
Welcome to the Tenth Edition of the VBPJ Technical Tips
Supplement!

These tips and tricks were submitted by professional developers using Visual Basic 3.0
through 6.0, Visual Basic for Applications (VBA), and Visual Basic Script (VBS). The editors
at Visual Basic Programmer’s Journal compiled the tips. Instead of typing the code
published here, download the tips for free from VBPJ’s Web site at www.vbpj.com.
 If you’d like to submit a tip to VBPJ, please send it electronically to
vbpjtips@fawcette.com. You can also send it to User Tips, Fawcette Technical Publications,
209 Hamilton Ave., Palo Alto, CA, USA, 94301-2500, or fax it to 650-853-0230. Please
include a clear explanation of what the technique does and why it’s useful, and indicate if it’s
for VBA, VBS, VB3, VB4 16- or 32-bit, VB5, or VB6. Please limit code length to 20 lines.
Don’t forget to include your e-mail and mailing address, and let us know your payment
preference: $25 per published tip, or an extension of your VBPJ subscription by one year.

VB6
Level: Intermediate

Split Strings Cleanly
The Split function is great for parsing strings, but what happens when a string has more than one consecutive
delimiter? It might seem odd that Split() returns empty substrings as placeholders for the data missing
between delimiters, but that’s exactly what needs to happen so these data positions aren’t lost. Unfortunately,
Split() does not have an option to ignore multiple delimiters. CleanSplit() uses the same arguments as Split()
and efficiently discards empty substrings caused by more than one delimiter in a row:

Public Function CleanSplit(ByVal Expression As String, _
 Optional By Val Delimiter As String = " ", Optional _
 ByVal Limit As Long = -1, Optional Compare As _
 VbCompareMethod = vbBinaryCompare) As Variant
 Dim varSubstrings As Variant, i As Long
 varSubstrings = Split(Expression, Delimiter, _
 Limit, Compare)
 'mark empty substrings with delimiter because
 'the delimiter won't be around after Split()
 For i = LBound(varSubstrings) To UBound(varSubstrings)
 If Len(varSubstrings(i)) = 0 Then
 varSubstrings(i) = Delimiter
 Next i

 CleanSplit = Filter(varSubstrings, Delimiter, False)
End Function

—Mark Pickenheim, Springfield, Virginia

VB5, VB6
Level: Beginning

Define Properties to Use Standard Dialogs
It’s easy to add the standard LoadPicture and Font dialogs, complete with ellipsis, in a UserControl’s property
list. The trick is to define the properties as StdPicture or StdFont, respectively. For example, you can paste
this code into a new UserControl to load an image into the UserControl’s Picture property and change the
font for an embedded textbox. Start a new project in VB5 or VB6, add an ActiveX control (UserControl), drop
a textbox onto it, and paste in the code:

Option Explicit
Private Sub UserControl_InitProperties()
 ' Start with some sample text
 Text1.Text = "Some sample text"
End Sub

Private Sub UserControl_ReadProperties(PropBag _
 As PropertyBag)
 ' Restore any changes we made during design mode
 Set UserControl.Picture = _
 PropBag.ReadProperty("Image", Nothing)

 Set Text1.Font = PropBag.ReadProperty("Font", Nothing)
 Text1.Text = PropBag.ReadProperty("Text", _
 "Some sample text")
End Sub

Private Sub UserControl_WriteProperties(PropBag _
 As PropertyBag)
 ' Save any changes we made during design mode
 PropBag.WriteProperty "Image", _
 UserControl.Picture, Nothing
 PropBag.WriteProperty "Font", Text1.Font, Nothing
 PropBag.WriteProperty "Text", Text1.Text, _
 "Some sample text"
End Sub
Public Property Get Image() As StdPicture
 ' return the UserControl's image (if any)
 Set Image = UserControl.Picture
End Property
Public Property Set Image(ByVal newBackground As StdPicture)
 ' change the UserControl's background image
 Set UserControl.Picture = newBackground
 PropertyChanged "Image"
End Property
Public Property Get Font() As StdFont
 ' get the current textbox font details
 Set Font = Text1.Font
End Property
Public Property Set Font(ByVal newFont As StdFont)
 ' update the textbox font details
 Set Text1.Font = newFont
 PropertyChanged "Font"
End Property

 Close the UserControl’s designer window and add a new project (Standard EXE). Drop a copy of the
newly created UserControl onto the form, making sure the new control instance is large enough to see the
textbox, and check the property list. Apart from the standard properties provided by VB, the property list
contains two extra properties—Image and Font—complete with VB’s standard "..." for popping up the Image
and Font dialogs. For example, if you change the Font properties, the font of the text displayed in the textbox
changes immediately, and selecting an image places that image in the UserControl’s Picture property.

—John Cullen, Pedroucos, Portugal

VB5, VB6
Level: Intermediate

Toss the Common Dialogs Control
In Chris Barlow’s article “Standardize Your Dialogs” [Getting Started, VBPJ June 1999], he explained the use
of the CommonDialog control. However, you don’t need this control to use Windows’ common dialog boxes.
Microsoft provides a replacement DLL on the VB5 and VB6 CDs. This DLL is half the size of ComDlg32.ocx
(64K vs. 126K) and doesn’t require placing a control on a form. And, perhaps best of all, it provides a Center
property. See \Tools\Unsupprt\DlgObj on the VB5 CD-ROM (or \VB98\WIZARDS\
PDWIZARD on the VB6 CD-ROM) for installation details.
 Add a reference to DlgObjs to your project by selecting Microsoft Dialog Automation Objects from the
Project References dialog. This code gets a filename:

Public Function GetFilename(WinHandle As Long) As String
 Dim Dlg As ChooseFile
 On Error Resume Next
 Set Dlg = New ChooseFile
 With Dlg
 .Save = True
 ' We want a Save As dialog box.
 .Center = True
 ' We want the dialog centered.
 .hWnd = WinHandle ' Need a parent window.
 .HideReadOnly = True
 ' Don't need the 'Open as Read Only' box.
 .MultiSelect = False
 ' Don't select multiple files.
 .OverwritePrompt = True
 ' Ask to overwrite an existing file.

 .Filters.Add "BAS Files (*.bas):*.bas" ' File mask.
 .Filters.Add "All Files (*.*):*.*" ' File mask.
 If .Show Then
 GetFilename =.Directory & "\" & .filename
 Else
 GetFilename = "" ' User pressed Cancel
 End With
 Set Dlg = Nothing
End Function

Call GetFilename by passing the handle to the window that acts as the dialog’s parent:

Debug.Print GetFilename(Me.hWnd)

—Frank Mokry, Palgrave, Ontario, Canada

VB3 and up
Level: Beginning

Insert Soft Breakpoints
If you want to step through the code behind a certain screen element at run time, you might do something like
this in break mode: Hit Ctrl-Break from run mode, use the Find dialog to find the specific piece of code—say
cmdSave_Click—put a breakpoint on a line inside that sub, then press F5 to continue the program execution.
 Here’s an easier way: Hit Ctrl-Break to break while the program is running, then press F8. This causes VB
to enter break mode just as the next line of code is about to be executed. It appears the program is running
normally, but the next UI action you perform halts execution at the first line of code encountered. Clicking on
cmdSave now puts you in break mode inside cmdSave_Click. You get to cmdSave_Click without searching
for this event procedure and adding a breakpoint. If you plan on debugging the event procedure several
times, add a breakpoint now.

—Janakiraman Sattainathan, Mayodan, North Carolina

VB4, VB5, VB6
Level: Beginning

Iterate Through Control Arrays
When you need to iterate through all the elements of a control array, use this code:

Dim J As Integer
For J = Text1.LBound to Text1.Ubound
 With Text1(J)
 ' Work here...
 End With
Next J

This way, if you add or remove controls from the array, your code still works. This assumes that the array has
no holes.

—Dave Kinsman, Renton, Washington

VB4, VB5, VB6
Level: Intermediate

Have Your Functions Both Ways
When you create generic functions, remember that many functions are a two-way street. For example, many
general utility modules contain both LoWord and HiWord functions. However, to compose a Long, a
MakeDWord or some related function is required. Instead, convert your LoWord and HiWord functions into
properties. That way, they can exist on both sides of the equal sign, for retrieval and for assignment:

x = LoWord(Y)

Or:

LoWord(y) = x

Use this code to implement:

Public Property Get HiWord(L As Long) As Integer
 ' used to retrieve the HiWord of a long

 HiWord = <code to do it!>

End Property

Public Property Let HiWord(L As Long, ByVal _
 NewValue As Integer)
 ' used to set the HiWord of a long L is the long to
 ' modify, NewValue is the integer you want to set into
 ' the HiWord of the long L
End Property

 Also, remember you don’t have to put this in a class module. Property procedures are completely valid
within a regular BAS module, but if you put them in a BAS module, you must precede their names with the
module name when calling them.
 You could also use this technique to create a path parse routine that lets you replace arbitrary elements of
the path string (such as the drive, path, or filename), a timer function, or a Split function that lets you assign
elements directly into the splitting string as well as retrieve them.

—Darin Higgins, Fort Worth, Texas

VB3 and up
Level: Beginning

Create Default Directory for Project Shortcuts
This is an update to “Start Up in Your Code Folder” [“101 Tech Tips for VB Developers,” Supplement to
VBPJ, August 1999]. You can store your VB Project Files (VBP) and Project Group Files (VBG) under any
organization system, and still open each project with its own folder as the default folder for saving and
opening files. Create a shortcut—on the desktop or in your folder/toolbar—linked directly to the VBP or VBG
file. The “Start in:” entry is automatically set to the same folder as the target file. Double-clicking on the
shortcut starts VB, loaded with the desired project or group, and its folder is the default directory. You can
create any number of such shortcuts, each linked to its own project or group in its own directory. This also
saves you the extra step of first loading VB each time, then choosing the project. My boss, Harry Suber,
discovered and taught me this trick.

—Robert A. Henkel, Berlin, Maryland

VB5, VB6
Level: Beginning

Hard-Code Your Watch Points
I’ve seen several differently angled references to the Debug.Assert method in your Tech Tips supplements.
They usually advise readers to use the “Debug.Assert False” line when they want a persistent breakpoint,
even when the breakpoints are cleared or files are closed and reopened later. I want to suggest another
useful variation. Any expression that evaluates to False triggers the breakpoint. For example, if you are
testing a routine that seems to work fine until it processes record 413 near the end of your list of records, you
can insert this line into your code:

Debug.Assert MyRecords.RecNumber <> 413

This breaks the code only when the expression evaluates to False—when the record number equals 413.
The use of the record number value is just an example; you can use any unique identifying variable value to
stop only at the desired area, and run uninterrupted through all the other passes of the same code.

—Robert A. Henkel, Berlin, Maryland

VB4/32, VB5, VB6
Level: Intermediate

Let Users Resize Your Controls
You can allow users to resize a control—just like in VB design mode—with a mouse, using two simple API
calls. You can resize the control—top-left, top, top-right, left, right, bottom-left, bottom, and right. When you
make ranges for the mouse coordinates (such as x>0 and x<100), the MouseDown event activates the API
functions and sizes your picture box when the mouse moves. This code assumes you have a picture box on
the form:

Private Declare Function ReleaseCapture Lib _
 "user32" () As Long
Private Declare Function SendMessage Lib _
 "user32" Alias "SendMessageA" (ByVal hWnd _
 As Long, ByVal wMsg As Long, ByVal wParam _
 As Long, lParam As Any) As Long
Private Const WM_NCLBUTTONDOWN = &HA1
' You can find more of these (lower) in the API Viewer. Here

' they are used only for resizing the left and right.
Private Const HTLEFT = 10
Private Const HTRIGHT = 11
Private Sub Picture1_MouseDown(Button As _
 Integer, Shift As Integer, X As Single, Y As Single)
 Dim nParam As Long
 With Picture1
 ' You can change these coordinates to whatever
 ' you want
 If (X > 0 And X < 100) Then
 nParam = HTLEFT
 ElseIf (X > .Width - 100 And X < .Width) Then
 ' these too
 nParam = HTRIGHT
 End If
 If nParam Then
 Call ReleaseCapture
 Call SendMessage(.hWnd, _
 WM_NCLBUTTONDOWN, nParam, 0)
 End If
 End With
End Sub
Private Sub Picture1_MouseMove(Button As _
 Integer, Shift As Integer, X As Single, Y As Single)
 Dim NewPointer As MousePointerConstants
 ' You can change these coordinates to whatever you want
 If (X > 0 And X < 100) Then
 NewPointer = vbSizeWE
 ElseIf (X > Picture1.Width - 100 And X < _
 Picture1.Width) Then ' these too
 NewPointer = vbSizeWE
 Else
 NewPointer = vbDefault
 End If
 If NewPointer <> Picture1.MousePointer Then
 Picture1.MousePointer = NewPointer
 End If
End Sub

