then
If Text1.SelStart < Len(Text1) Then

Text1.SelLength = 1
End If

End If
End If

End Sub

If a key is typed when no text is selected, the code selects the
current character by setting the SelLength property to 1, caus-
ing it to be overwritten by the key typed. If the cursor is already
at the end of the text, setting the SelLength property to 1 is si-
lently ignored. Several conditions are tested to ensure that a
control character (such as Tab or Enter) was not pressed, that
the user hasn’t already highlighted text to be replaced, and that
the caret is not at the end of the existing text.

—Jonathan Wood and Karl Peterson

COOL COMMANDS FOR
YOUR HELP MENU
Most Windows applications include the following commands in
the help menu:

Contents
Search For Help On...
How To Use Help

Although VB doesn’t provide direct support for these com-
mands, they can easily be added to your VB applications by ac-
cessing the Windows API directly. The required declarations are
listed here and should appear in one of your application’s BAS
files:

'Function declaration
Declare Function WinHelp Lib "User" _

(ByVal hWnd As Integer, ByVal lpHelpFile _
As String, ByVal wCommand As Integer, _

ByVal dwData As Any) As Integer

'Global constants
Global Const HELP_QUIT = 2
Global Const HELP_INDEX = 3
Global Const HELP_HELPONHELP = 4
Global Const HELP_PARTIALKEY = &H105

Add the new menu items and name them mnuHelpContents,
mnuHelpSearch and mnuHelpHowToUse, respectively. The han-
dlers for each of these commands should look like this (Change
the first argument to WinHelp (Form1.hWnd) to reference the
nal ©1991–1995 Fawcette Technical Publications H O M E

main form in your application and set App.HelpFile to your
application’s help file when your application starts):

 99 TECH TIPS
For Serious Programmers
'Contents command
Sub mnuHelpContents_Click ()

Dim i As Integer
i = WinHelp(Form1.hWnd, App.HelpFile, _

HELP_INDEX, 0&)
End Sub

'Search For Help On... command
Sub mnuHelpSearch_Click ()

Dim i As Integer
i = WinHelp(Form1.hWnd, App.HelpFile, _

HELP_PARTIALKEY, "")
End Sub

'How To Use Help command
Sub mnuHelpHowToUse_Click ()

Dim i As Integer
i = WinHelp(Form1.hWnd, App.HelpFile, _

HELP_HELPONHELP, 0&)
End Sub

To make sure Windows Help unloads when your application
terminates, place this code in your main form’s Unload event:

'Unload WINHELP.EXE
Sub Form_Unload (Cancel As Integer)

Dim i As Integer
i = WinHelp(frmMain.hWnd, App.HelpFile, _

HELP_QUIT, 0&)
End Sub

—Jonathan Wood

TEST FOR FALSE INSTEAD OF ZERO
If you’re checking a numeric value against 0, one option is to use
the “<>” operator:

If iNumber <> 0 Then
...

End If

It is faster, however, to check the variable with an If
statement.

If iNumber Then
...

End If

These two statements are equivalent, but the second example
Supple©1991–1995 Fawcette Technical Publications H O M E

will run faster, albeit with some loss of readability.
—Paul D. Sherriff/Visual Basic Power Guides
RIGHT-JUSTIFY MENU ITEMS
Menu items you add to your VB applications will be left justified
by default. If you wish to have one or more of your menus right-
justified, you can change it at run time. The trick is to add a
backspace character to the caption of your menu. Because the
backspace character is a Chr$(8), it cannot be entered in design
mode. In the Form_Load() or other initialization routine, add
this code:

Sub Form_Load ()
mnuHelp.Caption = Chr$(8) & mnuHelp.Caption

End Sub

This code right-justifies the mnuHelp menu item. Right- justi-
fied menu items are not part of the GUI design standard set forth
by Microsoft, however, so you should avoid them unless you
have a good reason for using that style.

—Paul D. Sherriff/Visual Basic Power Guides

USING AUTOTAB WITH A
SET MAXLENGTH
To add AutoTab to text boxes that have a set MaxLength, add
this code to the text box Change event:

Sub Text1_Change ()
If Len(Text1) = Text1.MaxLength Then

SendKeys “{Tab}”
End If

End Sub

This saves the user one keystroke when moving from one
field to the next. It’s best not to intersperse this behavior, but
instead to use it on an all-or-nothing basis to prevent massive
user confusion.

—Karl E. Peterson

USING ALT+F4
Pressing Alt and F4 will close any window with a control box.
Because you can’t choose Alt and F4 as a shortcut key combina-
tion from the menu designer, you must place it as part of the
caption property if you want to tell the user that this will close
the window.
ment to Visual Basic Programmer’s Journal MARCH 1995 5

—Gary Cornell

 99 TECH TIPS
For Serious Programmers

added to any existing project. Enjoy!
—Karl E. Peterson
PROGRAMMATICALLY SELECTING
MULTIPLE ROWS IN A DATA GRID
To select multiple, nonconsecutive rows (a tagged list) in
Sheridan Software’s DataGrid (which is a part of its Data Wid-
gets package), first set the SelectionTypeRow property of the
DataGrid to TagList. For each row you want to select, set the
EvalRowNumber property to the row number and the
EvalRowIsSelected property to TRUE. This code illustrates how
to select odd rows in a DataGrid using this approach:

Sub SelectSomeRows()
Dim i As Integer

For i = 1 To 10 Step 2
SSDataGrid1.EvalRowNumber = i
SSDataGrid1.EvalRowIsSelected = True

Next i
End Sub

—Sheridan Software Tech Support

TESTING FOR A GIVEN FILE
There are lots of ways to test for whether a given file exists. The
most common method is to use the Dir$ function. If Dir$ returns
a null string, then the file doesn’t exist. Couldn’t be simpler, right?
If an illegal filespec is tested, an error occurs. This function de-
pends on an error to detect file existence, and rather than using
Dir$, it uses Name.

Function Exists (ByVal FileSpec$)

Dim TestSpec$
Exists = False
FileSpec = Trim(FileSpec)

If Right$(FileSpec$, 1) = "\" Or _
Right$(FileSpec$, 2) = "\." Or _
Right$(FileSpec$, 3) = "\.." Then
'Obviously passed a directory not a file!
'Avoid *MAJOR BUG* with Name function by not
'trying to rename the root directory.
Exit Function

End If

On Local Error Resume Next
Name FileSpec As FileSpec

Select Case Err
Case 5 'Illegal Function Call
Case 53 'File Not Found
6 MARCH 1995 Supplement to Visual Basic Programmer’s Jour

Case 58 'File Already Exists (Maybe!)
TestSpec = Dir$(FileSpec)
If Len(TestSpec) Then Exists = True
Case 64 'Bad Filename
Case 68 'Device Unavailable
Case 74 'Can’t rename with different drive
Case 71 'Disk Not Ready
Case 75 'Path/File Access Error
Case 76 'Path Not Found
Case Else

MsgBox "Unexpected Error " & Err & " _
in Exists(): " & Error$

End Select
End Function

Trying to rename a file to its current name generates error 58 —
File Already Exists. If the file doesn’t exist, you get error 53 —
File Not Found. These errors really tell you something, don’t they?
There are a number of other possible errors, however, each re-
vealing something about the filespec. The Exists function lists
all the errors and their causes that I’ve been able to track down.
Because a directory name generates the same error as a file when
attempting to rename it to itself, I call Dir$ into action to confirm
that a file and not a directory was passed as the filespec.

As presented, Exists is an experimental function. You’d obvi-
ously want to trim it down if you want only the final answer. By
modifying this function slightly, you could also return the cause
of the error, which could help you help the user correct the situ-
ation. Also, by passing many different filespecs, you might dis-
cover new ways your users could devise to break your program.

—Karl E. Peterson

A HANDY UTILITY FOR WORKING
WITH INI FILES
If you work with INI files, save yourself hours of work and down-
load the INIFILE.BAS module I’ve uploaded to the VBPJ and
MSBASIC Forums on CompuServe (file KPINI.ZIP). There’s no
charge for it, and I’m available on-line to answer questions about
it (Peterson is the sysop of the 32-Bit Bucket on the VBPJ Forum—
Ed.). KPINI includes more than 40 routines that can do just about
anything imaginable to or with an INI file. A series of special
functions deals with the oddity that is SYSTEM.INI, such as de-
termining if a driver is loaded or even retrieving a list of all driv-
ers. You’ll find functions for retrieving all the sections with a
file, all the entries within a section, erasing an entry or an entire
section, and many, many other things. All functions are imple-
mented for both WIN.INI and PRIVATE.INIs. The module can be
nal ©1991–1995 Fawcette Technical Publications H O M E

 99 TECH TIPS
For Serious Programmers

—Karl E. Peterson
UNDO CHANGES IN TEXT BOXES
Most professional applications have an Undo menu option un-
der the Edit menu. If you want to have an undo feature for every
text box, you may think you need to create a variable to hold the
old value for every field. Fortunately, Windows takes care of this
for you. With a call to the Windows API function SendMessage(),
you can have the old value put back into the text box. Create a
menu item called Undo and add this code:

Sub mnuUndo_Click ()
Call TextUndo(Screen.ActiveControl)

End Sub

TextUndo() is responsible for performing the undo:

Declare Function SendMessage Lib "User" _
(ByVal hWnd As Integer, ByVal wMsg As Integer, _

ByVal wParam As Integer, lParam As Any) As Long

Sub TextUndo (ctlControl As Control)
Dim lReturn As Long

Const EM_UNDO = &H417
If TypeOf Screen.ActiveControl Is TextBox Then

lReturn = SendMessage(ctlControl.hWnd, _
EM_UNDO, 0, 0&)

End If
End Sub

Because some third-party controls also support the undo
message, place TextUndo() in a separate routine to make it easy
to change this one function by adding the Class name of the
third-party control. If you do, there will be no reason to change
all the calls to the SendMessage() function.

—Paul D. Sherriff/Visual Basic Power Guide

AUTOMATICALLY REPAIRING
CORRUPT DATABASES
When you’re using VB’s built-in database functionality, you’re
likely to get a corrupted database sooner or later. Use this
code to open your databases and automatically repair any
corrupt ones:

On Local Error Resume Next

DidRetry% = False
Db$="My-Db.MDB"

DoOpenDatabase:
Supple©1991–1995 Fawcette Technical Publications H O M E

Err = 0
Set SomeDb = OpenDatabase(Db$)

If Err = 3043 Then
'The dreaded "Disk or Network Error" ...
MsgBox "Database Engine error. Please restart _

Windows and this application", 16
End

ElseIf Err = 3049 Then
'Database corrupted
If Not DidRetry% Then

'Try to repair database ...
RepairDatabase Db$
DidRetry% = True
GoTo DoOpenDatabase

Else
MsgBox "Database repair failed. Please _

contact Tech Support", 16
End

End If
End If

—Michiel de Bruijn

GRAPHICS IN MDI FORMS
To use a bitmap or other graphics in the client space of MDI
forms, the only trick is getting the hWnd for that window so that
you can use GDI functions on it. The key is understanding that
the client space is the first child (in Windows-speak, not MDI-
speak) of the MDI form.

Get the handle via the GetWindow API call with the GW_CHILD
constant. You create a MDIForm_Paint event with a subclassing
control such as MsgHook from Visual Basic How To, Second Edi-
tion by Zane Thomas, Robert Arnson, and Mitchell Waite (Waite
Group Press). When the WM_PAINT message is intercepted, call
your routines to BitBlt a BMP or draw other graphics in the cli-
ent space. When WM_ERASEBKGND message is intercepted,
prevent it from being passed on to VB (all subclassing controls
use slightly different terminology for this). If you’re using
MsgHook, put the statements below in the MDI form’s Form_Load
event. To see this and other MDI techniques in action, down-
load MDIDMO.ZIP from either the MSBASIC or VBPJ forums on
CompuServe and try out the demonstrations.

MsgHook1.HwndHook = (GetWindow(Me.hWnd, GW_CHILD))
MsgHook1.Message(WM_PAINT) = True
MsgHook1.Message(WM_ERASEBKGND) = True
ment to Visual Basic Programmer’s Journal MARCH 1995 7

 99 TECH TIPS
For Serious Programmers
SHOW FREE RESOURCES
It is sometimes useful to determine the amount of Windows re-
sources available. You can show percentage of free resources in
an about box, for example, or to detect memory leaks in a pro-
gram. The latter task requires that you continually update the
free-resource display so that you can see when the amount of
free resources changes.

The percentage of free system resources is determined by
using the Windows API function GetFreeSystemResources. The
declarations for this function are:

Declare Function GetFreeSystemResources Lib "User"
(ByVal _

fuSysResource As Integer) As Integer

Global Const GFSR_SYSTEMRESOURCES = &H0
Global Const GFSR_GDIRESOURCES = &H1
Global Const GFSR_USERRESOURCES = &H2

To continually update the display, place three labels on your
form. Name the labels lblResources and set the indexes to 0, 1,
and 2. Next, place a timer on your form called Timer1 and set
the interval property to between 500 and 1500. Place this code
in the timer event handler:

Sub Timer1_Timer ()
Dim s As String
s = CStr(GetFreeSystemResources_

(GFSR_SYSTEMRESOURCES))
lblResources(0) = "Free System _

Resources: " & s & "%"
s = CStr(GetFreeSystemResources_

(GFSR_GDIRESOURCES))
lblResources(1) = "Free GDI _

Resources: " & s & "%"
s = CStr(GetFreeSystemResources(GFSR_USERRESOURCES))
lblResources(2) = "Free User _

Resources: " & s & "%"
End Sub

—Jonathan Wood

3-D TEXT BOXES IN VB PRO
To create a 3-D text box, place a text box in a 3-D Panel and set
the panel’s AutoSize property to “Autosize Child to Panel.” Then
set the BevelOuter and BevelWidth properties of the 3-D Panel
as desired.
8 MARCH 1995 Supplement to Visual Basic Programmer’s Jour

—Sheridan Software Tech Support
USE VB’S TIMER FUNCTION TO
OPTIMIZE CODE
I often see questions in the VBPJ forum about comparative speeds
for different methods of performing actions in code. In many
cases, a simple generalization of which is fastest cannot be made.
VB’s Timer function, however, allows testing your code as you
go. Declare a Single variable, TStart! and use this line at the be-
ginning of the code segment you wish to test:

TStart! = Timer

At the end of the segment, print the elapsed time to the debug
window:

Debug.print Timer - TStart!

By doing such time-testing you will be better able to choose
between similar ways of doing things. In most cases, for example,
the CStr and Str functions are much faster than the Format or
Format$ functions. Likewise, the If/Elseif sequence will execute
much faster than similar code using the IIf or Choose functions,
probably because of the added type checking done by the func-
tions. But IIf and Choose often allow much shorter, clearer sub-
routines. By performing simple time tests, you can better de-
cide on the appropriate code style.

—William Storage

MAKE CONTROLS APPEAR 3-D
The latest trend in Windows programs is the use of a 3-D look
that makes windows and controls appear to be three-dimen-
sional. As a result, a number of tools for adding the 3-D look to
VB applications are available. One of the most popular is
THREED.VBX, which ships with the professional edition of VB
3.0.

Adding more VBXs or DLLs to your program just to enhance
your program’s look, however, may seem like overkill. The
Apply3D routine shows how to make a control such as a text
box appear sunken or recessed. Apply3D works by painting dark
gray lines along the left and top sides of the control, and light
gray lines along the bottom and right sides. This gives the con-
trol the appearance of being recessed. Note that the routine does
not paint inside of the control.

Sub Apply3D (myForm As Form, myCtl As Control)
'Make specified control "sunken"
'This routine assumes that the mapping mode
'for myForm is 3-pixel

myForm.CurrentX = myCtl.Left - 1
nal ©1991–1995 Fawcette Technical Publications H O M E

myForm.CurrentY = myCtl.Top + myCtl.Height
myForm.Line -Step(0, -(myCtl.Height + 1)), _

 99 TECH TIPS
For Serious Programmers

—Sheridan Software Tech Support
RGB(92, 92, 92)
myForm.Line -Step(myCtl.Width + 1, 0), _

RGB(92, 92, 92)
myForm.Line -Step(0, myCtl.Height + 1), _

RGB(255, 255, 255)
myForm.Line -Step(-(myCtl.Width + 1), 0), _

RGB(255, 255, 255)
End Sub

You’ll need to set the form’s BackColor to gray
(&H00C0C0C0&) and set the ScaleMode property to 3—Pixel. To
use the Apply3D routine, call it from the form’s Paint event. For
example, this code shows what the Paint event would look like if
you had two text boxes (Text1 and Text2) that you want to show
in 3-D:

Sub Form_Paint ()
Call Apply3D(Me, Text1)
Call Apply3D(Me, Text2)

End Sub
—Jonathan Wood

REPLICATE CONTROLS WITHOUT
RESELECTING
To replicate a control without having to reselect it each time,
press and hold the Ctrl key when selecting a control from the
toolbox. VB will not create a control array in this case, but will
name each control sequentially, as in Text1, Text2, and so on.

—Mark Streger

SAVING THE POSITION OF A
DESIGNER WIDGETS’ DOCKABLE
TOOLBAR
The best way to save information about an application’s options,
such as toolbar positioning, is to write the settings to an INI file.
To do so, two Windows API functions must be used:
GetPrivateProfileInt and WritePrivateProfileString. Here are two
functions that load and save settings to and from an INI file:

'These two Declare statements go in the
‘Declarations section of a module
Declare Function GetPrivateProfileInt Lib "Kernel" _
Supple©1991–1995 Fawcette Technical Publications H O M E

(ByVal lpApplicationName As String, _
ByVal lpKeyName As String, ByVal nDefault _
As Integer, ByVal lpFileName As String) As Integer
Declare Function WritePrivateProfileString _

Lib "Kernel" (ByVal lpApplicationName As String, _
ByVal lpKeyName As String, ByVal lpString _

As String, ByVal lplFileName As String) _
As Integer

Sub LoadToolbarInfo (Tb As Control, _
Section As String, ININame As String)

Tb.DockRank = GetPrivateProfileInt(Section, _
"DockRank", Tb.DockRank, ININame)

Tb.DockRankSeq = GetPrivateProfileInt(Section, _
"DockRankSeq", Tb.DockRankSeq, ININame)

Tb.FloatingLeft = GetPrivateProfileInt(Section, _
"FloatingLeft", Tb.FloatingLeft, ININame)

Tb.FloatingTop = GetPrivateProfileInt(Section, _
"FloatingTop", Tb.FloatingTop, ININame)

Tb.FloatingWidthInBtns = _
GetPrivateProfileInt(Section, _
"FloatingWidthInBtns",Tb.FloatingWidthInBtns, _
ININame)

Tb.DockStatus = GetPrivateProfileInt(Section, _
"DockStatus", Tb.DockStatus, ININame)

End Sub

Sub SaveToolbarInfo (Tb As Control, _
Section As String, ININame As String)

Dim rc%

rc = WritePrivateProfileString(Section, _
"DockStatus", CStr(Tb.DockStatus), ININame)

rc = WritePrivateProfileString(Section, _
"DockRank", CStr(Tb.DockRank), ININame)

rc = WritePrivateProfileString(Section, _
"DockRankSeq", CStr(Tb.DockRankSeq), ININame)

rc = WritePrivateProfileString(Section, _
"FloatingLeft", CStr(Tb.FloatingLeft), ININame)

rc = WritePrivateProfileString(Section, _
"FloatingTop", CStr(Tb.FloatingTop), ININame)

rc = WritePrivateProfileString(Section, _
"FloatingWidthInBtns", _
CStr(Tb.FloatingWidthInBtns), ININame)

End Sub

This code can be found in the SAMPLES\TBARSAVE direc-
tory that’s included with Designer Widgets.
ment to Visual Basic Programmer’s Journal MARCH 1995 9

 99 TECH TIPS
For Serious Programmers
AUTOMATICALLY DISPLAY THE
CONTENTS OF A COMBO BOX
If you’ve ever wanted to make a combo box automatically dis-
play its contents, you know it is next to impossible with VB’s
SendKey command. The correct way to do this is with a
SendMessage API call:

Global Const WM_USER = 1024
Global Const CB_SHOWDROPDOWN = (WM_USER + 15)

Declare Function SendMessage Lib "User" _
(ByVal hWnd As Integer, ByVal wMsg As Integer, _
ByVal wParam As Integer, lParam As Any) As Long

Dim nRet as Long

nRet = SendMessage(combo1.hWnd, CB_SHOWDROPDOWN, _
1, ByVal 0&)

Sending this message will cause the target combo box to dis-
play its list of entries just as if you had clicked the down-arrow
button on the combo box control.

—Deepak Agrawal

MAKING THE ENTER KEY WORK
LIKE A TAB
To allow the Enter key to function as a Tab, enter this code in
the KeyPress event of your text boxes:

Sub Text1_KeyPress (KeyAscii As Integer)
If KeyAscii = 13 Then 'Enter

SendKeys "{Tab}"
KeyAscii = 0

End If
End Sub

This allows the user to press Enter to move from one text
box to the next. This technique will not work if you have a com-
mand button on the form whose default property is True. The
button will respond to the Enter key before the text box sees it.
10 MARCH 1995 Supplement to Visual Basic Programmer’s Jou

—Karl E. Peterson
DATA UPDATING SPEED
When updating the values of several records in a loop, put a
BeginTrans, CommitTrans around the loop. This will significantly
speed up the update process:

BeginTrans
Do Until dsData.EOF

dsData.Edit
dsData!sState_cd = "CA"
dsData.MoveNext

Loop
CommitTrans

—Paul D. Sherriff/Visual Basic Power Guides

CHECKING FOR A PREVIOUS
INSTANCE
When working in Windows, it is very easy to lose a minimized
icon on the desktop. Or you may forget you have an application
running and try to open it again from the Program Manager. There
are times, however, when you don’t want to run two separate
instances of an application. To prevent this you can use the built-
in system object App to determine whether another instance of
an application is running. Here’s a routine you can use in your
Form_Load() or Main() procedures to do this:

Sub Form_Load ()
Dim sCaption As String

If App.PrevInstance Then
sCaption = Me.Caption
MsgBox "Another Instance Is Already Running"
Me.Caption = "Different Caption"

AppActivate sCaption
SendKeys "% R", True

Unload Me
End If

End Sub

Checking the App.PrevInstance property to see if it contains
a True value tells you if another instance is running. If it is, in-
form the user, then activate the first instance prior to shutting
down the second. You can activate any application that is cur-
rently running by using the AppActivate statement and passing
the text that appears in the application’s title bar.