—Fran Pregernik, Zagreb, Croatia

VB4/32, VB5, VB6, VBA
Level: Intermediate

Fill In the E-Mail Fields
ShellExecute is one of the most flexible Win32 APIs. Using ShellExecute, you can pass any filename, and if
the file’s extension is associated to a registered program on the user’s machine, the correct application opens
and the file is played or displayed.
 In the February 1998 101 Tech Tips supplement, Jose Rodriguez Alvira showed ShellExecute’s Internet
power (“Create Internet-Style Hyperlinks”). If you pass an HTTP URL, the user’s default 32-bit Web browser
opens and connects to the site. If you pass an e-mail address that has been prefaced with “mailto:”, the
user’s default 32-bit e-mail client opens a new e-mail note with the address filled in.
 Here’s how to automatically get a lot more than just the e-mail addresses filled in. If you want to include a
list of CC recipients, BCC recipients, or your own subject text or body text, you can create a string variable,
add the list of primary addresses (separated by semicolons), then a question mark character and element
strings prefaced like this:

For CCs (carbon copies): &CC= (followed by list)
For blind CCs: &BCC= (followed by list)
For subject text: &Subject= (followed by text)
For body text: &Body= (followed by text)
To add an attachment: &Attach= (followed by a valid file path within chr(34)’s)

To use this trick, create a new VB project, add a form, and add six textboxes and a button (cmdSendIt). Paste
this into the form’s Declarations section:

Private Declare Function ShellExecute Lib "shell32.dll" _
 Alias "ShellExecuteA" (ByVal hWnd As Long, _
 ByVal lpOperation As String, ByVal lpFile As String, _
 ByVal lpParameters As String, ByVal lpDirectory _
 As String, ByVal nShowCmd As Long) As Long

Private Const SW_SHOWNORMAL = 1

Paste this code into the button’s Click event:

Private Sub cmdSendIt_Click()
 Dim sText As String
 Dim sAddedText As String
 If Len(txtMainAddresses) Then
 sText = txtMainAddresses
 End If
 If Len(txtCC) Then
 sAddedText = sAddedText & "&CC=" & txtCC
 End If
 If Len(txtBCC) Then
 sAddedText = sAddedText & "&BCC=" & txtBCC
 End If
 If Len(txtSubject) Then
 sAddedText = sAddedText & "&Subject=" & txtSubject
 End If
 If Len(txtBody) Then
 sAddedText = sAddedText & "&Body=" & txtBody
 End If
 If Len(txtAttachmentFileLocation) Then
 sAddedText = sAddedText & "&Attach=" & _
 Chr(34) & txtAttachmentFileLocation & Chr(34)
 End If
 sText = "mailto:" & sText
 ' clean the added elements
 If Len(sAddedText) <> 0 Then
 ' there are added elements, replace the first
 ' ampersand with the question character
 Mid$(sAddedText, 1, 1) = "?"
 End If
 sText = sText & sAddedText
 If Len(sText) Then
 Call ShellExecute(Me.hWnd, "open", sText, _
 vbNullString, vbNullString, SW_SHOWNORMAL)
 End If
End Sub

You can’t have spaces between the ampersands and tags, or between the tags and the equal signs. You
don’t have formatting options, so body text will be one paragraph. However, when you use this technique,
program errors are e-mailed to you with full details, and you can create real e-mail applets in a just a few
seconds. It beats automating a full e-mail program.
 In addition, almost all this functionality is possible in HTML MailTo tags. Here is a sample:

<A HREF="mailto:smith@smithvoice.com?subject=
Feedback From VisualBasic ett
smithvoice.com/vbfun.htm&CC=smith@smithhome.org&BC
C=fred@fred.net;bill@home.com&body=hello how are
you">feedback@smithvoice

I have yet to get HTML to do the attachments, but attachments are no problem in VB.

Editor’s Note: The full functionality of these extra fields is available in e-mail clients that are totally Exchange-
compliant. Some or all of the extra fields might not work with noncompliant e-mail clients.

—Robert Smith, Kirkland, Washington

VB4, VB5, VB6
Level: Beginning

Maintain Call Stack for Error Tracing
I program all reusable components into DLLs or OCXs. To provide a consistent error-handling technique
across all my projects, I use the Raise method of the Err object in all these components and display the error
only in the code module of first entry—such as Command1_Click. Because an error can be generated
several layers deep in the code, I propagate the location of the error using this Raise statement in all my
reusable components:

ThisProcEH:
 Err.Raise Err.Number, "ThisProc" & vbCr & Err.Source
Exit Sub

This way, the whole call stack is returned to—and can be displayed in—the calling procedure (through

Err.Source), making errors much easier to find and solve.
—Harvey Flaisher, McLean, Virginia

VB5, VB6
Level: Intermediate

Create Close-All Add-In
I often open up many windows in a VB project when I’m doing a search and/or replace in code. On large
projects, it becomes cumbersome to close all those windows one by one. Here’s a quick add-in you can
create to close those windows for you. Start a new project and select the Add-In type. Paste this code into the
frmAddIn that’s created for you:

Private Sub Form_Load()
 Dim w As Window
 For Each w In VBInstance.Windows
 ' close either code or form design windows
 ' that are visible
 If (w.Type = vbext_wt_CodeWindow Or _
 w.Type = vbext_wt_Designer) And w.Visible Then
 w.Close
 End If
 Next
 Unload Me
End Sub

Highlight the Connect class in the Object Browser, right-click on it, and edit the Description property to
change the name and description of the add-in. Also, search the template code and replace “My Add-In” with
whatever you decided to call it. After building the DLL, you can add it from the Add-In Manager and close all
those pesky windows in no time.

—Rick Lalliss, received by e-mail

VB3 and up
Level: Intermediate

Right Click on a VB File to Open in Notepad
You might have wished you could right-click on a VB file and open it in Notepad, or copy a snippet of code for
another app you’re working on. Try this: Drop this code in a text file named FormEdit.reg, save it, and close
the file:

REGEDIT4
[HKEY_CLASSES_ROOT\VisualBasic.Form\shell\edit]
@="&Edit"
[HKEY_CLASSES_ROOT\VisualBasic.Form\shell\edit\ command]
@="Notepad.exe \"%1\""

 When you double-click on the file, the contents are automatically loaded into the System Registry. Right-
click on any VB form and you should see Edit in the popup menu. Do the same for the other VB text files—
VisualBasic.ClassModule, VisualBasic.Module, and VisualBasic.Project—and use Regedit.exe in the
Windows folder to verify the results. You can substitute Word or any other text editor for Notepad by setting
the command entry:

@="C:\\Program Files \\Microsoft
 Office\\Office\\Winword.exe %1"

Be mindful of the double backslashes and where you load Office—they must be correct for this to work.
 Although the locations of the Registry entries for VB4, VB5, and VB6 are different, you can get this to work
for any VB text file including BAS, CLS, FRM, and VBP. It does not work on FRX or other binary files. This
also works with HTML files. Make a similar entry for your default browser to edit the HTML file as plain text
with nothing more than a right-click. Or set it up for your GIF files to run under your browser to see how they
will look. Most important, be careful anytime you do anything to the Registry.

—Greg Moss, Amarillo, Texas

VB4/32, VB5, VB6
Level: Intermediate

Use a Class Module for Persistent Global Variables
When I use variables that need to be saved to the Registry or to an INI file, I sometimes forget to place the

API call after the variables in a program have changed. This might cause problems later when the program is
exited and restarted. Instead, use the variable in a class module that can be used as a local variable for a
form/routine, or make the class a global class in the BAS module. When assigning a value to the variable
when it’s a class, you use Property Let. In this routine, place your API call to save the new value to the
Registry or INI file. Place this code in your BAS module:

Public Const ProgramName = "YourProgram"
Public Const AppName = "General"
Public Const AppKey = "Last User"
Public Const INIFile = "YourINIFile.INI"
' This makes all objects in ProjectVariables
' global to the program.
Public Variables As New ProjectVariables

Place this code in your class module:

' ProjectVariables.cls
Option Explicit
Private Declare Function _
 WritePrivateProfileString Lib "kernel32" _
 Alias "WritePrivateProfileStringA" _
 (ByVal lpApplicationName As String, _
 ByVal lpKeyName As Any, ByVal lpString As _
 Any, ByVal lpFileName As String) As Long
Private m_sUserName As String
Property Get UserName() As String
 UserName = m_sUserName
End Property
Property Let UserName(ByVal sUserName As String)
 If sUserName <> m_sUserName Then
 ' Use this to save to the Registry
 SaveSetting ProgramName, AppName, AppKey, sUserName
 ' Use this to save to an INI File
 Call WritePrivateProfileString(AppName, _
 AppKey, sUserName, INIFile)
 End If
 m_sUserName = sUserName
End Property

With this code behind the Property Let, whenever you change the UserName variable to a new value, the
key/value pair is automatically written to the INI file or Registry.

—John Zenkavich, Clarks Summit, Pennsylvania

VB4/32, VB5, VB6
Level: Intermediate

Use Faster Floating-Point Division
If you do a lot of floating-point division operations in VB, you can optimize these operations by multiplying by
the reciprocal value. For example, instead of performing this calculation:

X/Y

Do this:

X * (1 / Y)

 You can see how this works in VB by adding this code to a form in a new project:

Private Declare Function GetTickCount Lib _
 "kernel32" () As Long
Const NORMAL As Double = 1453
Const RECIPROCAL As Double = 1 / NORMAL
Const TOTAL_COUNT As Long = 10000000
Private Sub Form_Click()
 Dim dblRes As Double
 Dim lngC As Long
 Dim lngStart As Long
 On Error GoTo Error_Normal
 lngStart = GetTickCount
 For lngC = 1 To TOTAL_COUNT

 dblRes = Rnd / NORMAL
 Next lngC
 MsgBox "Normal Time: " & GetTickCount - lngStart
 lngStart = GetTickCount
 For lngC = 1 To TOTAL_COUNT
 dblRes = Rnd * RECIPROCAL
 Next lngC
 MsgBox "Reciprocal Time: " & GetTickCount - lngStart
Exit Sub
Error_Normal:
 MsgBox Err.Number & " - " & Err.Description
End Sub

I’ve seen consistent performance gains of 15 percent with the reciprocal technique. But be careful of rounding
issues—for example, 3/3 = 1, but 3 * (0.333333...) = 0.999999....

—Jason Bock, Germantown, Wisconsin

VB5, VB6
Level: Intermediate

Dual Procedure IDS
When using VB to create a new ActiveX control with a Caption or Text property, you can set the
corresponding Procedure ID to cause the Property Browser to update the property value with each keystroke,
just as the Label and Text controls do. However, it’s not obvious how to make it the default property as well.
That’s because (Default), Caption, and Text all appear in the Procedure ID list, allowing only one ID to be
assigned to your new property. To get around this limitation, create another hidden property (check “Hide this
member” in the Procedure Attributes dialog) that updates the same variable and you can make that the
default property.

—Chuck Liem, Olathe, Kansas

VB4/32, VB5, VB6
Level: Intermediate

Use GetInputState in Loops
Some developers suggest putting DoEvents in loops to keep your application responsive. This is never a
good idea. If the loop is short, you don’t need it; if the loop is long, you’ll take an unacceptable performance
hit. But what if you want your user to be able to click on a Cancel button or perform some other action while a
long loop is executing?
 A good compromise is to call GetInputState. This API function returns 1 if the user has clicked on a mouse
button or hit a key on the keyboard. The overhead for GetInputState is much less than for DoEvents, so your
loop runs faster. If a keyboard or mouse event occurs, then you can call DoEvents. In other words, you call
the expensive DoEvents only when you actually need it to process an event. You can further reduce
overhead by checking only every x iterations (the exact number being dependent on how time-consuming
each loop is):

Option Explicit
Private Declare Function GetInputState Lib "user32" () _
 As Long
Private m_UserCancel As Boolean
Private Sub cmdCancel_Click()
 m_UserCancel = True
End Sub
Private Sub cmdGo_Click()
 Dim lCounter As Long
 m_UserCancel = False
 Me.MousePointer = vbHourglass
 For lCounter = 0 To 10000000
 'any long loop that may need to be interrupted
 If lCounter Mod 100 Then
 If GetInputState <> 0 Then
 'a mouse or keyboard event is in the
 'message queue so we call DoEvents
 'so it can be processed
 DoEvents
 If m_UserCancel Then Exit For
 End If
 End If
 Next lCounter
 Me.MousePointer = vbDefault
End Sub

—Daniel R. Buskirk, Bronx, New York

VB4/32, VB5, VB6
Level: Intermediate

Generate GUIDs With One API Call
I read a great advanced tip on how to create a GUID in “Generate Unique String IDs” [“101 Tech Tips for VB
Developers,” Supplement to VBPJ, August 1999]. However, you can use only one API call instead of four.
The OLE32.dll contains a function called WinCoCreateGUID that does all the math for you. I have included a
second function called PadZeros to format the GUID:

Option Explicit
Private Type GUIDTy pe
 D1 As Long
 D2 As Integer
 D3 As Integer
 D4(8) As Byte
End Type
Private Declare Function WinCoCreateGuid Lib "OLE32.DLL"
 Alias "CoCreateGuid" (g As GUIDType) As Long
Public Function CreateGUIDString() As String
 Dim g As GUIDType
 Dim sBuf As String
 Call WinCoCreateGuid(g)
 sBuf = PadZeros(Hex$(g.D1), 8, True) & _
 PadZeros(Hex$(g.D2), 4, True) & _
 PadZeros(Hex$(g.D3), 4, True) & _
 PadZeros(Hex$(g.D4(0)), 2) & _
 PadZeros(Hex$(g.D4(1)), 2, True) & _
 PadZeros(Hex$(g.D4(2)), 2) & _
 PadZeros(Hex$(g.D4(3)), 2) & _
 PadZeros(Hex$(g.D4(4)), 2) & _
 PadZeros(Hex$(g.D4(5)), 2) & _
 PadZeros(Hex$(g.D4(6)), 2) & _
 PadZeros(Hex$(g.D4(7)), 2)
 CreateGUIDString = sBuf
End Function

Private Function PadZeros(ByVal sBit As String, _
 ByVal iStrLen As Integer, Optional bHyphen _
 As Boolean) As String
 If iStrLen > Len(sBit) Then
 sBit = Right$(String$((iStrLen - Len(sBit)), _
 "0") & sBit, iStrLen)
 End If
 If bHyphen Then sBit = sBit & "-"
 PadZeros = sBit
End Function

—Dj Hackney, received by e-mail

VB5, VB6
Level: Beginning

Avoid Line Input Null Problems
Sometimes you have to move information from a flat file (mainframe or ASCII text file) to a database. Usually,
this flat file is a set of records, and the delimiter between records is a carriage return/linefeed pair. Records
might be different sizes and can contain Null characters. This code is a standard way to read a file line by
line, but fails because strBuff loses Null characters, and the structure of the current record is incorrect:

Do Until EOF(1)
 '//-------After the next statement strBuff
 'will be without Null characters
 Line Input #1, strBuff
Loop

 I know at least three ways to fix this problem. Here’s my favorite way. You have to use Microsoft Scripting
Runtime DLL (scrun.dll):

Dim FSO As New FileSystemObject
Dim TS As TextStream
Dim strBuff As String
Set TS = FSO.OpenTextFile("c:\MyFlatFile.txt", ForReading)

Do Until TS.AtEndOfStream
 '//-------Reading current line and replacing
 'Null characters to spaces
 strBuff = Replace(TS.ReadLine, Chr$(0), " ")
 '//-------Your parsing code here
Loop
TS.Close
Set FSO = Nothing

This code returns a correct result because the ReadLine method doesn’t lose Null characters. I used the
Replace function only to prepare the current line for parsing. VB5 users need to use another approach to
replace Nulls with space characters.

—Vladimir Olifer, Brooklyn, New York

VB5, VB6
Level: Intermediate

Use WithEvents to Communicate Between MDI and MDIChild Forms
Here’s a neat way to pass events such as toolbar clicks and menu selections from an MDIForm to an active
MDIChild form. Suppose the MDI parent has a toolbar control called tbrMain. Add this code to the MDIForm:

Event ButtonClick(strKey As String)
Private Sub tbrMain_ButtonClick(ByVal Button _
 As MSComctlLib.Button)
 RaiseEvent ButtonClick(Button.Key)
End Sub

Then add this code to each MDIChild form you want to receive the custom ButtonClick event:

Private WithEvents m_mdiParent As mdiParent
Private Sub Form_Activate()
 Set m_mdiParent = mdiParent
End Sub
Private Sub Form_Deactivate()
 Set m_mdiParent = Nothing
End Sub
Private Sub m_mdiParent_ButtonClick(strKey As String)
 ' Sample code assuming Button.Key values of
 ' "New", "Change", "Delete" and "Save"
 Select Case strKey
 Case "New"
 PerformNewAction
 Case "Change"
 PerformChangeAction
 Case "Delete"
 PerformDeleteAction
 Case "Save"
 PerformSaveAction
 End Select
End Sub

The effect is almost the same as declaring a control called m_mdiParent that has a ButtonClick event on your
form. Use the Activate and Deactivate events to ensure that the active MDIChild is the only one that receives
the ButtonClick event.

—Pat Dooley, Cleveland, Ohio

VB4/32
Level: Intermediate

Add Option/Checkbox Toggle Capability in VB4/32
VB5 introduced a Style property of the checkbox or option button, with a graphical setting that makes the
button or checkbox appear to be a command button instead of its default appearance. It behaves like a toggle
button in Access. However, if you’re using VB4, you need help from the Windows API to get this behavior.
Create a new module and enter this code:

Option Explicit
Public Const BS_PUSHLIKE& = &H1000&
Public Const GWL_STYLE = (-16)
Public Declare Function GetWindowLong _
 Lib "user32" Alias "GetWindowLongA" _

 (ByVal hWnd As Long, ByVal nIndex As Long) As Long
Public Declare Function SetWindowLong Lib _
 "user32" Alias "SetWindowLongA" _
 (ByVal hWnd As Long, ByVal nIndex As Long, _
 ByVal dwNewLong As Long) As Long
Public Sub MakeButton(ctl As Control)
 Dim lngReturn As Long
 Dim lngStyle As Long
 lngStyle = GetWindowLong(ctl.hWnd, GWL_STYLE)
 lngStyle = lngStyle Or BS_PUSHLIKE
 If lngStyle Then
 lngReturn = SetWindowLong(ctl.hWnd, _
 GWL_STYLE, lngStyle)
 End If
End Sub

Then create a form and add a checkbox and an option box (Check1 and Option1). Make them the size you
want them to appear as a button. In the Form_Load event, add this code:

MakeButton Check1
MakeButton Option1

At run time, the checkbox and option button both appear as command buttons, except they toggle up or down
depending on the Value property. Try clicking on them to see the effect—you’ll need a group of option
buttons in a frame to change the original option button.

—Mike Lyons, Coquitlam, British Columbia, Canada

VB6
Level: Intermediate

Default Button Prevents Firing of Validate Event
VB6 introduced the Validate event as a way to handle field-level validation without using LostFocus, which
doesn’t always fire in the order you would expect. The Validate event is a great idea, but doesn’t work
correctly on forms with a Default button. If the user presses Enter instead of clicking on the default button,
neither the Validate event nor the LostFocus event fire. If the user clicks on the button with the mouse,
however, both events fire correctly. You can get around the LostFocus problem by entering this code in the
first part of the button’s Click event:

Private Sub cmdOK_Click()
 If Not Me.ActiveControl Is cmdOK Then
 cmdOK.SetFocus
 DoEvents
 End If
 ' [remainder of click processing]
End Sub

 With this code, if the user presses Enter to pick the default, the focus changes to the default button before
any other Click event code executes, causing whichever control currently has focus to fire its LostFocus
event. You would expect the Validate event would also fire that in this situation, but it doesn’t. So, for forms
with default buttons, LostFocus is the better way to handle field-level validation.

—Gordon Lawson, Billings, Montana

VB3 and up
Level: Beginning

Generate Ordinal Strings Simply
Sometimes, you have an integer value in code that you’d like to display in a string as an ordinal. For example,
a variable contains the number 3, and you want to display a message like “The 3rd item...” You can use this
function to convert the number into a string with “st,” “nd,” “rd,” or “th” attached properly:

Public Function GetOrdinal(ByVal Num As Long) As String
 Dim n As String
 ' Num is assumed to be greater than zero
 n = CStr(Num)
 Select Case Right$(n, 2)
 Case "11", "12", "13"
 GetOrdinal = n & "th"
 Case Else
 Select Case Right$(n, 1)
 Case "0", "4" To "9"

is

e
’s
n,
’s
’ll
m
e
 GetOrdinal = n & "th"
 Case "1"
 GetOrdinal = n & "st"
 Case "2"
 GetOrdinal = n & "nd"
 Case "3"
 GetOrdinal = n & "rd"
 End Select
 End Select
End Function

—Thomas Weiss, Deerfield, Illino

VB4/32, VB5, VB6
Level: Intermediate

Get Dropdown’s hWnd Without Subclassing
I’ve written code to get the hWnd for a combo’s dropdown. When a combo’s DropDown event is fired, th
dropdown is not yet visible on the screen. Post a WM_KEYDOWN to the combo, which causes the combo
KeyDown event to fire after the dropdown is visible. Then use the Win32 API calls ClientToScree
WindowFromPoint, and GetClassName to locate the dropdown window. Once you have the dropdown
hWnd, you can move and resize the dropdown window using Win32 API calls such as SetWindowPos. You
find this technique useful where the width of the combo is less then the width of the combo’s longest ite
text. To shorten the code listing, I’m leaving to you the case where the dropdown is dropped above th
combo:

Option Explicit
Private Type POINTAPI
 x As Long
 y As Long
End Type
Private Declare Function PostMessage Lib "user32" Alias _
 "PostMessageA" (ByVal hWnd As Long, ByVal wMsg As Long, _
 ByVal wParam As Long, ByVal lParam As Long) As Long
Private Declare Function WindowFromPoint Lib "user32" _
 (ByVal xPoint As Long, ByVal yPoint As Long) As Long
Private Declare Function ClientToScreen Lib "user32" (ByVal _
 hWnd As Long, lpPoint As POINTAPI) As Long
Private Declare Function GetClassName Lib "user32" Alias _
 "GetClassNameA" (ByVal hWnd As Long, ByVal lpClassName As _
 String, ByVal nMaxCount As Long) As Long
Private Const WM_KEYDOWN = &H100
Private Const KEY_CODE_DROPDOWN = 256
Private Sub Combo1_DropDown()
 'This will cause Combo1_KeyDown to fire
 'after the DropDown is shown
 Call PostMessage(Combo1.hWnd, WM_KEYDOWN, KEY_CODE_DROPDOWN, 0)
End Sub

Private Sub Combo1_KeyDown(KeyCode As Integer, Shift As _
 Integer) Dim hwndDropdown As Long

 If KeyCode = KEY_CODE_DROPDOWN Then
 hwndDropdown = GetHwndDropdown(Combo1)
 Debug.Print hwndDropdown
 End If
End Sub

Private Function GetHwndDropdown(cbo As ComboBox) As Long
 Dim ptDropDown As POINTAPI
 Dim hwndDropdown As Long
 Dim sClassName As String
 Dim lRetLen As Long
 ptDropDown.x = (cbo.Width / 2) / Screen.TwipsPerPixelX
 ptDropDown.y = (cbo.Height * 1.1) / _
 Screen.TwipsPerPixelY
 Call ClientToScreen(cbo.hWnd, ptDropDown)
 hwndDropdown = WindowFromPoint(ptDropDown.x, _
 ptDropDown.y)
 sClassName = String$(255, Chr$(0))
 lRetLen = GetClassName(hwndDropdown, sClassName, _
 Len(sClassName))
 If lRetLen > 1 Then
 If Left$(sClassName, lRetLen) = "ComboLBox" Then

 GetHwndDropdown = hwndDropdown
 End If
 End If
End Function

—Mike Hill, Northridge, California

VB5, VB6
Level: Beginning

Enumerate Flags for Easier Coding
If you do a lot of work with the Windows API, you might notice that some API functions have flag-type
parameters, and you usually pass API constants as the values for these parameters. Instead of putting
multiple Public Const statements in a module the way the API Viewer gives them to you, you can group
similar constants into enumerations and change the type of the parameter in the API function prototype to be
the enumeration instead of a Long integer. This technique works only with Longs. The benefit is that the
possible parameter values are displayed in the constant list as you’re coding your API function calls.

—Thomas Weiss, Deerfield, Illinois

VB5, VB6
Level: Intermediate

Use System Icons for MsgBox Lookalikes
When VB’s MsgBox function doesn’t provide everything you need, you have to create a message-box–like
form. You might find yourself in a quandary if you want to include one of the icons that normally displays in a
Windows message box. Instead of getting a screenshot of a standard message box, editing it in Paintbrush to
get only the 32-by-32 icon, and loading the resulting bitmap into an image box control on your form, you can
use the Windows API to extract these icons from the system directly. Add these declarations to a module in
your application:

Private Enum StandardIconEnum
 IDI_ASTERISK = 32516& ' like vbInformation
 IDI_EXCLAMATION = 32515& ' like vbExlamation
 IDI_HAND = 32513& ' like vbCritical
 IDI_QUESTION = 32514& ' like vbQuestion
End Enum

Private Declare Function LoadStandardIcon Lib "user32" Alias _
 "LoadIconA" (ByVal hInstance As Long, ByVal lpIconNum As _
 StandardIconEnum) As Long
Private Declare Function DrawIcon Lib "user32" (ByVal hDC _
 As Long, ByVal x As Long, ByVal y As Long, _
 ByVal hIcon As Long) As Long

Then make your message box’s Paint event look like this:

Private Sub Form_Paint()
 Dim hIcon As Long
 hIcon = LoadStandardIcon(0&, IDI_EXCLAMATION)
 Call DrawIcon(Me.hDC, 10&, 10&, hIcon)
End Sub

The LoadStandardIcon prototype is a tweaked version of the normal LoadIcon prototype, edited to use
StandardIconEnum instead of a Long for the lpIconNum parameter.