This technique requires that the current instance has the
same caption as the one you want to activate, so you’ll need to
rnal ©1991–1995 Fawcette Technical Publications H O M E

change the current title of the main window and then call
AppActivate with the caption of the application. Call the state-

 99 TECH TIPS
For Serious Programmers

—Patrick O’Brien
ment SendKeys to tell the other instance to restore itself to a
normal window state. The “% R” string passed to the SendKeys
statement tells the application to invoke the control menu and
select the Restore option.

The code to check for multiple instances should be placed in
the Main() or Form_Load() of your start-up form. This technique
will not work if you incorporate information within the caption
at run time, such as the current data-file name.

—Paul D. Sherriff/Visual Basic Power Guides

USE READ-ONLY ATTRIBUTES
WHEN SHARING CODE
If you set a VB file’s DOS attribute to read-only, VB will show it
with a red lock in the project window and prevent it from being
overwritten. This is a handy way of sharing a common code li-
brary between developers’ projects and ensuring that no one
can modify the “common” code.

—Craig Goren

GENERATING A “REAL” TAB
IN A TEXT BOX
Here’s the code I used to trap the Tab key and use it to generate
a “real” tab in a text box:

' Trap the tab key to allow tabs in a text box
' This function should be called by the lostFocus
' event for the control that needs to snag the tab
' Parameters:
' txtControl text box control

' Setting keyboard info
Declare Function GetKeyState% Lib "User" _

(ByVal nVirtKey%)

' Virtual key values
Global Const VK_TAB = &H9

Sub snagTab (txtControl As Control)
Dim retVal As Integer, currSelStart As Long
retVal = GetKeyState(VK_TAB)

If retVal = -128 Or retVal = -127 Then
' tab key pressed
Supplem©1991–1995 Fawcette Technical Publications H O M E

currSelStart = txtControl.SelStart
If currSelStart = 0 Then
txtControl.Text = Chr$(9) & txtControl.Text

Else
txtControl.Text = Left(txtControl.Text, _

currSelStart) & Chr$(9) & _
Mid(txtControl.Text, currSelStart + 1)

End If
' Change the focus back to this control and
' reset the current insert point to past
' the new “tab”
txtControl.SetFocus
txtControl.SelStart = currSelStart + 1

End If

End Sub
—Deborah Kurata

CLEAR OUT DATA WHEN
UNLOADING FORMS
When unloading a form, use the following piece of code behind
a Close button:

Unload <formName>

This code should also be put in the Form_Unload() event
handler for that form:

Set <formName> = Nothing

This clears out any remaining code/data in the data segment
for the form, if you don’t do it explicitly. This is important when
you load/unload many forms, especially those with lots of con-
trols.

By the way, this is not a bug—it’s done this way by design.
The same is true for VBA—if you don’t initialize global (module)
variables in VBA (for Excel, for example) and have this kind of
expression:

i% = i% + 1

then i% will successively have the values 1, 2, 3, . . . as you run
the VBA script one more time. Again, by design.
ent to Visual Basic Programmer’s Journal MARCH 1995 11

 99 TECH TIPS
For Serious Programmers

' ReleaseDC()
HIDE AND SHOW THE SCROLL BAR
IN A MULTILINE TEXT BOX
Have you ever wanted to make that pesky scroll bar disappear
when it is not needed, and reappear when the text exceeds the
viewable area of the text box? Setting the scroll bar properties
at run time won’t do it. You could use API calls, but how do you
decide when the lines have exceeded the viewing area? Here’s a
set of declarations and procedures that will do just that for you:

'=USER TYPES =
Type pointapi

x As Integer
y As Integer

End Type
Type RECT '8 Bytes

Left As Integer
Top As Integer
right As Integer
bottom As Integer

End Type
Type TEXTMETRIC '31 Bytes

TMHeight As Integer
tmAscent As Integer
tmDescent As Integer
tmInternalLeading As Integer
tmExternalLeading As Integer
tmAveCharWidth As Integer
tmMaxCharWidth As Integer
tmWeight As Integer
tmItalic As String * 1
tmUnderlined As String * 1
tmStruckOut As String * 1
tmFirstChar As String * 1
tmLastChar As String * 1
tmDefaultChar As String * 1
tmBreakChar As String * 1
tmPitchAndFamily As String * 1
tmCharSet As String * 1
tmOverhang As Integer
tmDigitizedAspectX As Integer
tmDigitizedAspectY As Integer

End Type
Global apnt As pointapi
Declare Function SendMessage& Lib "User" _

(ByVal HWND%, ByVal wmsg%, ByVal wparam%, _
lparam As Any)

Declare Function GetTextMetrics% Lib "GDI" _
(ByVal hDC%, lpMetrics As TEXTMETRIC)

Declare Function GetDC% Lib "User" (ByVal HWND%)
Declare Function SelectObject% Lib "GDI" _

(ByVal hDC%, ByVal hObject%)
Declare Function ReleaseDC% Lib "User" _

(ByVal HWND%, ByVal hDC%)
Declare Function WindowFromPoint% Lib "User" _
12 MARCH 1995 Supplement to Visual Basic Programmer’s Jou

(ByVal x As Any)
Declare Sub SHOWSCROLLBAR Lib "User" _
(ByVal HWND%, ByVal wbar%, ByVal bshow%)
'==============API CONSTANTS====================
Global Const WM_USER = &H400
Global Const EM_SETREADONLY = (WM_USER + 31)
Global Const EM_GETLINECOUNT = (WM_USER + 10)
Global Const EM_GETFIRSTVISIBLELINE = _

(WM_USER + 30)
Global Const EM_GETRECT = (WM_USER + 2)
Global Const WM_GETFONT = &H31

This sub is called from your form to make the scroll bars
visible or invisible, depending on whether the lines of text have
exceeded the viewable area in the text box. You must pass it the
hWnd of the text box and the scroll bar type that the text box is
using:

Sub Scroll_show (thwnd%, bartype%)
'==
'This Subroutine controls the visibility of the
' scrollbars in the designated Edit Control. The
' requirements for this subroutine are:
' BarType%.......Integer selecting scrollbar type
' thwnd%.........Hwnd of the edit control
' API CONSTANTS
' EM_GETLINECOUNT
' EM_GETFIRSTVISIBLELINE
' !! MUST BE A TRUETYPE FONT IN USE !!
'==
LinECount% = SendMessage(thwnd%, _

EM_GETLINECOUNT, 0, 0)
FirstVisible% = SendMessage(thwnd%, _

EM_GETFIRSTVISIBLELINE, 0, 0)

If LinECount% > GETVISIBLELINES(thwnd%) Then
SHOWSCROLLBAR thwnd%, 1, True

Else
SHOWSCROLLBAR thwnd%, 1, False

End If

End Sub

This function returns the number of visible lines in a text box
when you pass it the hWnd property of the text box:

Function GETVISIBLELINES% (thwnd%)
'==
'This function returns the number of visible
' lines in an edit control. It requires:
' RC.........User Defined Type RECT
' TM.........User Defined Type TEXTMETRIC
' THWND%.....The hwnd of the edit control
' API FUNCTIONS:
' SendMessage()
' GetDC()
' SelectObject()
rnal ©1991–1995 Fawcette Technical Publications H O M E

 99 TECH TIPS
For Serious Programmers

This property applies to picture boxes as well as forms.
—Paul D. Sherriff/Visual Basic Power Guides
' API CONSTANTS:
' EM_GETRECT
' WM_GETFONT
'==
Dim RC As RECT
Dim hDC%
Dim LFONT%, OLFFONT%
Dim TM As TEXTMETRIC
Dim DI%

'GET THE RECTANGLE
LC% = SendMessage(thwnd%, EM_GETRECT, 0, RC)
'GET THE FONT HANDLE
LFONT% = SendMessage(thwnd%, WM_GETFONT, 0, 0&)
'GET DEVICE CONTEXT
hDC% = GetDC(thwnd%)
'SELECT LOGICAL FONT
If LFONT% <> 0 Then OLDFONT% = SelectObject_

(hDC%, LFONT%)
DI% = GetTextMetrics(hDC%, TM)
If LFONT% <> 0 Then LFONT% = SelectObject_

(hDC%, LFONT%)
'GET VISIBLE LINES
GETVISIBLELINES% = _

(RC.bottom - RC.Top) / TM.TMHeight
DI% = ReleaseDC(thwnd%, hDC%)
End Function

This sub is the one that actually makes the scroll bars visible
or invisible, depending on the value of the flag variable. It re-
quires the hWnd property of the control:

Sub ListScrollShow (thwnd%, flag As Integer)
'==
'Makes the control’s scrollbar visible or
'invisible depending on flag value.
'Flag = True to show
'FlAG = fALSE TO HIDE
'==

SHOWSCROLLBAR thwnd%, 1, flag
End Sub

—Ibrahim Malluf

IN-LINE CODE
Calling a function or procedure incurs some overhead. If you
have a two-line function that is called from only three places,
you might consider putting those three lines in the functions
themselves and not make them a function. This can save some
Supple©1991–1995 Fawcette Technical Publications H O M E

processing time. This could lead to some future maintenance
problems, however. Here are two options.
Option 1:

For iLoop = 1 To 100
Call DoSomething(iLoop)

Next
Sub DoSomething(iLoop As Integer)

Print iLoop + 10
End Sub

Option 2:

For iLoop = 1 To 100
Print iLoop + 10

Next

The two options are very simple examples, but you can
see that if you use the statement Print iLoop + 10 in two or more
places, you have a maintenance problem if you ever need
to change that line. Option 2, however, will run faster than
Option 1.

—Paul D. Sherriff/Visual Basic Power Guides

COPY MENU STRUCTURES
BETWEEN FORMS
Here’s a simple way of copying similar menu structures between
forms: If you save a file as text, its menu section can be pasted
into a new form’s menu section with a text editor. (For more about
menus, please see Deepak Agrawal’s article in the January 1995
issue of Visual Basic Programmer’s Journal—Ed.)

—Craig Goren

SET AUTOREDRAW TO FALSE
If AutoRedraw is set to True, VB keeps a bitmap of the form in
memory that it uses to redraw the form after another window in
front of it is closed. Because this consumes memory, set
AutoRedraw to False if you are not using any graphics methods.
Most business applications can have AutoRedraw set to False.
ment to Visual Basic Programmer’s Journal MARCH 1995 13

 99 TECH TIPS
For Serious Programmers
USE SPECIFIC OBJECT TYPES
When passing controls as parameters, make the function that is
receiving the parameter accept the specific object type instead
of generic types. The exception to this is when multiple types of
objects may be passed into a routine. In these cases, you must
test for the object type within the routine.

Specific object types are Combo Box, List Box, Text Box, and
so on. Generic types are Form, Control, MDIForm, and Object.

—Paul D. Sherriff/Visual Basic Power Guides

LASSOING CONTROLS AND THEIR
COMMON PROPERTIES
To lasso controls and set their common properties together,
select multiple controls by holding down the Ctrl key while drag-
ging the mouse pointer around the controls, or select multiple
controls by holding the Ctrl key while you click on them indi-
vidually. Pressing F4 brings up a view of the properties windows
that shows only the shared properties. Changing a property such
as font or color will affect all selected controls.

—Mark Streger

TOGGLE BOOLEAN VALUES
USING NOT
To toggle a variable between True and False, use the Not opera-
tor instead of an If statement. Use the Not operator on those
variables you have explicitly set with the True or False keyword.
Option 1 runs slower than Option 2.

Option 1:

If bPerform Then
bPerform = False

Else
bPerform = True

End If

Option 2:

bPerform = Not bPerform

Be careful when using the Not operator on integers that are a
14 MARCH 1995 Supplement to Visual Basic Programmer’s Jou

number other than True or False (-1 and 0 respectively):
Sub cmdBool_Click ()
Dim iBool As Integer
Dim iTemp As Integer

iBool = True
Print iBool ' Prints -1
Print Not iBool ' Prints 0

iTemp = 5
Print iTemp ' Prints 5
Print Not iTemp ' Prints -6
If iTemp Then

Print "iTemp is True" ' Prints Here
Else

Print "iTemp is False"
End If

End Sub

The Not operator does bitwise manipulation, so manipulat-
ing the 5 actually makes it a negative 6.

—Paul D. Sherriff/Visual Basic Power Guides

EDITING GRID CELLS
Grids provide a nice way to present certain types of spreadsheet
information. Unfortunately, the grid in VB does not allow edit-
ing. With just a little bit of code you can simulate editing on top
of a grid.

To begin, you need to create a form with a grid and add a
hidden text box. Name the grid control grdFields, and the text
box txtEdit.

When the user double-clicks on a cell you need to move the
hidden text box over that cell and make it visible. Use this code
in the grid’s DblClick event:

Sub grdFields_DblClick ()
miLastRow = grdFields.Row
miLastCol = grdFields.Col
Call GridEdit(grdFields, txtEdit)

End Sub

You’ll need two module-level variables to track which row
and column the cursor is on. These variables will be used later
to replace the information from the text box back into the grid.

To find the location on the screen for the text box, you need
to calculate the cell’s distance from the top and left of the form.
You also need to add each row height and column width indi-
vidually, because each cell can be a different size. Add this
GridEdit() routine to calculate the position and move the text
box on top of the grid:
rnal ©1991–1995 Fawcette Technical Publications H O M E

Sub GridEdit (grdCurrent As Control, _
ctlEdit As Control)

 99 TECH TIPS
For Serious Programmers

VBAssist program icon in Program Manager.
—Sheridan Software Tech Support
Dim iWidth As Single ' Total Height
Dim iHeight As Single ' Total Width
Dim iLoop As Integer

iWidth = _
grdCurrent.Left + Screen.TwipsPerPixelX

iHeight = _
grdCurrent.Top + Screen.TwipsPerPixelY

' Get Total Width
For iLoop = 0 To grdCurrent.Col - 1

iWidth = iWidth + grdCurrent.ColWidth(iLoop)
If grdCurrent.GridLines Then

iWidth = iWidth + (Screen.TwipsPerPixelX * _
grdCurrent.GridLineWidth)

End If
Next

' Get Total Height
For iLoop = 0 To grdCurrent.Row - 1

iHeight = iHeight + grdCurrent.RowHeight(iLoop)
If grdCurrent.GridLines Then

iHeight = iHeight + (Screen.TwipsPerPixelY * _
grdCurrent.GridLineWidth)

End If
Next

' Move the Text Box On Top Of The Grid
ctlEdit.Move iWidth, iHeight
ctlEdit.Height = _

grdCurrent.RowHeight(grdCurrent.Row)
ctlEdit.Text = grdCurrent.Text
ctlEdit.Width = _

grdCurrent.ColWidth(grdCurrent.Col)
ctlEdit.Visible = True
ctlEdit.SetFocus
ctlEdit.ZOrder 0

End Sub

After you’ve calculated the width and height, use the Move
method to place the text box at the proper location. Next, make
the text box visible and set its ZOrder to 0, to put it on top of the
grid. You also need to move the text from the grid into the Text
Box.

After the user finishes editing the text in the text box, you
need to put the text back into the grid and hide the text box. Use
this in the grid’s Click event:

Sub grdFields_Click ()
If txtEdit.Visible Then

Call GridReset(grdFields, txtEdit, _
miLastRow, miLastCol)

End If
End Sub

Check to see if the text box is visible. If it is, you need to take
Supple©1991–1995 Fawcette Technical Publications H O M E

the edited data and put it back into the grid with the GridReset()
procedure:
Sub GridReset (grdFields As Grid, _
ctlEdit As Control, iRow As Integer, _
iCol As Integer)

Dim iOldRow As Integer
Dim iOldCol As Integer

iOldRow = grdFields.Row
iOldCol = grdFields.Col

grdFields.Row = iRow
grdFields.Col = iCol
grdFields.Text = ctlEdit.Text
ctlEdit.Visible = False
ctlEdit.Move 0, 0

grdFields.Row = iOldRow
grdFields.Col = iOldCol

End Sub

When the user clicks on another cell after editing the text
box, the grid has been updated to the new row and column. Go
back to the last row and column where the user was editing,
take the contents of the text box, and put that value into the
grid’s cell. You can then make the text box invisible and move it
to an area on the form that is out of the way.

This tip won’t work if the grid has scrollbars, except when
scrolled all the way to the left and top. To fix this would require
additional loops to add up the height/width of fixed rows/col-
umns. In that case, the other loops would need to be adjusted to
calculate only from TopRow to Row, rather than from 0 to Row –
1 (but I’d want to test it to be sure!).

Also, it goes nuts if the scrollbar is clicked while text box is
visible. At any rate, it will work if scrollbars aren’t enabled.

—Paul D. Sherriff/Visual Basic Power Guide

VB ASSIST QUICK TIPS
Using the AutoSave feature in the VBAssist Options box auto-
matically saves changes made to your project after a defined
time interval.

To temporarily bypass VBAssist’s Control Lock feature, hold
down the Ctrl key while resizing or moving controls.

To prevent VBAssist from automatically loading the last
project, hold down the Shift key while double-clicking on the
ment to Visual Basic Programmer’s Journal MARCH 1995 15

 99 TECH TIPS
For Serious Programmers

Text1.Text = "" & SomeDynaset("SomeField")
—Michiel de Bruijn
SAVING CHANGES TO A DATAGRID
ROW BEFORE THE FORM CLOSES
There are two ways to save changes before exiting a form. One
is to invoke the Update method on the data control the DataGrid
is bound to from within the QueryUnload event of the form. An-
other way is to force the update in the Validate event of the data
control:

Sub Data1_Validate (Action As Integer, _
Save As Integer)

If Action = 11 then Save = True
'if pending changes then save changes

End Sub
—Sheridan Software Tech Support

SHORTEN CONTROL AND
FORM NAMES
Keep control and form names as short as possible. Such names
are kept in the EXE file. Variable names, however, are not kept in
the EXE.

—Paul D. Sherriff/Visual Basic Power Guide

EASY-TO-IMPLEMENT STATUS BAR
WITH SPYWORKS
The SBCEasy custom control that comes with Desaware’s
SpyWorks-VB can be used to update a status bar whenever the
mouse moves over any control or form in your application. All
you need to do is set the MouseTransit property to start track-
ing the mouse with SBCEasy. SBCEasy receives a MouseEnter
and MouseExit event each time the mouse enters and exits a
control or form. You can add code in these events to update
your status bar with the appropriate help text.

The Tag property of a control is one possible place to store
the status bar help text. During a MouseEnter event, you can
retrieve the string from the Tag property of the control the mouse
is currently in and update the status bar. SBCEasy’s TransitHctl
property contains the VB control handle of the control the mouse
is currently in. You can then pass the TransitHctl to the
dwGetPropertyValue function to retrieve the Tag property. Here’s
an example:
16 MARCH 1995 Supplement to Visual Basic Programmer’s Jou

SBCEasy1_MouseEnter(...)
dim iresptr%, tagstr$
:
tagstr$ = dwGetPropertyValue(SBCEasy1.TransitHctl, _

"Tag", iresptr%)
If iresptr% = 0 Then StatusBar.Caption = tagstr$
:
:

End Sub
—Daniel Appleman

USE THE CONTROLS COLLECTION
If you need to reference every control on a form, using the Con-
trols collection will be faster than referencing every control di-
rectly. For example, if you have four command buttons on a form
and you want to set the Enabled property to False for all of them,
you have two options.

Option 1:

cmdAdd.Enabled = False
cmdEdit.Enabled = False
cmdDelete.Enabled = False
cmdNext.Enabled = False

Option 2 will execute approximately 10 to 15 percent faster than
Option 1:

For iLoop = 0 To 3
Controls(iLoop).Enabled = False

Next
—Paul D. Sherriff/Visual Basic Power Guides

PREVENTING “INVALID USE OF
NULL” ERRORS
If your app uses database or other functions that can return Null
variants, your app will crash sooner or later with that dreaded
“Invalid Use of Null” error. Preventing it is simple: assign an empty
string and a variant to your target variable or control:
rnal ©1991–1995 Fawcette Technical Publications H O M E

 99 TECH TIPS
For Serious Programmers
ALWAYS USE THESE
Always use Option Explicit: it draws immediate attention to vari-
able typos.

Always use Save As Text: files are less easily corrupted, more
easily recovered, and editable by a text editor other than the VB
text editor, which is useful for copying code from an old project
without shutting down your current VB project. (Check out
Deborah Kurata’s article “The Top 10 Do’s of Programming,” in
the December 1994 issue of Visual Basic Programmer’s Journal
for more information on these two tips—Ed.).

—Craig Goren

TROUBLESHOOTING ERRATIC
VBX BEHAVIOR
If a VBX is acting erratically, make sure you are using the most
current version of the VBX on your system (and make sure to
put it into your user’s Windows/System directory too). Use
WPS.EXE (Windows Process Status, which is distributed with
VB/Pro and placed in the CDK directory) to determine the path
that the VBX file is being read from. If it is from a path other than
the one you anticipated, chances are that you are using a prior
or corrupt version of the VBX.

—MicroHelp Tech Support

MOVE CONTROLS INTO A FRAME
To move controls into a frame, select one or more controls and
cut them out using the cut menu option. Select the frame you
wish to place the controls into and then paste them in. This tech-
nique also can be used when moving controls onto other con-
trols such as Tabs.