—Thomas Weiss, Deerfield, Illinois

VB4, VB5, VB6
Level: Beginning

Position and Size Controls Using Keyboard
You can move controls using Ctrl with the arrow keys, and you can change control size using Shift with the
arrow keys. The controls move or resize according to the Grid Width and Grid Height set in the Options
dialog’s General page. Unlike performing this task with the mouse, you can use this technique even when
controls are locked. You’ll find it more convenient when you must position and size controls accurately.

—Grace Li, Christchurch, New Zealand

VB4/32, VB5, VB6
Level: Intermediate

Query Objects for Initialization State
In a large app, or even a small one, you can use Property Let and Property Get to make sure necessary
variables and subsystems are initialized. This code is from a large ADSI-based program in production:

Public Property Get ADSIInitialized() As Boolean
 If dso Is Nothing Then
 ADSIInitialized = False
 Else
 ADSIInitialized = True
 End If
End Property
Public Property Let ADSIInitialized(aValue As Boolean)
 If aValue = False Then ' Shut everything off
 Set cont = Nothing
 Set dso = Nothing
 Else
 ' Make sure we aren't already initialized
 If dso Is Nothing Then
 ' Turn everything back on
 Set dso = GetObject("WinNT:")
 Set cont = dso.OpenDSObject("WinNT://" _
 & Server, "", "", ADS_SECURE_AUTHENTICATION)
 End If
 End If
End Property

Now it’s trivial to verify this component has been initialized and initialize it if necessary:

If Not ADSIInitialized Then ADSIInitialized = True

—Gregory Gadow, Seattle, Washington

VB6
Level: Intermediate

Use TreeView Control With Checkboxes
When the NodeCheck event triggers, you receive as a parameter the node that was checked. Say you need
to do some validation and uncheck the node when there’s an error. You set Node.Checked = False, right?
Wrong! That unchecks the node until the NodeCheck event finishes, but at the end of the event, the node
changes to its previous value. The reason for that is that the Node parameter is passed ByVal. To work
around this problem, add a timer to your form (Interval=50, Enabled=False). Enable the timer in the
NodeCheck event:

Dim mNode As Node
Private Sub Timer1_Timer()
 Timer1.Enabled = False
 mNode.Checked = False
 Set mNode = Nothing
End Sub
Private Sub TreeView1_NodeCheck(ByVal Node As MSComctlLib.Node)
 If Node.Checked Then
 '...If Invalid Then...
 MsgBox "This Node Cannot be Checked."
 Set mNode = Node
 Timer1.Enabled = True
 End If
End Sub

—Gerardo Villeda, Drexel Hill, Pennsylvania

VB4, VB5, VB6
Level: Intermediate

Treat a Form Like a Function
Some forms are merely dialog boxes that show something to the user and sometimes get something in
return. For example, you might have to create a form that displays a tabulated listbox of information—
contacts, for example. The form needs to know which item should be selected initially, and you want to know
which item the user chose in the end. You can share this information through public variables, but wrapping
the form into a function proves a better way. Create a standard EXE project and add an extra form to it. Place
a command button on the first form and a listbox with a button on the second. Place this code in the first form:

Private Sub Command1_Click()

 MsgBox Form2.ShowList(4)
End Sub

Place this code in the second form:

Dim iSelectedIndex
Private Sub Command1_Click()
 Me.Hide
End Sub
Private Sub Form_Load()
 Dim i As Long
 For i = 0 To 20
 List1.AddItem "Item " & i
 Next i
 List1.ListIndex = iSelectedIndex
End Sub

' This is where the magic happens. Note that we have to
' display a modal form to prevent the continuation of this
' f unction until we are ready.
Public Function ShowList(Initial As Integer) As String
 iSelectedIndex = Initial
 ' Store the parameter for later use
 Me.Show vbModal
 ' Display the form
 ShowList = List1.List(List1.ListIndex)
 ' Return
 Unload Me
End Function

This technique not only lets you avoid using public variables, but it also gives you excellent portability
because you can simply copy the form into a different project. None of the code is affected. You have
wrapped a form into a function.

—Konstantin Komissarchik, Brier, Washington

VB3 and up
Level: Intermediate

Functions Parse Command Lines
Handling multiple command-line arguments has always been ugly in VB, especially when some of the
arguments are quoted because they contain characters such as spaces. For example, if you want to write a
program that takes as an argument a filename, you must quote the filename to ensure a space inside it
doesn’t confuse your application. Unfortunately, there’s no built-in functionality for handling this mess. Here
are two functions—GetParam and GetParamCount—that I use all the time. Each can handle a mix of quoted
and unquoted parameters:

Public Function GetParam(ByVal Count As Integer) As String
 Dim i As Long
 Dim j As Integer
 Dim c As String
 Dim bInside As Boolean
 Dim bQuoted As Boolean
 j = 1
 bInside = False
 bQuoted = False
 GetParam = ""
 For i = 1 To Len(Command)
 c = Mid$(Command, i, 1)
 If bInside And bQuoted Then
 If c = """" Then
 j = j + 1
 bInside = False
 bQuoted = False
 End If
 ElseIf bInside And Not bQuoted Then
 If c = " " Then
 j = j + 1
 bInside = False
 bQuoted = False
 End If
 Else
 If c = """" Then

 If j > Count Then Exit Function
 bInside = True
 bQuoted = True
 ElseIf c <> " " Then
 If j > Count Then Exit Function
 bInside = True
 bQuoted = False
 End If
 End If

 If bInside And j = Count And c <> """" _
 Then GetParam = GetParam & c
 Next i
End Function

Public Function GetParamCount() As Integer
 Dim i As Long
 Dim c As String
 Dim bInside As Boolean
 Dim bQuoted As Boolean
 GetParamCount = 0
 bInside = False
 bQuoted = False
 For i = 1 To Len(Command)
 c = Mid$(Command, i, 1)
 If bInside And bQuoted Then
 If c = """" Then
 GetParamCount = GetParamCount + 1
 bInside = False
 bQuoted = False
 End If
 ElseIf bInside And Not bQuoted Then
 If c = " " Then
 GetParamCount = GetParamCount + 1
 bInside = False
 bQuoted = False
 End If
 Else
 If c = """" Then
 bInside = True
 bQuoted = True
 ElseIf c <> " " Then
 bInside = True
 bQuoted = False
 End If
 End If
 Next i

 I f bInside Then GetParamCount = GetParamCount + 1
End Function

—Konstantin Komissarchik, Brier, Washington

VB4/32, VB5, VB6
Level: Intermediate

Account for Taskbars When Centering Forms
Most VB programmers must display a form centered on a screen. You can do this in a variety of ways, but
most ignore aspects of the environment such as the taskbar or the office launchbar. This function takes these
aspects into account to center a form within the client area perfectly:

Private Declare Function GetSystemMetrics Lib "user32" _
 (ByVal nIndex As Long) As Long
Private Declare Function GetWindowLong Lib "user32" _
 Alias "GetWindowLongA" (ByVal hwnd As Long, _
 ByVal nIndex As Long) As Long
Private Const SM_CXFULLSCREEN = 16
Private Const SM_CYFULLSCREEN = 17
Public Sub CenterForm(Frm As Form)
 Dim Left As Long, Top As Long
 Left = (Screen.TwipsPerPixelX _
 * (GetSystemMetrics(SM_CXFULLSCREEN) / 2)) - _
 (Frm.Width / 2)
 Top = (Screen.TwipsPerPixelY * _

 (GetSystemMetrics(SM_CYFULLSCREEN) / 2)) - _
 (Frm.Height / 2)
 Frm.Move Left, Top
End Sub

—Konstantin Komissarchik, Brier, Washington

VB3 and up
Level: Beginning

Enhance the Trim Function
The Trim function has a serious shortcoming: It handles only space characters—not all the usual white
spaces such as tabs, carriage returns, and line feeds. Instead of the standard Trim function, use my TrimAll
function, which handles all white spaces. In fact, you can extend it to trim off any character by editing the
assignment to the ToEliminate string variable:

Public Function TrimAll(ToTrim As String) As String
 Static ToEliminate As String
 Dim Start As Long, Finish As Long
 ' Base condition test
 If Len(ToTrim) = 0 Then
 TrimAll = ""
 Exit Function
 End If
 ' Define the characters (once) that we want to trim off
 If Len(ToEliminate) = 0 Then
 ToEliminate = Chr(0) & Chr(8) & Chr(9) _
 & Chr(10) & Chr(13) & Chr(32)
 End If
 ' Find the beginning of nonblank string by checking
 ' each char against a list of blank chars.
 Start = 1
 Do While Start <= Len(ToTrim)
 If InStr(ToEliminate, Mid$(ToTrim, Start, 1)) Then
 Start = Start + 1
 Else
 Exit Do
 End If
 Loop
 ' Find the end of nonblank string.
 Finish = Len(ToTrim)
 Do While Finish > 1
 If InStr(ToEliminate, Mid$(ToTrim, Finish, 1)) Then
 Finish = Finish - 1
 Else
 Exit Do
 End If
 Loop
 If Start > Finish Then
 ' If the string is completely blank,
 ' Start will be greater than Finish.
 TrimAll = ""
 Exit Function
 Else
 ' Trim out the real contents
 TrimAll = Mid$(ToTrim, Start, Finish - Start + 1)
 End If
End Function

—Konstantin Komissarchik, Brier, Washington

VB3 and up
Level: Beginning

Format Names Consistently
People’s names come in many separate parts, some of which might not be present or known. The hassle
begins when you’re dealing with a storage system—database or otherwise—where the parts are stored
separately. You’re faced with the formidable task of putting it all together with correct formatting. A common
mistake is formatting a person’s name whose middle initial is not known: John . Doe instead of John Doe.
Using these functions, you can correct this problem without repeating effort:

Public Function FormatName(firstname As String, lastname As _
 String, Optional mi As String, Optional title As String, _

 Optional Suffix As String) As String
 Dim sRet As String
 If Len(Trim$(title)) > 0 Then
 sRet = StrConv(title, vbProperCase)
 If Right$(sRet, 1) <> "." Then sRet = sRet & "."
 sRet = sRet & " "
 End If
 If Len(Trim$(firstname)) > 0 Then
 sRet = sRet & StrConv(firstname, vbProperCase) & " "
 End If
 If Len(Trim$(mi)) > 0 Then
 sRet = sRet & StrConv(mi, vbProperCase)
 If Right$(sRet, 1) <> "." Then sRet = sRet & "."
 sRet = sRet & " "
 End If
 If Len(Trim$(lastname)) > 0 Then
 sRet = sRet & StrConv(lastname, vbProperCase) & " "
 End If
 If Len(Trim$(Suffix)) > 0 Then
 sRet = Trim$(sRet) & ", " & StrConv(Suffix, vbProperCase)
 End If
 FormatName = Trim$(sRet)
End Function

The next function resembles the previous one, except that it puts the last name first:

Public Function FormatNameReverse(firstname As String, _
 lastname As String, Optional mi As String) As String
 Dim sRet As String
 sRet = StrConv(lastname, vbProperCase)
 If Len(Trim$(firstname)) > 0 Or Len(Trim$(mi)) > 0 _
 Then
 sRet = sRet & ","
 End If
 If Len(Trim$(firstname)) > 0 Then
 sRet = sRet & " " & Trim$(StrConv(firstname, _
 vbProperCase))
 End If
 If Len(Trim$(mi)) > 0 Then
 sRet = sRet & " " & Trim$(StrConv(Left$(mi, 1), _
 vbProperCase)) & "."
 End If
 FormatNameReverse = Trim$(sRet)
End Function

—Konstantin Komissarchik, Brier, Washington

VB3 and up
Level: Intermediate

Wrap I/O for Text Files
In a production application, every time you want to access a file for reading or writing, you must retrieve a
free handle using the FreeFile() function to ensure you don’t overwrite an existing handle. You also must
remember to close the file after you finish with it. In some cases, you can avoid the trouble by encasing this
functionality inside utility functions. For example, I wrote these two functions to go between strings and text
files in my apps:

Public Function ReadFile(FileName As String) As String
 Dim hFile As Integer
 hFile = FreeFile
 On Error GoTo ErrorTrap
 Open FileName For Input As #hFile
 ReadFile = Input(LOF(hFile), hFile)
 Close # hFile
 Exit Function
ErrorTrap:
 ReadFile = ""
End Function
Public Sub WriteFile(FileName As String, Contents As _
 String)
 Dim hFile As Integer
 hFile = FreeFile
 On Error Resume Next
 Open FileName For Output As #hFile

 Print #hFile, Contents;
 Close #hFile
End Sub

Once you put these functions in your project, you can read and write text files quickly. For example, here’s a
way you might use these functions to copy text files:

Call WriteFile("c:\b.txt", ReadFile("c:\a.txt"))

—Konstantin Komissarchik, Brier, Washington

VB6
Level: Beginning

Enhance the Replace Function
If you’re faced with a string that needs to have certain characters removed from it, use the Replace() function
to make the problem more manageable. For instance, use this code to remove all a’s from a particular string:

Debug.Print Replace("abababa", "a", "")

This statement works fine when you want only a single character removed, but if you have a long list of
suspects, you have to do serious copy-and-paste. Avoid that by using this function:

Public Function StripOut(ByVal From As String, _
 ByVal What As String) As String
 Dim i As Integer
 For i = 1 To Len(What)
 From = Replace(From, Mid$(What, i, 1), "")
 Next i
 StripOut = From
End Function

Just place this code somewhere in your program—preferably in a module—and call it like this:

Debug.Print StripOut("abcdefg", "bdf")

This call returns a string with all b, d, and f characters removed.