—Mark Streger

ELIMINATE DEAD CODE
Be sure to remove functions or procedures that you are no longer
using. If you delete a control, be sure to remove the event proce-
Supple©1991–1995 Fawcette Technical Publications H O M E

dures that were tied to that control.
—Paul D. Sherriff/Visual Basic Power Guides
SETTING TAB STOPS IN
LIST BOXES
To quickly set tab stops in list boxes, use the SendMessage API
call. The units used are called Dialog Base Units, which average
out to about four per character. Some experimentation is re-
quired to get the settings just right, but from then on it’s easy.
Here’s an example subroutine that sets three tab stops in a stan-
dard list box:

Declare Function SendMessage Lib "User" _
(ByVal hWnd As Integer, ByVal wMsg As Integer, _

ByVal wParam As Integer, lParam As Any) As Long
Global Const WM_USER = &H400
Global Const LB_SETTABSTOPS = (WM_USER + 19)
Sub SetTabs (Lst As ListBox)

ReDim Tabs(0 To 2) As Integer
Dim Rtn&
Tabs(0) = 70
Tabs(1) = 120
Tabs(2) = 160
Rtn = SendMessage(Lst.hWnd, LB_SETTABSTOPS, _

3, Tabs(0))
End Sub

Use the API’s GetDialogBaseUnits function to calculate the
number of units required for a given string. The function’s re-
turn value contains a number that is four times the average char-
acter width of the system font. Thus, to find the width in dialog
base units of a string (A$), use the following code:

Declare Function GetDialogBaseUnits& Lib "User" ()
DBU& = GetDialogBaseUnits&()
'Extract low word (character width)
W% = DBU& And &HFFFF&
'Calculate width of A$ in dialog base units
DBUWidth% = (Len(A$) * W%) \ 4

—Karl E. Peterson

USE THE IMAGE CONTROL INSTEAD
OF THE PICTURE CONTROL
Because the picture control has more overhead than the image
control, it’s best to use the image control when you need to dis-
play a graphic. Use the picture control when you need to con-
tain other controls, align the picture either to the top or bottom,
or use graphics methods. The image control optimizes both for
speed and size and consumes none of the GDI heap (one of the
most critical of the so-called “system resources”).
ment to Visual Basic Programmer’s Journal MARCH 1995 17

—Paul D. Sherriff/Visual Basic Power Guides

 99 TECH TIPS
For Serious Programmers

erty is applied to forms, frames, and picture controls.
—Paul D. Sherriff/Visual Basic Power Guides
RETRIEVING DATA FROM A
DATAGRID ROW THAT ISN’T
CURRENT
When you change the row in the data control that a Sheridan
DataGrid is bound to, the DataGrid will also reposition its cur-
rent row. To avoid this, use the Clone method to make a copy of
the dynaset in the data control. Then, accessing the rows in the
cloned dynaset will not affect the current row in the DataGrid.
Here’s an example:

Dim DynClone As Dynaset
Set DynClone = Data1.Recordset.Clone()
'clone the data control's dynaset
DynClone.MoveFirst
Do While Not DynClone.EOF()

...perform operation on the current _
row of DynClone...

DynClone.MoveNext
Loop

—Sheridan Software Tech Support

MENU STATUS ON MDI FORMS
WITH SPYWORKS-VB
Many features of SBCEasy (a tool that comes with Desaware’s
SpyWorks-VB) work only on its container, and because it cannot
be placed on a MDI Parent form, the MenuSelect event does not
work on MDI forms. Fortunately, it is quite easy to use SBC.VBX
to implement the same functionality.

First, create MDI Parent and MDI Child windows and place a
PictureBox control onto the MDI Parent. Place an SBC SubClass
control on top of that PictureBox. In the Parent’s Load event, set
the window to be subclassed:

SubClass1.HwndParam = MDIForm1.hWnd

Adjust the SubClass control’s Message property to intercept
WM_MENUSELECT. Then, in the SubClass control’s WndMessage
event, get the caption of the selected menu item with this code:

Sub SubClass1_WndMessage (wnd As Integer, _
msg As Integer, wp As Integer, lp As Long, _
retval As Long, nodef As Integer)

Dim id%, di%
Dim hmenu%, menuflags%
Dim menustring$

dwDWORDto2Integers lp, menuflags%, hmenu%
18 MARCH 1995 Supplement to Visual Basic Programmer’s Jou

id% = wp
' Ignore bitmaps, popups and system menu for now
If menuflags And (MF_BITMAP Or MF_POPUP Or _
MF_SYSMENU) Then

Form1.Label1.Caption = “”
Exit Sub

End If
menustring$ = String$(32, 0)
' Get the string
di% = GetMenuString(hmenu%, id%, menustring$, _

31, MF_BYCOMMAND)
' Strip off anything past the null termination
menustring$ = dwGetStringFromLPSTR$(menustring$)

' This menu string can be used as you wish (for
' example, to update status bars)

End Sub
—Daniel Appleman

CLEARING THE CONTENTS OF
A DATAGRID
If the DataGrid is bound to a VB data control, you need to set the
RecordSource property of the data control to “” (null string) and
then use the Refresh method:

Sub Command1_Click()
Data1.RecordSource = ""
'set RecordSource to null string
Data1.Refresh
SSDataGrid1.Refresh

End Sub

If the DataGrid is unbound, setting the Rows property to zero
will clear it.

—Sheridan Software Tech Support

SET CLIPCONTROLS PROPERTY
TO FALSE
Setting the ClipControls property to False significantly reduces
the time it takes forms to paint. The default is True, so you’ll
need to change it to False. If you’re using graphics methods,
however, you may not be able to do so. The ClipControls prop-
rnal ©1991–1995 Fawcette Technical Publications H O M E

 99 TECH TIPS
For Serious Programmers

—Paul D. Sherriff/Visual Basic Power Guides
TIPS ON USING BOOLEAN LOGIC
Programmer’s of all skill levels often make errors when using
Boolean logic. This statement might not evaluate the way you
think it should:

IF (SomeNumber AND 16) OR _
(SomeOtherNumber <> 0) THEN...

The (SomeNumber AND 16) will never return a True (-1). It
will return False (0) or <> False (some value). Always phrase
your evaluations in a TRUE, FALSE, or <> ZERO (<> ZERO in this
case means “has value” as opposed to NOT FALSE which means
TRUE (-1)). Not only will your logical intention be better under-
stood, you’ll be less likely to experience a logic fault that would
be a bear to track down.

—MicroHelp Tech Support

CALL THE CLICK EVENT
If you need to fire a command button’s Click event, you can set
the Value property to True:

cmdAdd.Value = True

The real benefit of this is that you can call code in other form
modules. It is faster, however, to call the event procedure di-
rectly:

Call cmdAdd_Click

This is true for all controls, not just the command button.
—Paul D. Sherriff/Visual Basic Power Guides

PLACE A HORIZONTAL SCROLLBAR
ON A LIST BOX
I hate it when my standard VB list box or combo box has entries
that extend too far to the right and seem truncated. Did you
know that you can display a horizontal scrollbar on the list box
so that you can scroll to the right? Just issue the SendMessage
API function like this:

Global Const WM_USER = 1024
Global Const LB_SETHORIZONTALEXTENT = _

(WM_USER + 21)
Supplem©1991–1995 Fawcette Technical Publications H O M E
Declare Function SendMessage Lib "User" _
(ByVal hWnd As Integer, ByVal wMsg As Integer, _
ByVal wParam As Integer, lParam As Any) As Long

Dim nRet As Long
Dim nNewWidth as Integer

nNewWidth = list1.width + 100
'New width in pixels

nRet = SendMessage(list1.hWnd, _
LB_SETHORIZONTALEXTENT, nNewWidth, ByVal 0&)

—Deepak Agrawal

GET RID OF UNUSED DECLARE
STATEMENTS
When you use the Declare statement, approximately 11 bytes
are added to the size of your EXE. The name of the function and
library where it resides are also stored in the EXE.

—Paul D. Sherriff/Visual Basic Power Guides

DISABLING ALL CONTROLS
ON A FORM
If you ever need to disable all the controls on a form you can
loop through the control array and set each Enabled property
to False with this code:

Sub cmdArray_Click ()
Dim iLoop As Integer

For iLoop = 0 To Me.Controls.Count - 1
Me.Controls(iLoop).Enabled = False

Next iLoop
End Sub

An alternatively is to set the Enabled property of the form to
False, which effectively disables the entire form:

Me.Enabled = False

There is a side effect to the second method, however: be-
cause you can’t use the control menu from the form, there is no
way to close the form. You’ll need to have another form unload
this disabled form.
ent to Visual Basic Programmer’s Journal MARCH 1995 19

 99 TECH TIPS
For Serious Programmers

and then VB—won’t work.
—Michiel de Bruijn
GIVING FORMS A 3-D LOOK
It’s not widely known that you can use CTL3D.DLL (or
CTL3DV2.DLL) to give your VB forms the same 3-D look of
Microsoft’s Office suite of applications.

First, your app must register with CTL3D at startup and
deregister before it ends. The Ctl3DInit and Ctl3DExit functions
take care of this when you pass them the hWnd property of any
form in your program. To add the 3-D effect to a form, call the
Ctl3DForm subroutine with the form’s name as the parameter.

Ctl3DForm works its magic by calling GetWindowLong and
SetWindowLong to set the form’s DS_MODALFRAME style bit.
Then it calls Ctl3DSubclassDlgEx to connect the form to CTL3D’s
drawing routines:

DefInt A-Z
Option Explicit
Global Const BUTTON_FACE = &H8000000F
Global Const FIXED_DOUBLE = 3
Global Const DS_MODALFRAME = &H80&
Global Const GWL_STYLE = (-16)
Global Const GWW_HINSTANCE = (-6)
Declare Function Ctl3dAutoSubclass Lib _

"CTL3D.DLL" (ByVal hInst)
Declare Function Ctl3dSubclassDlgEx Lib _

"CTL3D.DLL" (ByVal hWnd, ByVal Flags&)
Declare Function Ctl3dRegister Lib _

"CTL3D.DLL" (ByVal hInst)
Declare Function Ctl3dUnregister Lib _

"CTL3D.DLL" (ByVal hInst)
Declare Function GetWindowLong& Lib "User" _

 (ByVal hWnd, ByVal nIndex)
Declare Function GetWindowWord Lib "User" _

 (ByVal hWnd, ByVal nIndex)
Declare Function SetWindowLong& Lib "User" _

 (ByVal hWnd, ByVal nIndex, ByVal dwNewLong&)

Sub Ctl3DInit (hWnd As Integer)

Dim hInst As Integer
Dim iResult As Integer

hInst = GetWindowWord(hWnd, GWW_HINSTANCE)
iResult = Ctl3dRegister(hInst)
iResult = Ctl3dAutoSubclass(hInst)

End Sub

Sub Ctl3DExit (hWnd As Integer)

Dim hInst As Integer
Dim iResult As Integer

hInst = GetWindowWord(hWnd, GWW_HINSTANCE)
iResult = Ctl3dUnregister(hInst)
20 MARCH 1995 Supplement to Visual Basic Programmer’s Jou

End Sub
Sub Ctl3DForm (frm As Form)

Dim hWnd As Integer
Dim iResult As Integer
Dim lStyle As Long

hWnd = frm.hWnd
If frm.BorderStyle = FIXED_DOUBLE Then

frm.BackColor = BUTTON_FACE
lStyle = GetWindowLong(hWnd, GWL_STYLE)
lStyle = lStyle Or DS_MODALFRAME
lStyle = SetWindowLong(hWnd, GWL_STYLE, lStyle)
iResult = Ctl3dSubclassDlgEx(hWnd, 0)

End If

End Sub

Ctl3DForm will only “3-D-ize” forms whose BorderStyle is 3
(FIXED_DOUBLE). You can achieve some, uh, unusual effects by
trying it on forms with other BorderStyles.