—Konstantin Komissarchik, Brier, Washington

VB3 and up
Level: Beginning

Create a Safer Mid Function
If you often write complex string-parsing and manipulation
algorithms, the last thing you want is to add more checks to ensure your string positions are not negative.
Avoid the hassle by using this function when you need to use Mid. It wraps around native VB functionality and
handles this common error case:

Public Function FlexiMid(From As String, ByVal Start _
 As Long, Optional Length As Long = -1) As String
 If Start < 1 Then Start = 1
 If Length = -1 Then ' they want the rest of it
 FlexiMid = Mid$(From, Start)
 Else ' just give what they want
 FlexiMid = Mid$(From, Start, Length))
 End If
End Function

Once you paste this function into your program—I recommend a module, so you can access it from
anywhere—you can use it as you would Mid. In fact, once I wrote this, I ran a search-and-replace on my
project to start using it throughout.

—Konstantin Komissarchik, Brier, Washington

VB4/32, VB5, VB6
Level: Advanced

Use Screen-Saver Passwords
When you write a screen saver in C and the Windows SDK, a static library (SCRNSAVE.lib) allows you to
create custom dialogs to change and request the password. But in VB you can’t use this library. If you don’t

want to create forms to replace the custom dialogs, use these two undocumented functions:

Declare Sub PwdChangePassword Lib "mpr.dll" Alias _
 "PwdChangePasswordA" (ByVal lpcRegkeyname As String, _
 ByVal hWnd As Long, ByVal uiReserved1 As Long, ByVal _
 uiReserved2 As Long)
Declare Function VerifyScreenSavePwd Lib _
 "password.cpl" (ByVal hWnd As Long) As Boolean

 PwdChangePassword is in MPR.dll, the Multiple Provider Router. It does all the password management
associated with Regkeyname, including popping up a dialog—as a child of hWnd. The two reserved
parameters should be zero. VerifyScreen-SavePwd, in password.cpl, pops up a dialog box as a child of
hWnd, prompting for the screen saver’s password. If the user gets it wrong, it prints a message saying so and
prompts for the password again. If the user presses OK, VerifyScreenSavePwd returns True; if the user
presses Cancel, it returns False. These calls—and the DLLs—exist in Windows 95/98 but not in NT because
NT handles password management at the system level. Here’s how you can use the PwdChangePassword
call:

Private Sub cmdChange_Click()
 PwdChangePassword "SCRSAVE", Me.hWnd, 0, 0
End Sub

 You must use the string "SCRSAVE" as the first parameter to PwdChangePassword, because it has
special meaning and the function fails if another string is passed. Call VerifyScreenSavePwd on detection of
mouse or keyboard activity, passing the hWnd the dialog should be owned by. Here’s a simple example of
how to test this function:

Private Sub cmdTest_Click()
 Dim bRes As Boolean
 bRes = VerifyScreenSavePwd(Me.hWnd)
 MsgBox bRes
End Sub

—Marco Bellinaso, Treviso, Italy

VB3 and up
Level: Beginning

Write an IsTime Function
Use this function to determine whether a string represents a valid time:

Public Function IsTime(sTimeArg As String) As Boolean
 IsTime = IsDate(Format(Date, "short date") & _
 " " & sTimeArg)
End Function

—Geir Villmones, Mosjøen, Norway

VB3 and up
Level: Beginning

Turn a Textbox or Label Into a Marquee
Sometimes you need to display information longer than the biggest textbox or label control you can have
onscreen. I’ve written a routine that displays a textbox’s or label’s contents in marquee style, with the text
moving from right to left. Animate your controls by adding a timer to the form and setting its Interval property
to 250 (to update the display four times per second). On each timer tick, pass the control you want to animate
to the ShiftChars routine. This routine works by reading the control’s contents, shifting the first character to
the end, and reassigning the contents:

Private Sub Timer1_Timer()
 Call ShiftChars(Text1)
 Call ShiftChars(Label1)
End Sub
Private Sub ShiftChars(ctl As Control)
 Dim Buffer As String
 Select Case TypeName(ctl)
 Case "TextBox", "Label"
 ' Rely on default property to accept/return contents.
 Buffer = ctl
 If Len(Buffer) > 1 Then
 ctl = Mid$(Buffer, 2) & Left$(Buffer, 1)
 End If

 End Select
End Sub

For a more natural display, make sure your text strings have a trailing space character.

—Rafat Sarosh, Tacoma, Washington

VB4/32, VB5, VB6
Level: Intermediate

Test for Illegal Characters
Use this fast function to test for the occurrence of nonalphanumeric characters in a string:

Private Declare Function StrSpn Lib "SHLWAPI" Alias _
 "StrSpnW" (ByVal psz As Long, ByVal pszSet As Long) As Long
Public Function IsAlphaNum(ByVal sString As String) As Boolean
 Dim lPos As Long
 Const ALPHA_NUM As String = "abcdefgihjklmnopqrstuvwxyz" & _
 "ABCDEFGHIJKLMNOPQRSTUVWXYZ1234567890"
 ' Returns the first occurrence of nonmatching characters
 lPos = StrSpn(StrPtr(pString), StrPtr(pAlphaNum))
 ' If the return position is not equal to the length of the
 ' input string, nonalphanumeric chars were found.
 IsAlphaNum = (lPos = Len(sString))
End Function

You can easily modify this function to scan for invalid characters by editing the ALPHA_NUM constant so it
includes only characters you consider legal.

Editor’s Note: The StrSpn function relies on the version of shlwapi.dll that ships with Internet Ex plorer 4.0 and
later. Handle errors—and expectations—accordingly.

—Geir Arnesen, Oslo, Norway

VB3 and up
Level: Beginning

Use an Easier Autohighlight Method
Most of us have a routine we call to autohighlight the entire contents of a textbox when it receives focus. And
most of us type the name of the textbox when we pass it to this routine. Instead of typing the control’s name
in each GotFocus event, you can use this sub to highlight the currently active textbox on the passed form.
Place this code in a module:

Sub HiLite(frm As Form)
 frm.ActiveControl.SelStart = 0
 frm.ActiveControl.SelLength = _
 Len(frm.ActiveControl.Text)
End Sub

Then place this line of code in your textbox control’s GotFocus() event:

Private Sub Text1_GotFocus()
 HiLite Me
End Sub

Using this code, you can forget about typing your controls’ names over and over.

—Achim Wengeler, San Jose, California

VB5, VB6
Level: Beginning

Remove Unused Controls From Projects
If you usually load many controls into your VB project during development, you often have controls loaded
that aren’t used any more by the time the project’s finished. If the controls were added to the project, they are
stored in the VBP file regardless of whether they’re used. Here’s a quick way to clean up your VBP files so
only the controls really being used are stored in your project: Open your VB project. Open your component
window under the Project | Components menu or right-click on your toolbox and select Components. Hold
down the Shift key and click on OK. All components not being used will be unclicked and removed from your
project. VB6 developers: You must not eliminate references to controls you create at run time with the
Controls.Add method.

—Mike Ellis, Charlotte, North Carolina

VB4/32, VB5, VB6
Level: Intermediate

Save Forms’ Size and Location at Run Time
You’ve noticed how some apps display forms and toolboxes in the same location and size as when you last
closed them. Here’s some simple code that gives your VB app the same effect by using the Registry. First, fill
in an appropriate Tag property for your form at design time—something like Main Application Form or Color
Tool Box. Then keep a global string constant called ApplicationName that holds the title for your application.
It’s used here to distinguish the Registry key, but it can also be used for error messages. Place this line in a
module:

Public Const ApplicationName = "My Application Name"

Finally, place this code in a module:

Public Sub SaveFormDisplaySettings(frm As Form)
 If frm.Tag = "" Then Exit Sub
 SaveSetting ApplicationName, frm.Tag & _
 " Display Settings", "Top", Str(frm.Top)
 SaveSetting ApplicationName, frm.Tag & _
 " Display Settings", "Left", Str(frm.Left)
 SaveSetting ApplicationName, frm.Tag & _
 " Display Settings", "Height", Str(frm.Height)
 SaveSetting ApplicationName, frm.Tag & _
 " Display Settings", "Width", Str(frm.Width)
End Sub

Public Sub LoadFormDisplaySettings(frm As Form)
 Dim FormSettings As Variant
 Dim intSettings As Integer
 If frm.Tag = "" Then Exit Sub
 FormSettings = GetAllSettings(ApplicationName, frm.Tag & _
 " Display Settings")
 If IsEmpty(FormSettings) Then Exit Sub
 For intSettings = LBound(FormSettings, 1) _
 To UBound(FormSettings, 1)
 Select Case FormSettings(intSettings, 0)
 Case "Left"
 frm.Left = Val(FormSettings(intSettings, 1))
 Case "Top"
 frm.Top = Val(FormSettings(intSettings, 1))
 Case "Height"
 frm.Height = Val(FormSettings(intSettings, 1))
 Case "Width"
 frm.Width = Val(FormSettings(intSettings, 1))
 End Select
 Next intSettings
End Sub

Add this line to the Form_Load events of the forms you want to save:

Call LoadFormDisplaySettings(Me)

Add this line to the Form_Unload events:

Call SaveFormDisplaySettings(Me)

 Note one side effect: These Registry settings remain in the Registry even after the application has been
uninstalled. They’re stored at or below HKEY_CURRENT_USER\Software\VB and VBA Program Settings\My
Application Name\.

—Kevin Fizz, Reading, Pennsylvania

VB3 and up
Level: Intermediate

Multiply Conditions for Boolean Result
You often have to test for multiple conditions when enabling a confirmation button or other control that
commits user input. Instead of using complex If...ElseIf statements or inline If functions, you can manage

multiple conditions by multiplying the many conditions together. This way, any condition that hasn’t been met
evaluates to zero and the rules of multiplication will keep your confirmation control disabled. For example,
assume you have two textboxes that must contain text before enabling a command button. Call a common
subroutine in each textbox’s Change event:

Private Sub Text1_Change()
 Call DoEnables
End Sub
Private Sub Text2_Change()
 Call DoEnables
End Sub

 In the common subroutine, set the command button’s Enabled property:

Private Sub DoEnables
 cmdOk.Enabled = Len(Trim$(Text1)) * Len(Trim$(Text2))
End Sub

 Also, adding new conditions is a simple task. Simply include the new condition into the series of
multiplication:

Private Sub TextMustBeGreaterThan5_Change()
 Call DoEnables
End Sub
Private Sub DoEnables()
 cmdOk.Enabled = Len(Trim$(Text1)) * Len(Trim$(Text2)) * _
 (Val(TextMustBeGreaterThan5) > 5)
End Sub

You can add as many conditions as you need. Any condition not met evaluates to zero before being included
into the equation. Make sure to enclose your logical operators in parentheses. Even one zero results in zero
for the entire calculation, which VB treats as False for the Enabled property. If all conditions are met, you get
a nonzero number, which VB treats as True.

—Larry Kehoe, Rio Rancho, New Mexico

VB4/32, VB5, VB6
Level: Intermediate

Send a Click Message
Recently, I turned to Windows messaging to manipulate certain dialogs by simulating button clicks
programmatically. I looked through my API references and found only the WM_LBUTTONDOWN and
WM_LBUTTONUP messages. I couldn’t get them to work until I found, on the MSDN Web site, a message
that’s not documented in the API text that comes with VB—BM_CLICK = &HF5. You set lParam and
wParam both to zero to use this message. It works perfectly when it’s sent directly to the button.
SendMessage is a synchronous call. If the button you want to click might take some time to process its work,
and you’d rather make an asynchronous click, use PostMessage instead. This sample shows how to use the
BM_CLICK message. Paste this code into a new form, with two command buttons, one option button, and
one checkbox:

Option Explicit
Private Declare Function SendMessage Lib "user32" Alias _
 "SendMessageA" (ByVal hWnd As Long, ByVal wMsg _
 As Long, ByVal wParam As Long, lParam As Any) As Long
Private Declare Function PostMessage Lib "user32" Alias _
 "PostMessageA" (ByVal hWnd As Long, ByVal wMsg _
 As Long, ByVal wParam As Long, ByVal lParam As Long) _
 As Long
Private Const BM_CLICK = &HF5
Private Sub Check1_Click()
 Debug.Print " Check1_Click"
End Sub
Private Sub Command1_Click()
 Debug.Print " Command1_Click"
End Sub
Private Sub Command2_Click()
 Debug.Print "Entering Command2_Click"
 Call SendMessage(Check1.hWnd, BM_CLICK, 0, ByVal 0&)
 Call SendMessage(Option1.hWnd, BM_CLICK, 0, ByVal 0&)
 Call SendMessage(Command1.hWnd, BM_CLICK, 0, ByVal 0&)
 Debug.Print "Exiting Command2_Click"

End Sub
Private Sub Option1_Click()
 Debug.Print " Option1_Click"
End Sub

The BM_CLICK message works on any button-class control. This includes option buttons and checkboxes.

—Marc Boorshtein, Framingham, Massachusetts

VB4/32, VB5, VB6
Level: Intermediate

Prevent Duplicate Listbox Entries
This useful code listing prevents users from entering duplicate entries into a listbox or modifying existing
listbox entries. While the code prevents users from adding duplicate entries, you
can modify the True condition of the If block in the Add_New procedure to suit your needs. Declare the
constant, LB_
FINDSTRINGEXACT and the SendMessage function declaration in a BAS module:

Declare Function SendMessageByString Lib _
 "user32" Alias "SendMessageA" (ByVal hWnd As _
 Long, ByVal wMsg As Long, ByVal wParam As _
 Long, ByVal lParam As String) As Long
Public Const LB_FINDSTRINGEXACT = &H1A2

This function uses the SendMessageByString API and returns either the existing item’s index or -1. If it
returns -1, you can add the item:

Function ChkListDuplicates(chwnd As Long, _
 StrText As String) As Boolean
 ChkListDuplicates = (SendMessageByString(chwnd, _
 LB_FINDSTRINGEXACT, -1, StrText) > -1)
End Function

If the LB_FINDEXACTSTRING message returns a value of -1, no match was found, so ChkListDuplicates
returns False. You can use this value to determine whether to add a new item to your list:

Private Sub Add_New()
 Dim user As String
 user = InputBox("Add ListBox Entry", "Test Project")
 If Len(user) Then
 If Not ChkListDuplicates(List1.hWnd, _
 Trim(user)) Then
 List1.AddItem Trim(user)
 Else
 MsgBox "Duplicate Names can not be " & _
 "added." & vbCrLf & "Please " & _
 "make sure you are not adding " & _
 "duplicate names.", vbExclamation, _
 "Test Project: Invalid Operation"
 End If
 End If
End Sub

—Kedar Sathe, Houston, Texas

VB4, VB5, VB6
Level: Intermediate

Load UI Graphics From the Resource File
Many VB programmers haven’t harnessed the power of VB6’s resource editor. They still use traditional
LoadPicture or other primitive calls to load bitmaps and icons. Before VB5, loading pictures into controls was
somewhat harder, because of the inherent troubles associated with specifying the path and filename of the
resource.With the resource editor, it’s easy to store icons, strings, and bitmaps in a single RES file. I had to
load the same picture for several CommandButton controls in a current project. I set the Style property of the
CommandButton to 1 (Graphical) and the Tag property to “calendar” so my app would know to load
calendar.bmp. I then added and saved this BMP in a resource file and set the ID to “calendar.”
 First paste this code into the general section of a form:

'loads icons/bmps from resource files.
Sub FillPictures(psdFrm As Form)
 ' desired form is passed as an parameter.
 Dim lcl_Ctrl As Control

 For Each lcl_Ctrl In psdFrm.Controls
 ' controls collection is used here.
 If LCase(lcl_Ctrl.Tag) = "calendar" Then
 ' checking the tag property.
 Set lcl_Ctrl.Picture = _
 LoadResPicture(lcl_ctrl.tag, vbResBitmap)
 End If
 ' extra code could have been added for
 ' loading other picture files by setting
 ' the tag property accordingly.
 Next
End Sub

Then call this function from the Form_Load event:

Private Sub Form_Load()
 Call FillPictures(Me)
End Sub

—Jishnu Bhattacharya, Jersey City, New Jersey

VB3 and up
Level: Intermediate

Convert a Decimal Number to Base N
Here’s a function that converts a decimal number (base 10) to another base number system. Each digit
position corresponds to a power of N, where N is a number between 2 and 36. In other words, if a number
system’s base is N, then N digits are used to write numbers in that system. For example, the base 2 number
system (binary) uses the digits 0 and 1, while the base 20 system uses digits 0 through K.
 The ConvertDecToBaseN function accepts a double-value decimal number and a byte-value representing
the base number between 2 and 36. By default, the base value used is 16 (hexadecimal). The decimal
number is converted to a positive number if it’s negative. This function is useful for representing large
numbers as strings, using fewer digit positions. I developed it to help reduce the footprint of several large
numbers used in constructing a 16-character unique string ID. (Creating a complementary function to convert
a base N number back into a decimal would be a great exercise.)

Public Function ConvertDecToBaseN(ByVal dValue As Double, _
 Optional ByVal byBase As Byte = 16) As String
 Const BASENUMBERS As String = _
 "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"
 Dim sResult As String
 Dim dRemainder As Double
 On Error GoTo ErrorHandler
 sResult = ""
 If (byBase < 2) Or (byBase > 36) Then GoTo Done
 dValue = Abs(dValue)
Do
 dRemainder = dValue - (byBase * Int((dValue / byBase)))
 sResult = Mid$(BASENUMBERS, dRemainder + 1, 1) & sResult
 dValue = Int(dValue / byBase)
Loop While (dValue > 0)
Done:
 ConvertDecToBaseN = sResult
 Exit Function
ErrorHandler:
 Err.Raise Err.Number, "ConvertDecToBaseN", _
 Err.Description
End Function
Sample usage:
ConvertDecToBaseN(999999999999#, 36)
'Returns 'CRE66I9R

—Peter Rodriguez, received by e-mail

VB3 and up
Level: Beginning

Tile With Lightweight Image Control Arrays
I write apps for companies where computer know -how is at an all-time low. Most applications scare people to
death. However, Web-style forms and graphic buttons present soothing enough interfaces that they can be
inviting to users.
 I wanted my forms to look just like a Web page, so I devised a method to replicate and tile one Image
control across a form. To achieve this effect, add an Image control to your form, set its Index to zero, set

Visible to False, and set an appropriate background image for the Picture property. Pass your form to the
CreateBackground routine during its Load event:

Private Sub Form_Load()
 Call CreateBackground(Me)
End Sub
Public Sub CreateBackground(frmCallingParent)
 Dim lTilesY As Long, lTilesX As Long
 Dim lLeft As Long, lTop As Long
 Dim oImg As Image
 Dim X As Integer
 Set oImg = frmCallingParent.Image1(0)
 lTilesX = oImg.Width
 lTilesY = oImg.Height
 Do While lTop < Screen.Height
 X = X + 1
 Load frmCallingParent.Image1(X)
 Set oImg = frmCallingParent.Image1(X)
 With oImg
 .Left = lLeft
 .Top = lTop
 .Visible = True
 End With
 lLeft = lLeft + lTilesX
 If lLeft > Screen.Width Then
 lLeft = 0
 lTop = lTop + lTilesY
 End If
 Loop
End Sub

—Craig R. Gray, Clinton Township, Michigan

VB6
Level: Intermediate

Use Components and the Internet for Easy Maintenance
I’m developing a database system for a distant customer with a slow Internet connection. The system imports
data and generates reports. The problem with importing and generating reports is that, over time, both the
import file’s format and the report’s layout change. I can’t send the whole system to him because it takes
several hours to download.
 To ease maintenance, I’ve separated the importing and reporting functions in an ActiveX DLL component
of “Internet downloadable” size. When the customer asks me to make a change, I change the code and
publish the ActiveX DLL component with a Package and Deployment Wizard to my Web site. I then send my
customer an e-mail with a URL for the HTML file generated by the Package and Deployment Wizard. The
updated importing and reporting functions are quickly downloaded and installed automatically on his system
when he clicks on a hyperlink.

—Thomas U. Nielsen, Copenhagen, Denmark

VB4, VB5, VB6
Level: Intermediate

Implement a Context Stack
Isolating the source of an error in a method containing many nested method calls can be difficult. If you
haven’t written comprehensive error-handling code in every method and property you write, or if you
propagate errors up the call chain, an error handler in a high-level method won’t be able to identify whether a
trapped error occurred in the high level method itself, or whether it’s the result of an unhandled error
encourtered further down the call chain.
 Tracking execution context can be a relatively painless strategy to isolate the source of an error. Do this
by declaring a global object that implements a call stack used by each method in your project. I call this
object an ErrorContext object. You use the object by pushing the context—the component.module.method
name—as each method begins, and popping it off the stack as each method terminates normally. Methods
without error handlers terminate immediately and pass control up the call stack when an error occurs. The
procedure containing the error can be identified by checking the last context pushed onto the call stack.
 The ErrorContext object I use for this purpose contains three methods and one read-only property:

• PushContext (called at the start of each method).
• PopContext (called at the normal termination of each method).
• Resynch (to resynchonize the stack after a runtime error).
• ErrContext (a read-only property that returns the last context string pushed onto the stack).

 To use the object, declare a global instance of the object in a public module, and call PushContext at the
beginning of each method and PopContext immediately before exiting the procedure. Use ErrContext to
check the context string at the top of the error stack. Use Resynch to resynchronize the call stack after an
error, because PopContext won’t be called by the lower-level procedures. This sample code omits explicit
declarations and some error-checking code:

ErrorContext Object:
Private Contextstack() As String
Sub PushContext(Context As String)
 upper = UBound(Contextstack) + 1
 ReDim Preserve Contextstack(upper)
 Contextstack(upper) = Context
End Sub
Sub PopContext()
 upper = UBound(Contextstack) - 1
 ReDim Preserve Contextstack(upper)
End Sub
Property Get ErrContext() As String
 upper = UBound(Contextstack)
 ErrContext = Contextstack(upper)
End Property
Sub Resynch(Context As String)
 Do While ErrContext <> Context
 PopContext
 Loop
End Sub
Private Sub Class_Initialize()
 ReDim Contextstack(0)
End Sub

 Here’s a sample of how you’d use the Error context object in a form module. First, declare the
ErrorContext object in a standard module:

Public Erx as New ErrorContext

In each method and property of your project, use the PushContext and PopContext methods as you enter
and exit each routine:

Option Explicit
Const mconModPath = "MyProject.MyForm."

Private Sub Command1_Click()
 Const Contex t = mconModPath & "Command1_Click"
 erx.PushContext Context
 On Error GoTo StdError
 MySub1 'call chain starts here
 erx.PopContext
Exit Sub
StdError:
 MsgBox "An error occurred in " & _
 erx.ErrContext & vbNewLine & Err.Number & _
 vbTab & Err.Descript ion
 erx.Resynch Context
 'if the error occurred in a subprocedure, use resynch
 'to pop context until Context = erx.ErrContext
 erx.PopContext
 'make sure to use PopContext at each exit point.
End Sub
Sub MySub1()
 Const Context = mconModPath & "MySub1"
 erx.PushContext Context
 MySub2
 erx.PopContext
End Sub
Sub MySub2()
 Const Context = mconModPath & "MySub2"
 erx.PushContext Context
 Dim a As Long
 a = 1 / 0 ' force a divide by zero error.
 erx.PopContext
End Sub

The error handler in Command_Click correctly identifies that the division by zero error occurred in MySub2.

While this approach entails adding three lines to each procedure, it can significantly decrease the time
necessary to trace deep into call chains to locate the source of an error.