—Phil Weber

TROUBLESHOOTING CUSTOM
DLLS IN VB
If you’re getting GPFs and you aren’t sure if the cause is your
custom DLL or VB, write a BAS file stub that simulates your DLL.
If the GPFs persist, its not your DLL.

—Craig Goren

RUN MULTIPLE COPIES OF VB
For debugging or whenever you want to copy code from one
project to another, it would be very easy if you could have two
instances of VB running at the same time. Unfortunately,
Microsoft decided to let you start it only once. Short of getting a
second machine or running NT, there’s a simple solution: make
a copy of your VB.EXE called, for example, VB1.EXE. If you run
VB.EXE first, you can start VB1 and have a second copy run-
ning. Note that doing things the other way around—starting VB1
rnal ©1991–1995 Fawcette Technical Publications H O M E

 99 TECH TIPS
For Serious Programmers
ACCESS KEYS WITH LABELS
There is a very simple trick you can perform with labels and
text boxes that will help users who like to use the keyboard in-
stead of the mouse. Notice the underlines in the label controls.
By pressing the Alt key in combination with any of the under-
lined keys, the cursor will jump to the text box next to this label.
For example, pressing Alt-F will move to the text box next to
First Name, and pressing Alt-C will move the cursor to the City
text box.

To make this happen, set a TabIndex property like this:

Label Text Box
 Prompt Control Control
First Name 0 1
Cust. Type 2 3
Last Name 4 5
Street 6 7

and so on....
Label controls cannot receive the focus. When VB detects

that you have pressed an Alt-key combination that corresponds
to a label, the focus is set to the next control in the tab order
that can take the focus. Making the TabIndex property of the
text box one greater than the label control will cause the text
box to become active when the key combination for the label is
pressed.

—Paul D. Sherriff/Visual Basic Power Guides

USE THE LEN() FUNCTION TO
CHECK FOR EMPTY STRINGS
Use the Len() function to check for an empty string rather than
the “<>” or “=” operators. For instance:

If sName <> "" Then
...

End If

This is functionally the same, but is faster:

If Len(sName) Then
...

End If
Supple©1991–1995 Fawcette Technical Publications H O M E

—Paul D. Sherriff/Visual Basic Power Guides
MAKE A READ-ONLY TEXT BOX
WITHOUT GRAYING THE TEXT
There may be situations in which you want to display text that
the user cannot edit, but a label control doesn’t quite fit the bill.
What you need is a read-only text box, which is done setting a
text box’s Enabled property to False. Unfortunately, this also
grays the text. An alternative is to place the text box on a pic-
ture box control and then set the picture box’s Enabled prop-
erty to False. This technique will also disable the text box’s scroll
bars if it has any. Another approach is to make the text box read-
only by sending a EM_SETREADONLY message to the text box
using the API function SendMessage as shown here:

Declare Function SendMessage Lib "User" _
(ByVal hWnd As Integer, ByVal wMsg As Integer, _
ByVal wParam As Integer, lParam As Any) As Long

Global Const WM_USER = &H400
Global Const EM_SETREADONLY = (WM_USER + 31)

Sub Form_Load ()
Dim i As Long

'Prevent user from editing text box
i = SendMessage(Text1.hWnd, EM_SETREADONLY, _

True, ByVal 0&)
End Sub

This technique allows the user to still select, copy, and scroll
the contents of the text box but not edit it.

—Jonathan Wood and Barry Seymour

AN EASY WAY TO QUIT HELP AND
RETURN TO VB
When creating help files for VB programs it is useful to let the
user easily and quickly leave the help window and return to the
VB application. One way to do this is to allow the Escape key to
terminate the help program. To do this, add the following code
to the [CONFIG] section of the help project file. The code cre-
ates an accelerator key (Esc) to invoke the help system macro
EXIT, which terminates the help program.

[CONFIG]
;lets the ESC key terminate the help program
ment to Visual Basic Programmer’s Journal MARCH 1995 21

AddAccelerator(0x1B,0,"Exit()")
—Chuck Peper

 99 TECH TIPS
For Serious Programmers

—Craig Goren
INDICATING SELECTED/
DESELECTED STATES FOR ITEMS
You can set .SelectedColor and .FillColor in the Mh3DList to be
the same, and use .ListPicture and .ListPictureSel properties to
indicate selected/deselected states.

—MicroHelp Tech Support

USE SMALLER GRAPHICS TO
SAVE RESOURCES
Larger bitmaps used for .ListPicture/ListPictureSel properties
in Mh3DList consume proportionally larger amounts of re-
sources. Also, avoid using 256-color bitmaps in controls—they
too consume more resources.

—MicroHelp Tech Support

MAKE FORMS STAY ON TOP
To set a form to be always on top, use the subroutine listed here.
Pass it the hWnd property of the form you want to float. The
OnTop parameter is used to toggle the attribute. If True, floating
is turned on; if False, the form will not float.

Declare Sub SetWindowPos Lib "User" _
(ByVal hWnd As Integer, _
ByVal hWndInsertAfter As Integer, _
ByVal X As Integer, ByVal Y As Integer, _
ByVal cx As Integer, ByVal cy As Integer, _
ByVal wFlags As Integer)

Global Const SWP_NOSIZE = &H1
Global Const SWP_NOMOVE = &H2
Global Const HWND_TOPMOST = -1
Global Const HWND_NOTOPMOST = -2
Sub FormOnTop (hWnd%, OnTop%)

If OnTop Then
Call SetWindowPos(hWnd, HWND_TOPMOST, 0, _
0, 0, 0, SWP_NOSIZE Or SWP_NOMOVE)

Else
Call SetWindowPos(hWnd, HWND_NOTOPMOST, 0, _
0, 0, 0, SWP_NOSIZE Or SWP_NOMOVE)

End If
22 MARCH 1995 Supplement to Visual Basic Programmer’s Jou

End Sub
—Karl E. Peterson
FINDING A STRING IN A
COMBO BOX
The CBFindString()procedure searches for a string in a combo
box by using the SendMessage() API function to find a specific
entry in the list. This is much more efficient than searching us-
ing VB code:

Declare Function SendMessage Lib "User" _
(ByVal hWnd As Integer, ByVal wMsg As Integer, _

ByVal wParam As Integer, lParam As Any) As Long

Sub CBFindString (ctlEdit As Control, _
sSearch As String)

Dim lPos As Long

Const CB_FINDSTRING = &H40C
lPos = SendMessage(ctlEdit.hWnd, CB_FINDSTRING, _

0, ByVal sSearch)
If lPos >= 0 Then

ctlEdit.ListIndex = lPos
End If

End Sub
—Paul D. Sherriff/Visual Basic Power Guides

USE VSHARE.386
When you’re using OLE or the JET database engine, you’ll need
to load SHARE on your system and all systems you deliver your
app to. In the latter case, you are guaranteed to have trouble
with users who load SHARE.EXE but do not include the required
switches (/F:4096 /L:500)—this can crash your app. To prevent
this and many other problems, provide your users with
VSHARE.386 instead. This file is freely available from Microsoft
on CompuServe and comes with a read-me file that outlines us-
age and installation.

—Michiel de Bruijn

INDENTING CODE BLOCKS
You can highlight a block of text in the code window and press
the Tab key to indent the block or Alt-Tab to unindent it.
rnal ©1991–1995 Fawcette Technical Publications H O M E

 99 TECH TIPS
For Serious Programmers
BREAK UP LARGE APPS
If you have a large app, consider breaking it down into smaller
apps. Use one main EXE that calls the others and DDE to pro-
vide communication. When a sub-app opens, open a DDE link to
the main app. You can use scripting to enable the apps to com-
municate with each other to pass data or start processes. Doing
this has several advantages including lower memory require-
ments and lower resource usage. One big advantage: Because
your app is composed of multiple EXEs, Windows gives each
piece its own share of the time slices, so your app runs faster.

—MicroHelp Tech Support

USE BYVAL WHEN API CALLS
CAUSE PROBLEMS
If an API call is not achieving the desired or expected effects, try
placing ByVal in front of parameters. Likely ones to cause trouble
are strings and anything declared “As Any.” The APIs that trip
people up the most are the various INI file calls, SendMessage,
and HMemCpy. Be very suspicious any time a parameter is de-
clared As Any rather than as an explicit type, or if a string isn’t
declared ByVal.

—Karl E. Peterson

USE A CONTROL’S IMPLICIT VALUE
“DEFAULT” PROPERTY
Every control has an implicit “value” property. For text boxes it
is the Text property. For Labels it is Caption:

lblZip.Caption = "Zip Code"

You do not need to reference this property to set the value
for the control.

This will execute 10 to 15 percent faster, but you will lose a
little readability:

lblZip = "Zip Code"
Supple©1991–1995 Fawcette Technical Publications H O M E

—Paul D. Sherriff/Visual Basic Power Guides
AVOID THE OUTLINE CONTROL
The Outline control might at first seem very usable. Well, it isn’t.
Apart from the arcane interface, it’s almost guaranteed to blow
up your app if it’s running on a “nonstandard” video driver (such
as one with more than 256 colors or one with minor bugs). There
are several good third-party Outline replacements that will save
you a great number of tech-support calls.

—Michiel de Bruijn

CHANGING COLORS AND FONTS OF
DATAGRID CELLS
Attributes such as the foreground color, background color, and
fonts of cells in Sheridan’s DataGrid can easily be changed by
setting RowCellxxxx properties such as RowCellForeColor,
RowCellBackColor, RowCellItalic, and so on from within the
RowLoaded event. This event fires when the grid initially loads
records and while scrolling through rows, allowing you to set
various properties for each row in the DataGrid. This code will
set column 0’s background color to red, text color to white, and
font to italics:

Sub SSDataGrid1_RowLoaded (BookMark As String, _
RowNum As Long)
SSDataGrid1.RowCellForeColor(0) = _

RGB(255,255,255)
'set foreground to white
SSDataGrid1.RowCellBackColor(0) = RGB(255,0,0)
'set background to red
SSDataGrid1.RowCellItalics(0) = True
'set font to italics

End Sub

Another way to change the appearance of individual cells in
the DataGrid is to set the EvalRowNumber property to a spe-
cific row number and then set the appropriate RowCellxxxx prop-
erties. This illustrates this method in the Click event of a Com-
mand button:

Sub Command1_Click()
SSDataGrid1.EvalRowNumber = 10
'row to be manipulated
SSDataGrid1.RowCellForeColor(2) = _

RGB(255,255,255)
'set foreground at column 2 to white
SSDataGrid1.RowCellBackColor(2) = RGB(255,0,0)
'set background to red
SSDataGrid1.RowCellItalics(2) = True
'set font to italics
ment to Visual Basic Programmer’s Journal MARCH 1995 23

End Sub
—Sheridan Software Tech Support

 99 TECH TIPS
For Serious Programmers

—Sheridan Software Tech Support
BUILD YOUR OWN FLOATING
TOOLBAR
Ever wanted a floating toolbar? To make one form “owned” by
another, all it takes is a simple API call. Afterwards, the owned
form will float above the form that owns it, and will be automati-
cally hidden whenever the owner form is minimized. To set up
such a relationship, use SetWindowWord with the constant
SWW_HPARENT:

Declare Sub SetWindowWord Lib "User" (ByVal _
hWnd%, ByVal nCmd%, ByVal nVal%)

Global Const SWW_HPARENT = -8
Call SetWindowWord(frmOwned.hWnd, SWW_HPARENT, _

frmOwner.hWnd)
—Karl E. Peterson

USE THE SHORTEST VARIABLES
Use the shortest data type you can for variables. If you’re going
to be counting in a loop from 1 to 10, for instance, use an Integer
not a Double.