—Josh Kramer, Los Angeles, California

VB6
Level: Advanced

Use the VB Response Object to Generate Dynamic HTML Pages
I researched Windows Script Components (WSC) and was interested in their capability to integrate with ASP.
I tried integrating a VB DLL with ASP. I included a reference to the Microsoft Active Server Pages Object
Library (ASP.dll) in the DLL and used the Response object to write my HTML. I was surprised to find it
worked when I tested it. It meant I could create a DLL that had common reusable routines for creating lists
and filling combo boxes. The possibilities are endless, all in compiled VB DLL code.
 The DLL has a method called ShowRecordSet that has four parameters:

• StrConnectString (the database connect string)
• StrSQL (the SQL command to execute)
• StrHeading (a heading for the table)
• ASPResponse (the reference to the Response object of the ASP page)

 The DLL connects to the database, executes the query, and writes out an HTML table with a header and
detail line for each row in the recordset. Use this DLL CRShtml class code:

Option Explicit
'Color constants
Const PageBgColor As String = """#F5F5F5"""
Const TableBgColor As String = """#8F9FE9"""
Const ShadeBgColor As String = """#C9C9C9"""
Public Sub ShowRecordSet(strConnectString _
 As String, strSQL As String, strHeading _
 As String, ASPResponse As ASPTypeLibrary.Response)
'Purpose: This method connects to datasource, retrieves
'the recordset, and writes HTML output via the Response
'object. Must have a reference to the Microsoft Active
'Server Pages Object Library (ASP.dll)
Dim intDetailCount As Integer
Dim strRowBgColor As String
Dim cnn As ADODB.Connection
Dim rs As ADODB.Recordset
Dim fldField As ADODB.Field
 Set cnn = New ADODB.Connection
 Set rs = New ADODB.Recordset
 cnn.Open strConnectString
 Set rs = cnn.Execute(strSQL)
 With ASPResponse
 .Write "<TABLE CELLPADDING=3 BORDER=""0"">"
 .Write "<tr>"
 .Write "<td width=""100%"" height=""18" _
 " colspan = " & rs.Fields.Count & _
 " bgcolor=""#666699""><font SIZE=""4" _
 " FACE=""Verdana"" color=""#FFFFFF"">" _
 & strHeading & "</td>"
 .Write "</tr>"
 'create the column headings from the field names
 .Write " <TR>"
 For Each fldField In rs.Fields
 .Write " <TD bgcolor=" & TableBgColor _
 & ">" & fldField.Name & "</TD>"
 Next
 .Write " </TR>"
 'process each record building rows in table
 intDetailCount = 1
 Do While Not rs.EOF
 .Write " <TR>"
 'Shade each alternating row
 If (intDetailCount Mod 2) = 0 Then
 strRowBgColor = ShadeBgColor
 Else
 strRowBgColor = PageBgColor
 End If

 For Each fldField In rs.Fields

 .Write " <TD bgcolor =" & _
 strRowBgColor & ">" & _
 fldField.Value & "" & "</TD>"
 Next fldField
 .Write " </TR>"
 rs.MoveNext
 intDetailCount = intDetailCount + 1
 Loop
 'close the table and objects
 .Write "</TABLE>"
 End With
 rs.Close
 cnn.Close
 Set rs = Nothing
 Set cnn = Nothing
End Sub

Test Active Server Page:

<HTML>
<BODY bgcolor="#F5F5F5">
<H2>Using a Server-side VB DLL with a reference to
the Response Object</H2>
<%
Dim objRSServer
'Instantiate object
Set objRSServer = Server.CreateObject("RSServer.CRShtml")
'Call Method
objRSServer.ShowRecordSet "DRIVER={SQL
Server};SERVER=ServerName;DATABASE=DBName;
 UID=UserID;PWD=UserPwd;", "SELECT
 FirstName + ' ' + LastName as Employee,
 Phone, Email FROM tblEmployee ORDER BY
 LastName, FirstName", "Employee List",
 Response
%>
</BODY>
</HTML>

—Brian Barnett, Woodstock, Georgia

VB4, VB5, VB6
Level: Intermediate

Wrap Date Functions in a Class
I’ve been working on a class module called clsDateInfo that returns various properties of a given date, and
using it in some monthly trend graphs. I had to come up with the number of weekdays—not counting
weekends—a given date was from the first of the month. The clsDateInfo.WeekDayOfMonth property returns
the answer in a flash:

Option Explicit
' clsDateInfo
' Chuck Spohr 9/23/1999
' Set the DateToCheck property of this object and
' the other properties will return various useful
' values about that date
Private mdtDate As Date
Public Property Let DateToCheck(pdtDate As Date)
 mdtDate = pdtDate
End Property
Public Property Get DateToCheck() As Date
 DateToCheck = mdtDate
End Property
Public Property Get WeekDayOfMonth() As Integer
 If Me.DayOfWeek = vbSunday Or Me.DayOfWeek = _
 vbSaturday Then
 WeekDayOfMonth = 0
 Else
 WeekDayOfMonth = (5 * (Me.WeekOfMonth - 1)) - _
 Me.FirstDayOfWeekOfMonth + Me.DayOfWeek + 1
 End If
End Property
Public Property Get WeekOfMonth() As Integer
 WeekOfMonth = Week Me.FirstWeekOfMonth + 1

End Property

Public Property Get FirstWeekOfMonth() As Integer
 FirstWeekOfMonth = DatePart("ww", Me.FirstDayOfMonth)
End Property
Public Property Get FirstDayOfWeekOfMonth() As Integer
 FirstDayOfWeekOfMonth = DatePart("w", Me.FirstDayOfMonth)
End Property
Public Property Get Week() As Integer
 Week = DatePart("ww", mdtDate)
End Property
Public Property Get FirstDayOfMonth() As Variant
 FirstDayOfMonth = DateSerial(DatePart("yyyy", _
 mdtDate), DatePart("m", mdtDate), 1)
End Property
Public Property Get DayOfWeek() As Integer
 DayOfWeek = DatePart("w", mdtDate)
End Property
Private Sub Class_Initialize()
 mdtDate = Now()
End Sub

—Chuck Spohr, Balwin, Missouri

VB5, VB6
Level: Beginning

Enter Data on an MSFlexGrid
You can use MSFlexGrid for data entry without using additional ActiveX controls. For this, use the KeyPress
and KeyUp events. To use the MSFlexGrid for data entry, add the grid—named FlxGrdDemo—to a form and
copy this code:

Private Sub FlxGrdDemo_KeyPress(KeyAscii As Integer)
 Select Case KeyAscii
 Case vbKeyReturn
 ' When the user hits the return key
 ' this code'll move the next cell or row.
 With FlxGrdDemo
 If .Col + 1 <= .Cols - 1 Then
 .Col = .Col + 1
 ElseIf .Row + 1 <= .Rows - 1 Then
 .Row = .Row + 1
 .Col = 0
 Else
 .Row = 1
 .Col = 0
 End If
 End With
 Case vbKeyBack
 ' Delete the previous character when the
 ' backspace key is used.
 With FlxGrdDemo
 If Trim(.Text) <> "" Then _
 .Text = Mid(.Text, 1, Len(.Text) - 1)
 End With
 Case Is < 32
 ' Avoid unprintable characters.
 Case Else 'Else print everything
 With FlxGrdDemo
 .Text = .Text & Chr(KeyAscii)
 End With
 End Select
End Sub
Private Sub FlxGrdDemo_KeyUp(KeyCode As _
 Integer, Shift As Integer)
 Select Case KeyCode
 ' Copy
 Case vbKeyC And Shift = 2 ' Control + C
 Clipboard.Clear
 Clipboard.SetText FlxGrdDemo.Text
 KeyCode = 0
 ' Paste
 Case vbKeyV And Shift = 2 'Control + V
 FlxGrdDemo.Text = Clipboard.GetText

 KeyCode = 0
 ' Cut
 Case vbKeyX And Shift = 2 'Control + X
 Clipboard.Clear
 Clipboard.SetText FlxGrdDemo.Text
 FlxGrdDemo.Text = ""
 KeyCode = 0
 ' Delete
 Case vbKeyDelete
 FlxGrdDemo.Text = ""
 End Select
End Sub

You can set the FillStyle property to FlexFillRepeat, which makes the changes to all the selected cells.

—Srinivasa S. Sivakumar, Chicago, Illinois

VB6
Level: Advanced

Make Windowless, Transparent UserControls Clickable
Microsoft has documented a problem with windowless User-Controls that have a transparent Backstyle. Once
a form contains such a control, you can’t select it by clicking on it with the mouse; this makes it tough to move
the control. (See Microsoft Knowledge Base article Q188234 for details.) Use this code workaround that
allows you to click on and move these controls at design time. First, it uses the HitTest event to make the
control always act as if it is clicked, regardless of mouse coordinates. This usage causes the
UserControl_Click event to fire, which the owner can observe through the raised Click event:

Private Sub UserControl_HitTest(X As Single, Y _
 As Single, HitResult As Integer)
 ' Always act as if the control was hit
 If HitResult = vbHitResultOutside Then
 HitResult = vbHitResultHit
 End If
End Sub
Public Event Click()
Private Sub UserControl_Click()
 ' Let the form handle the click
 RaiseEvent Click
End Sub

In production code, if only portions of the control should be clickable in run mode, test for design mode vs.
run mode in the HitTest event. Use this method only in design mode, and your own custom test in run mode.

—Don Benson, Hudson, Ohio

VB3 and up
Level: Intermediate

Convert Static Variables for More Speed
Referencing a static local variable in a procedure is two to three times slower than a regular local, dynamic
variable. If your procedure demands every last bit of speed possible, convert all static variables into module-
level variables. However, this approach has a nasty design implication—the procedure becomes less self-
contained. You must remember to copy and paste the module-level variable when you reuse the procedure in
another project. But this approach might make sense in an extremely intense routine. Further, referencing a
variable declared at module level is faster than referencing a global variable declared in a separate BAS
module. If you don’t need to share a variable among all of an app’s forms and modules, you should declare it
in the only form or module that uses it.

—Jai Bardhan, Lowell, Massachusetts

VB3 and up
Level: Beginning

Change Dates With Plus and Minus Keys
This simple piece of code saves a lot of headaches when it comes to altering dates. It allows you to use the
plus and minus keys to increment and decrement date values easily. This example assumes there is a
textbox named Text1 on a standard VB form:

Private Sub Form_Load()
 ' Make sure that there is a valid date in Text1.

 Text1.Text = Date
End Sub

Private Sub Text1_KeyPress(KeyAscii As Integer)
 ' Pass handling to generic routine.
 KeyAscii = DateHandler(KeyAscii)
End Sub

Private Function DateHandler(KeyAscii As _
 Integer) As Integer
 Dim nRet As Integer
 ' This routine adds or subtracts days, based on the
 ' key pressed, from a date value found in the control
 ' represented by the form's ActiveControl property
 ' (usually a TextBox). The routine can be altered to
 ' add and subtract months and years too.
 On Error GoTo ErrorHandler
 ' Constants which represent the '+' & '-' keys.
 Const KeyAdd = 43
 Const KeySubtract = 45
 ' This constant is here because '+' & '=' are on the
 ' same key for most keyboards, but are sometimes inverted.
 Const KeyEquals = 61
' Determine the value of the key pressed, and
 ' take the necessary action.
 Select Case KeyAscii
 Case KeyAdd, KeyEquals
 Me.ActiveControl.Text = DateAdd("d", _
 1, Me.ActiveControl)
 nRet = 0
 Case KeySubtract
 Me.ActiveControl.Text = DateAdd("d", _
 -1, Me.ActiveControl)
 nRet = 0
 Case Else
 nRet = KeyAscii
 End Select
 ' Move the start position to the end of the
 ' text for a cleaner look.
 If nRet = 0 Then
 Me.ActiveControl.SelStart = Len(Text1.Text)
 End If

 ' Return a new KeyAscii value.
 DateHandler = nRet
 Exit Function

ErrorHandler:
 DateHandler = 0
 Exit Function
End Function

—Sheppe Pharis, Kelowna, British Columbia, Canada

VB6
Level: Beginning

Count the Occurrences of a Character or Substring
VB6 introduced the Split function, which returns a zero-based, one-dimensional array containing a specified
number of substrings. Although this function is useful in itself, you can also use it in other useful ways. For
example, by combining the UBound and Split functions, you can count how many times a substring—or
single character—appears inside another string:

Function InstrCount(Source As String, _
 SearchString As String) As Long
 If Len(Source) Then
 InstrCount = UBound(Split(Source, SearchString))
 End If
End Function

—Gilberto Zayas Ramos, Velasco, Cuba

VB3 and up
Level: Beginning

Simplify Programatic Selection in Combos
Here’s a useful procedure to position a ComboBox according to a value of the ItemData property or the List
property. It’s useful to position a ComboBox with values taken from a database, and this way, become
independent of the index property. For example, you might fill a ComboBox with the serial port’s baud
speeds, including a description in List and the value in bauds in ItemData:

Public Sub LlenarCombo(pCombo As ComboBox)
 With pCombo
 .Clear
 .AddItem "1200 bps"
 .ItemData(0) = 1200
 .AddItem "2400 bps"
 .ItemData(1) = 2400
 .AddItem "4800 bps"
 .ItemData(2) = 4800
 .AddItem "9600 bps"
 .ItemData(3) = 9600
 .AddItem "14400 bps"
 .ItemData(4) = 14400
 .AddItem "28800 bps"
 .ItemData(5) = 28800
 .ListIndex = 0
 End With
End Sub
Public Sub PosicionarCombo(pCombo As _
 ComboBox, ByVal pValor As Variant)
 Dim i As Integer
 If IsNumeric(pValor) Then
 ' Search by ItemData
 For i = 0 To pCombo.ListCount - 1
 If pCombo.ItemData(i) = pValor Then
 pCombo.ListIndex = i
 Exit For
 End If
 Next i
 Else
 ' Search by List
 For i = 0 To pCombo.ListCount - 1
 I f pCombo.List(i) = pValor Then
 pCombo.ListIndex = i
 Exit For
 End If
 Next i
 End If
End Sub
Private Sub cmdPosItemData_Click()
 PosicionarCombo cboTest, 9600
End Sub
Private Sub cmdPosList_Click()
 PosicionarCombo cboTest, "4800 bps"
End Sub

—Diego M. Basélica, Cordoba, Argentina

VB4, VB5
Level: Beginning

Duplicate the Split Function for VB4 and VB5
It’s too bad Microsoft didn’t create the Split function until VB6, but here’s a function that duplicates it for VB4
and VB5 users. The only difference is that with VB4 and VB5, you must use a Variant to receive the Split
data, whereas VB6 can also use a dynamic String array:

Public Function Split(aText As String, _
 Optional vSrch As Variant) As Variant
 If IsMissing(vSrch) Then vSrch = " "
 Dim j As Long, k As Long, a As String
 ReDim s(0) As String
 a = aText
 k = InStr(a, vSrch)
 Do While k
 If j > UBound(s) Then
 ReDim Preserve s(0 To j) As String

 End If
 s(j) = Left$(a, k - 1)
 a = Mid$(a, k + Len(vSrch))
 k = InStr(a, vSrch)
 j = j + 1
 Loop
 If Len(a) Then
 If j > UBound(s) Then
 ReDim Preserve s(0 To j) As String
 End If
 s(j) = a
 End If
 Split = s
End Function
Dim vDat As Variant
vDat = Split("This is a test")
' vDat(0) = "This" vDat(1) = "is", etc...