—Paul D. Sherriff/Visual Basic Power Guide

KEYBOARD SHORTCUTS
Yes, these shortcuts are in the manual, somewhere, but it’s help-
ful to brush up on them. Using keystrokes is usually faster than
using the mouse to do the same thing. Photocopy these tips and
stick them to your monitor until you’ve memorized them:

Code Window Control Menu Box
Alt and Dash accesses the control menu box of a code window.
Thus, you can use these keystrokes:
• Alt-Dash-x: Maximize the current code window.
• Alt-Dash-n: Minimize the current code window.
• Alt and F4: Close the code window.

Navigating through Code Window Text
• Ctrl and Home: Move to the start of code window text.
• Ctrl and End: Move to the end of code window text. Add the

Shift key to select an entire code window: Ctrl+Home, then
Ctrl+Shift+End.

• Home: Move to the left end of the current line.
• Shift and End: Select the entire line.
24 MARCH 1995 Supplement to Visual Basic Programmer’s Jou

• Ctrl and Right arrow: Move one word to the right (add Shift
to select).
• Ctrl and Left arrow: Move one word to the left (add Shift to
select).

Navigating through Procedures
• Ctrl and Up: Move to the previous procedure in the current

code window.
• Ctrl and Down: Move to the next procedure in the current

code window.
• F2: Open the View Procedures window for moving directly to

other procedures, either in the current module or in other
modules.

• Alt and Space: Accesses the control menu box of the main VB
menu window (or of any nonchild Windows window).

—Barry Seymour

CHANGE THE CONTAINER OF
A CONTROL
I use bounded text boxes within the picture control but they act
as if they belong to the form. Here’s how to make them act as if
they belong to a container control (such as a frame):

• Highlight the text boxes by Shift-clicking.
• Cut them into the clipboard.
• Highlight the picture box.
• Paste the text boxes into it.

—Karl Peterson

SORTING DATA WITHIN
A DATAGRID
Data is sorted by using the “ORDER BY” clause in a SQL state-
ment and then assigning the SQL statement to the RecordSource
property of the data control that the DataGrid is bound to. This
code displays the Author table in the DataGrid and sorts it by
the LastName field:

Sub Form1_Load()
Data1.RecordSource = "Select * from Authors _

Order By LastName"
Data1.Refresh

End Sub
rnal ©1991–1995 Fawcette Technical Publications H O M E

 99 TECH TIPS
For Serious Programmers

—MicroHelp Tech Support
USING LOSTFOCUS EVENTS WITH
COMMAND BUTTON PROPERTIES
If you’re using LostFocus events but would also like to set the
Default or Cancel properties for command buttons, you’ll run
into a confusing situation. Those properties trigger the Click
event when the user presses either Enter or Escape without ever
transferring focus to the command button. To trigger the “miss-
ing” LostFocus, you need to explicitly transfer focus yourself,
and then call DoEvents to resequence to a VB chain of events.
(Don’t be scared by the naysaying over DoEvents—it’s extremely
useful in this situation and can cause no ill effects!) Use code
similar to this:

Sub Command1_Click ()
Command1.SetFocus
DoEvents
If Not (ActiveControl Is Command1) Then

'Focus was transfered elsewhere
'by validation code
Exit Sub

Else
'Proceed with Click event code

End If
End Sub

—Karl E. Peterson

KEEP THE CONTROL BAR AND
TOOLBOX ON TOP
When a VB form is maximized, you can’t normally access the
toolbox or VB control bar unless you resize the form to display
the VB tools. Here is a simple trick to keep a VB form maximized
but have access to all of VB’s tools: Press Alt and Escape. VB’s
control bar and any open windows (toolbox, code modules, prop-
erties window, and so on) will appear on top of the maximized
form.

—Deepak Agrawal

EDITING A MAK FILE
VB 3.0 does not give you an easy way to edit the contents of
your MAK files. This becomes important when you add a new
VBX in the middle of a current project, or worse, when you use a
different PC that does not have the VBXs your app needs. Such
Supple©1991–1995 Fawcette Technical Publications H O M E

situations, and others, usually trigger errors that hinders the
communication channel between your app and Windows.
A solution to this problem is to use a generic text editor, such
as Notepad or Write, to “manually” adjust the app’s MAK file.
For instance, if a VBX file is not in the Windows directory or a
project FRM or BAS file is not in your current project directory,
correct the file’s path as displayed in the MAK file to reflect the
location of that file. This technique has saved me lots of head-
aches in projects with tight deadlines.

—John D. Conley III

USING THE MH3D CALENDAR
CONTROL FOR DATE MATH
One of the great unsung heroes in MicroHelp’s VBTools is the
Mh3dCalendar control. Place a hidden calendar control on one
of your main forms. With the .Day, .Month, .Year, and .DateFormat
properties, you can do date math and date conversion from any-
where in your application.

—MicroHelp Tech Support

FIND LOST CONTROLS
If a control gets lost on your form, you can select it by choosing
its name from the drop-down list at the top of the properties
window. Set its Left and Top properties to 0. Choose Bring To
Front from the Edit menu. If it’s still lost, choose Delete from the
Edit menu and create it again.

—Craig Goren

USE THE RIGHT TOOL
FOR THE JOB
If you’re running into a roadblock in a particular section of your
program, step back and take another look at what you’re doing.
There’s a good chance you’re using the wrong tool (control, VBX,
DLL) for the job. Yes, you can put a screw in with a hammer but
it works a lot better with a screwdriver. See if there is a DLL or
VBX available that will do what you’re wanting—you can save a
lot of headaches this way.
ment to Visual Basic Programmer’s Journal MARCH 1995 25

 99 TECH TIPS
For Serious Programmers
DATA ACCESS SPEED
When you connect to remote servers, always use tables attached
to the server through Access. This will significantly speed up
your retrieval time. Once a table is attached to a remote server,
the whole structure of the table is brought down to your local
machine. If it is not attached, the table structure is brought down
the line, followed by your data, every time you make a query.

—Paul D. Sherriff/Visual Basic Power Guides

DEBUGGING WITHOUT
DISTURBING WHAT HAS FOCUS
Placing the DEBUG.PRINT expression at strategic places in you
program can be a big help in debugging, because code will be
written to the immediate window without disturbing what has
focus. The DEBUG statement will be ignored when you build an
EXE.

—Mark Streger

USE THE VB KNOWLEDGE BASE
Get the Visual Basic Knowledge Base from Microsoft. It contains
hundreds of ideas (with code samples). I use it daily to get my
job done (and find out new things to try that I never would have
dreamed possible). You can get this file from the Microsoft Down-
load Service or from CompuServe (GO MSL).

—MicroHelp Tech Support

QUICKLY EVALUATE AN
EXPRESSION OR VARIABLE
Here’s how to quickly evaluate an expression or variable: While
in debug mode, use the Add Instant Watch dialog to quickly see
the current value of an expression in your code. Highlight the
variable or expression and press Shift-F9, which opens this dia-
log. You’ll see the expression, plus it’s current value. This is much
quicker than typing the expression in the debug window.
26 MARCH 1995 Supplement to Visual Basic Programmer’s Jou

—Barry Seymour
MAKE A GAUGE WITH
MICROHELP’S CONTROLS
You can make a beautiful gauge by combining two MicroHelp
controls. Place a Mh3d control onto your form and set the inner
bevel just inside of the outer bevel. Place a Mh3dCommand as a
child of the Mh3d control with it’s top, left , and bottom just
inside of the inner bevel of the Mh3d control and its .Width set
to 0. Set the .Picture property of the Mh3dCommand to
WINLOGO.BMP, set the .WallPaper property to 2 - Replicate, set
the .FontStyle property to 3 - Lowered, and set the .Alignment
property to 2 - Center. Now add this function to a global module:

Sub SetGauge (Ctrl1 As MhThreed, _
Ctrl2 As Mh3dCommand, percent As Integer)

MaxWidth = Ctrl1.Width - (Ctrl2.Left * 2)
Ctrl2.Width = MaxWidth * percent / 100
Ctrl2.Caption = Str$(percent) + "%"

End Sub

You can call this function to set the % fill on the gauge from
anywhere. The end effect is a gauge that appears to be engraved
in marble. You can use your own bitmaps for other textures such
as wood and granite.

—MicroHelp Tech Support

PREVENTING “FILE NOT FOUND”’
ERRORS WHEN USING IIF
Although it is undocumented and illogical, using IIF requires you
to distribute MSAFINX.DLL with your program.

—Michiel de Bruijn

DRAWING DIRECTLY ON THE FORM
SAVES RESOURCES
You can drop labels and frames out of your application (and
their accompanying resource and memory usage) by writing a
small routine to use Print and Line that draws directly onto your
form. Doing so increases speed, saves resources and memory,
rnal ©1991–1995 Fawcette Technical Publications H O M E

and uses fewer controls.
—MicroHelp Tech Support

 99 TECH TIPS
For Serious Programmers
FIND ENTRIES IN LIST AND
COMBO BOXES
Searching for an entry in a list box or a combo box involves
scrolling through the list to find a match—a time-consuming
process if there are many entries in the list. Here is the old way
to search for an entry:

Dim nLoop As Integer
'Loop variable, current position of entry in list
Dim sEntry As String
'String being searched
Dim nIndex As Integer
'Location of entry in the list

sEntry = "J"
nIndex = -1
For nLoop = 0 To list1.ListCount - 1

If sEntry = list1.List(nLoop) Then
nIndex = nLoop
Exit For

End If
Next

A faster way to do this is to send a CB_FINDSTRINGEXACT or
LB_FINDSTRINGEXACT with the API function SendMessage. This
will return the index of the entry if it is found in the box:

Global Const WM_USER = 1024
Global Const CB_FINDSTRINGEXACT = (WM_USER + 24)
'for Combobox only
Global Const LB_FINDSTRINGEXACT = (WM_USER + 35)
'for Listbox only

Declare Function SendMessage Lib "User" _
(ByVal hWnd As Integer, ByVal wMsg As Integer, _

ByVal wParam As Integer, lParam As Any) As Long
Dim sSearch As String
Dim nIndex As Long

sSearch = "<Some Text>"
nIndex = SendMessage(List1.hWnd, _

LB_FINDSTRINGEXACT, -1, ByVal sSearch)

If nIndex < 0 Then
MsgBox "Not Found"

Else
'Make matching item the selected one
List1.ListIndex = nIndex

End If

Windows also has CB_FINDSTRING and LB_FINDSTRING. Try
these constants if you want to search for strings that start with
the specified string.
Supplem©1991–1995 Fawcette Technical Publications H O M E

—Deepak Agrawal
MAKING MDI CHILDREN INVISIBLE
ON LOADING
Contrary to popular belief, an MDI child does not need to be
immediately visible at load time. If the Visible property is set to
False at design time, the child will not become visible until ei-
ther the last line of its Form_Load event or another statement
(such as Show) causes it to do so.

—Karl E. Peterson

VALIDATING TEXT ENTRIES WHEN
A DATACOMBO LOSES FOCUS
When setting focus to another control, the DataCombo in
Sheridan’s Data Widgets can be forced to validate the text por-
tion against its list by referencing the DataCombo’s IsItemInList
property as follows:

If Not DataCombo1.IsItemInList Then
'Check if item is in list

MsgBox "Invalid Data Entered"
'If not, display an error
'then do some additional processing

End If
—Sheridan Software Tech Support

SPEED UP LIST BOX UPDATES
When adding a large number of items to a list box, you can greatly
speed up the process by disabling redraws of it. A quick call to
SendMessage does the trick. Sandwich one to turn off redraws
and one to turn them back on around a call to the routine that
fills the list box, as shown here. Another method is to set the list
box’s Visible property to False, but that may not offer as clean
an appearance.

Declare Function SendMessage Lib "User" _
(ByVal hWnd As Integer, ByVal wMsg As Integer, _

ByVal wParam As Integer, lParam As Any) As Long
Global Const WM_SETREDRAW = &HB
nRet& = SendMessage(List1.hWnd, WM_SETREDRAW, _

False, 0&)
Call FillMyList(List1)

nRet& = SendMessage(List1.hWnd, WM_SETREDRAW, _
True, 0&)
ent to Visual Basic Programmer’s Journal MARCH 1995 27

—Karl E. Peterson

 99 TECH TIPS
For Serious Programmers

directory.
—VBPJ Staff
AVOID USING VARIANTS
Variants take more memory and it’s slower to get/set their
values than other data types. Option 1 will run slower than
Option 2.

Option 1:

Dim iLoop As Variant
For iLoop = 1 To 100

Print iLoop
Next

Option 2:

Dim iLoop As Integer
For iLoop = 1 To 100

Print iLoop
Next

—Paul D. Sherriff/Visual Basic Power Guides

NEVER HAVE AN UNTRAPPED
ERROR IN VB
To prevent untrapped errors in VB, put an error handler in the
code for every control/form’s events. Unless you want more
granularity, you won’t need to trap errors in function or module
routines.

—Craig Goren

DISPLAY A VB FORM’S
SCROLL BARS
A VB form does not automatically display scroll bars, so you
may purchased one of the third-party virtual form custom con-
trols. Even without such a tool, you can display a VB form’s scroll
bars. In the Load event of the target form, call the ShowScrollBar
subroutine. You can display the vertical scroll bar, the horizon-
tal scroll bar, or both:

Const ZERO = 0
Const NONZERO = ZERO + 1
Const SB_HORZ = 0
Const SB_VERT = 1
Const SB_BOTH = 3
28 MARCH 1995 Supplement to Visual Basic Programmer’s Jou

Declare Sub ShowScrollBar Lib "User" _
(ByVal hWnd As Integer, ByVal wBar As Integer, _
ByVal bShow As Integer)

Call ShowScrollBar(Me.hWnd, SB_BOTH, NONZERO)

To imitate a scrolling form, you’ll need to subclass the form
and capture the WM_VSCROLL and WM_HSCROLL messages
and set the scroll bar extents via a set of API calls (refer to
Chapter 15, page 673 of Daniel Appleman’s Visual Basic
Programmer’s Guide to the Windows API (Ziff-Davis Press) for
more information).

—Deepak Agrawal

HIDING MDI CHILDREN
MDI children can be hidden! Although VB doesn’t directly sup-
port this, you can use the ShowWindow API call to do so. A simple
call like this will do it:

Declare Function ShowWindow Lib "User" _
(ByVal hWnd As Integer, ByVal nCmdShow _

As Integer) As Integer
Global Const SW_HIDE = 0
Ret% = ShowWindow(frmMDIChild.hWnd, SW_HIDE)

Other issues need to be addressed if you use this technique,
such as what happens if the active child has a menu when it’s
hidden or if the hidden child was maximized. These and other
pitfalls are covered in a demonstration of MDI techniques,
MDIDMO.ZIP, which can be downloaded from either the MSBASIC
or VBPJ Forums on CompuServe.

—Karl E. Peterson

LOAD VBX/OCX/DLLS IN THE
WINDOWS SYSTEM DIRECTORY
It’s best to load all shared (or public) VBXs, DLLs, and OCXs in
the Windows system directory. Doing so prevents component
conflicts between shared components that are loaded in the
wrong places. By the way, Windows looks in memory for loaded
code modules from VBXs before it looks in the Windows system
rnal ©1991–1995 Fawcette Technical Publications H O M E

 99 TECH TIPS
For Serious Programmers

Internet: iymalluf@rt66.com

Voice: 415-583-3000
CompuServe: 70413,3405
ABOUT THE AUTH

Deepak Agrawal
is president of DAConsulting
Inc., a consulting and training
firm specializing in client/
server applications and corpo-
rate downsizing.
CompuServe: 73322,1561

Daniel Appleman
is the author of Visual Basic
Programmer’s Guide to the Win-
dows API (Ziff-Davis Press) and
a Contributing Editor of Visual
Basic Programmer’s Journal. He
is also president of Desaware
(San Jose, Calif.), maker of
SpyWorks-VB and other soft-
ware.
CompuServe: 70303,2252

Michiel de Bruijn
lives in Rotterdam, The Nether-
lands and is co-owner of VBD
Automatiseringsdiensten,
where he is the designer and
lead programmer of the Net-
work Communications System,
a Windows-based messaging
system written almost entirely
in VB. In his spare time, he man-
ages the VBPJ Forum’s Localiza-
tion section.
CompuServe: 100021,1061;
Internet: mdb@vbd.nl

John D. Conley III
is a senior computer consultant
for Coopers & Lybrand. He is
also a partner in New World
Computing, an independent
consulting firm. He lives in
North Dallas, Texas.
Voice: 214-234-1137

Gary Cornell
has written 12 books on micro-
computer technology, includ-
ing The Visual Basic 3 for Win-
dows Handbook (Osborne-
McGraw Hill). He is a professor
at the University of Connecticut
and has been a visiting scien-
tist at IBM’s Thomas Watson
©1991–1995 Fawcette Technical Publi

Labs.
CompuServe: 75720,1524
ORS

Craig Goren
is president of Clarity Consult-
ing Inc., a Chicago-based client/
server consulting firm. He leads
the client/server section of the
VBPJ Forum on CompuServe
(GO VBPJFORUM).
CompuServe: 72773,1062
Internet:cgoren@claritycnslt.com

Deborah Kurata
is a principal consultant and
founder of InStep Technologies,
a Pleasanton, California-based
consulting group specializing in
the design and development of
Windows applications. She has
written several articles for VBPJ
and is working on a book cov-
ering VB application architec-
ture. She is also the leader of
the Beginner’s Corner section
of the VBPJ Forum.
CompuServe: 72157,475

Blaine Leckett, Ph.D.
is head of software develop-
ment for QuantaVision Canada,
which creates hardware and
software for imaging analysis in
scientific research. As a
freelance programmer, he has
written several Japanese-lan-
guage translation and educa-
tion programs in VB. He holds
a Ph.D. in Experimental Medi-
cine (Diabetes Research) from
McGill University.
CompuServe: 72720,761
Internet: comcul@cam.org

Ibrahim Y. Malluf
is president of Malluf Consult-
ing Services in Moriarty, New
Mexico, a consulting and con-
tract programming firm special-
izing in client/server, database,
process control, and decision-
support systems. He leads the
Science/Industrial section of
the VBPJ Forum.
CompuServe: 70661,1467
Supplemcations H O M E
MicroHelp Tech Support
These tips were contributed by
Bob Flickinger, Roy Taylor, Kelly
Wiegard, and Adam Schmidt.
MicroHelp Inc. is the maker of
VBTools, HighEdit, and other
tools for VB programmers.
Voice: 404-516-0899 or
800-922-3383

Patrick O’Brien
is cofounder of Siena Software
Inc., a consulting firm based
in Half Moon Bay, California
that specializes in client/server
systems. He leads the VBPJ
Forum’s Database Warehouse
section and is chair of the
Northern California Software
Forum’s client/server special-
interest group.
CompuServe: 70713,3317

Charles W. Peper
is a programmer who lives and
works in Oswego, New York
CompuServe: 73517,3574

Karl Peterson
is a GIS analyst for a regional
planning agency and a
member of the Visual Basic
Programmer’s Journal Technical
Review Board. He’s also an in-
dependent programming con-
sultant and writer based in
Vancouver, Washington.
CompuServe: 72302,3707

Barry Seymour
is a client/server consultant at
DBSS Inc., an international com-
pany that specializes in
client/server systems develop-
ment. He is coauthor of Using
Visual Basic 3.0 (QUE) and is the
leader of the VBPJ Forum’s UI
Studio section.
ent to Visual Basic Programme
Sheridan Software
Tech Support
These tips were submitted by
the technical support staff of
Sheridan Software Systems,
makers of 3-D Widgets,
VBAssist, and other tools for
VB programmers.
Voice: 516-753-0985
Fax: 516-753-3661

Paul D. Sherriff
is an independent consultant
who specializes in VB, Access,
and SQL Server applications
and training. He is the author
of Visual Basic Power Guides.
CompuServe: 72230,2216

Mark Streger
is a principal at Information
Management Consultants in
McLean, Virginia. He special-
izes in building client/server ap-
plications using VB.
CompuServe: 71700,3037

William Storage
is an independent software con-
sultant who is based in both
San Francisco and Boston. He
is the leader of the VBPJ
Forum’s Code Style section.
CompuServe: 75250,1360

Phil Weber
is the founder of Micro Busi-
ness Services, a contract pro-
gramming firm based in Port-
land, Oregon, and a member of
the Visual Basic Programmer’s
Journal Technical Review
Board.
CompuServe: 72451,3401

Jonathan Wood
writes commercial and custom
software using Visual Basic,
Visual C++, and assembly lan-
guage, and is a member of
the Visual Basic Programmer’s
Journal Technical Review Board.
His company, SoftCircuits, is
r’s Journal MARCH 1995 29

based in Southern California.
CompuServe: 72134,263

	Home Page
	Table of Contents