—Matt Hart, Tulsa, Oklahoma

VB6
Level: Intermediate

Web-Enable Your Apps
In today’s world, you probably want to let your users browse the Web inside your app. You can add the
Microsoft Internet Control to do this; however, the user must have Internet Explorer installed. Without it, the
app fails to start. To solve this problem, remove the Microsoft Internet Control reference and load the control
dynamically when Internet Explorer is installed. To load the control, use this code:

Private ie As VBControlExtender
Private Sub Form_Load()
 On Error GoTo IEMissing
 Set ie = Form1.Controls.Add("Shell.Explorer", "wcIE")
 ie.Visible = True
IEMissing:
End Sub
Private Sub Form_Resize()
 If Not ie Is Nothing Then
 ie.Move 0, 0, Me.ScaleWidth, Me.ScaleHeight
 End If
End Sub

 You can do multiple things with this object, such as change the visibility, but then the unique Internet
Explorer properties and methods aren’t available. For example, if you type “obj.Navigate sMyURL”, VB tells
you the object doesn’t support this property or method. The secret is to use your object variable’s Object
property like this:

Private Sub Form_Activate()
 If Not ie Is Nothing Then
 ie.Object.Navigate "http://www.vbpj.com"
 End If
End Sub

—Eric Quist, Gothenburg, Sweden

VB3 and up
Level: Beginning

Link the DataField to the Recordset
The data control allows you to quickly link controls and databases; however, not only is it far from flexible
compared with the database-objects coding interface, it doesn’t look great. I use the latter solution and
assume most VB programmers do. But it’s quite painful to add or alter several lines of code every time you
put a new text field on a dialog. It’s a waste of the DataField property, however; it can be just as useful as the
Tag property, and in this case, it’s more descriptive. So what if you write a few routines to simulate the data
control’s basic operations through the DataField property? This simple routine loads data from a Recordset to
all controls on a form:

Public Sub ReadData(frm As Form, rc as Recordset)
 Dim ctrl As Control
 ' Need to ignore errors on controls
 ' that don't support databinding.
 On Error Resume Next

 For Each ctrl In frm.Controls
 If ctrl.DataField <> "" Then
 ctrl = rc.Fields(ctrl.DataField)
 End If
 Next 'ctrl
End Sub

You only need to put the field name into the DataField property of involved controls at design time. By altering
such routines, you can achieve more complex data handling than if you use data controls, as well as make
reading, writing, and validation a lot simpler than doing everything manually.

—Martin Girard, Chicoutimi, Quebec, Canada

VB3 and up
Level: Intermediate

Use Loop Counters Even After Looping
The value of a loop counter variable is incremented one beyond the set range when the loop is completed.
For example, if you use a For i = 0 to 5...Next loop, i equals 6 when all loop iterations have been completed.
If you use the For...Next statement with an Exit For statement, you can use the value of the loop counter
variable to determine whether a condition was met during the loop. Here’s one possible application of this
technique, which can be applied when you have an array of values, each element of which has a unique
value:

Dim sText(10) As String
 Dim i As Long
 ' Initialize strings - A, B, C, D, ...
 For i = 1 To 10
 sText(i) = Chr$(Asc("A") + i)
 Next i

 Suppose you want to find which element, if any, has a given value. You could use a Do...Until Loop
and a flag:

Dim i As Long
 Dim IsFound As Boolean
 i = 0
 Do While Not IsFound
 i = i + 1
 If i > 10 Then Exit Do
 If sText(i) = "J" Then IsFound = True
 Loop
 If IsFound Then
 MsgBox "Found J as element: " & i
 Else
 MsgBox "Could not find J"
 End If

 Or you can use a For...Next loop without a flag:

Dim i As Long
 For i = 1 To 10
 If sText(i) = "J" Then Exit For
 Next i
 If i <= 10 Then
 MsgBox "Found J at element: " & i
 Else
 MsgBox "Could not find J"
 End If

This search routine is shorter and faster in the second case.

—Tom Mcormick, Chelmsford, Massachusetts

VB4, VB5, VB6
Level: Beginning

Clear Form’s Controls With Quick Loop
This code allows you to set a form’s controls to a specific value. You can use it, for example, when you want
to clear all textboxes in a form or when you want to uncheck all checkboxes:

Public Sub Clear(frm As Form)
 Dim ctl As Control
 For Each ctl In frm
 Select Case TypeName(ctl)
 Case "TextBox"
 ctl.Text = ""
 Case "CheckBox"
 ctl.Value = vbUnchecked
 Case Else
 ' handle others as needed
 End Select
 Next ctl
End Sub

—Daniel Augusto Ramírez Villasana, México City, México

VB3 and up
Level: Intermediate

Replace a String Within a String, Recursively
I recently needed a substring replacement function for inserting code into a module, by reading the code from
a file. Unfortunately, in my case, commas are interpreted as delimiters, and the insertion requires a lot of post
formatting. So, I replaced all the commas in the original file with a question mark. That way, when the file is
inserted into a module, the ReplaceString function checks each line, and the question mark is replaced with a
comma, then inserted into the module. I initially considered using the fConvert function published in “Remove
Unwanted Characters” [“101 Tech Tips for VB Developers,” Supplement to VBPJ, February 1999]. I
compared the speed of the two functions, ReplaceString and fConvert, in a separate project, using the
Windows API GetTickCount function. The recursive function is nearly four times faster than the For...Loop. In
situations where a single character needs to be replaced with something different, it’s a good way to go:

Public Function ReplaceString(strT As String) As String
 Dim iposn As Integer
 Dim strF As String
 Dim strR As String
 ' Function replaces one character with another. Using
 ' recursion if the character is found to check if any
 ' more such characters need to be replaced within
 ' the string. strT is the string in which a character
 ' or string in which replacement will take place.
 ' strF is the string which is to be replaced.
 ' strR the new or replacing string.
 strF = "?"
 strR = ","
 iposn = InStr(1, strT, strF)
 If iposn > 0 Then
 Mid(strT, iposn, 1) = strR
 strT = ReplaceString(strT)
 End If
 ReplaceString = strT
End Function

—Matthew Grygorcewicz, Athelstone, Australia

VB4/32, VB5, VB6
Level: Intermediate

Determine the File System Type
With the advent of the FAT32 file system, you might want to use VB to determine the type of file system being
used for a particular drive. This example is set for the C drive; change the variable sDrive to test other drives.
Run this routine; the variable sResult contains the file system name string:

Private Declare Function GetVolumeInformation _
 Lib "kernel32" Alias "GetVolumeInformationA" _
 (ByVal lpRootPathName As String, ByVal _
 lpVolumeNameBuffer As String, ByVal _
 nVolumeNameSize As Long, _
 lpVolumeSerialNumber As Long, _
 lpMaximumComponentLength As Long, _
 lpFileSystemFlags As Long, ByVal _
 lpFileSystemNameBuffer As String, ByVal _
 nFileSystemNameSize As Long) As Long
Public Function WhichFileSystem(ByVal Drive _
 As String) As String

 Dim sVolBuf As String * 255
 Dim sSysName As String * 255
 Dim lSerialNum As Long
 Dim lSysFlags As Long
 Dim lComponentLength As Long
 Dim lRes As Long
 lRes = GetVolumeInformation(Drive, sVolBuf, _
 255, lSerialNum, lComponentLength, _
 lSysFlags, sSysName, 255)
 If lRes Then
 WhichFileSystem = Left$(sSysName, _
 InStr(sSysName, Chr$(0)) - 1)
 Else
 WhichFileSystem = "<unknown>"
 End If
End Function

—Dan Verkade, Perris, California

VB4, VB5, VB6
Level: Beginning

Iterate MDIChild Forms
Sometimes it’s useful to close—or perform some other common operation on—all the child forms in your MDI
parent simultaneously. For example, when a user relogs on to a database system, all the old child windows’
data comes from a previous logon, and you just want to close all child forms. Simply iterate the Forms
collection, checking the TypeOf on each form before testing its MDIChild property:

Dim vForm As Variant
For Each vForm In Forms
 If Not TypeOf vForm Is MDIForm Then
 If vForm.MDIChild Then
 Unload vForm
 End If
 End If
Next 'vFrom

—Orville P. Chomer, Berwyn, Illinois

VB4/32, VB5, VB6
Level: Beginning

Force Slider to Specific Intervals
Try using a slider control in your UI if you’re tired of combo boxes. Users find this control intuitive to
understand and operate. For example, you might use the slider control to obtain values from a user in
increments of $1,000. First, add the slider control to a form. Set the slider’s Min and Max properties to the
appropriate range for your app. Then, set the TickFrequency property equal to any interval of interest. Using
the example, try setting the slider properties to: Min=1,000 and Max=10,000. Unfortunately, if a user drags
the slider instead of clicking on it, values between the tick marks are returned. Here’s a cool way to easily
control this behavior. Place this code in the slider’s Change event, substituting your control’s name:

Private Sub slBWidth_Change()
 slBWidth = CInt(slBWidth.Value / slBWidth. _
 TickFrequency) * slBWidth.TickFrequency
End Sub

Now try it out to see how the control behaves. The result is the same as scaling the slider from 1 to 10, then
multiplying by a scale factor for the value. The difference is that it now free-slides instead of jerking between
ticks.

—Christopher K. Hausner, Sterling Heights, Michigan

VB3 and up
Level: Beginning

Use the MsgBox Wrapper to Replace OK
Replace all MsgBox calls that display only an OK message with the following OkMsg sub. It automatically
defaults the icon to vbInformation, and the title to a global constant defined at startup. None to all of the
parameters can be passed to override the defaults. Another advantage is that the OkMsg sub saves and
restores the state of the mousepointer, so you don’t get an hourglass outside the MsgBox:

Sub OkMsg(Optional sMsg As String = _

 "Press OK to Continue", Optional vIcon = _
 vbInformation, Optional sTitle As String = APPNAME)
 Dim iMouse As Integer
 iMouse = Screen.MousePointer
 Screen.MousePointer = vbDefault
 MsgBox sMsg, vIcon, sTitle
 Screen.MousePointer = iMouse
End Sub

To call this sub, use this syntax:

 OkMsg "The Record is Saved"
 OkMsg "The date entered is out of range!", _
 vbExclamation, "INPUT ERROR"

Always declare the global constant:

 Global Const APPNAME = "Management System"

Note: VB3 users must change the optional parameters to required, and VB4 users must insert IsMissing
checks to assign defaults to missing optional parameters.

—Fabio A. Mir Sr., Gaithersburg, Maryland

VB4/32, VB5, VB6
Level: Beginning

Sort Non-String Items in a ListView
Sorting ListView columns with numeric data can be a real pain. Nonstring sorting is possible with callbacks
using custom comparison functions, but this method’s drawback is that the synchronization between the
display and ListItems collection is lost. It’s easier and more reliable to simply provide sortable data. Normally
a list with the values 1, 2, 3, 4, 10, and 20 sorts as 1, 10, 2, 20, 3, and 4—that’s not very useful. A simple
workaround is to “left-pad” the numeric data with spaces before setting the text value. Assume that you load a
listview from a recordset with last name, first name, and salary:

Const MAX_WIDTH = 15
Dim szSpaces As String
Dim rs As Recordset
szSpaces = Space$(MAX_WIDTH)
Do Until rs.EOF
 With ListView1.ListItems.Add(, , rs("LastName"))
 .SubItems(1) = rs("FirstName")
 .SubItems(2) = Right$(szSpaces & _
 rs("Salary"), MAX_WIDTH)
 End With
 rs.MoveNext
Loop

Now setting the ListView’s Sorted property sorts the Salary column in correct numerical order.

—Amir Liberman, Pembroke Pines, Florida

VB3 and up
Level: Beginning

Cache Properties for Repeated References
If you have to reference a control’s property repeatedly, it’s better to assign the property to a temporary
variable, then use that variable. This technique is called property caching. For example, if you need to assign
text value in the Text1 textbox to all elements in an array named arr, it’s better to assign the value to a
temporary variable and use it for the assignment in the loop:

tmp = Text1.Text
For i = 1 To Ubound(arr)
 arr(i) = tmp
 ' Here use tmp instead of using Text1.Text repeatedly
Next i

—Jai Bardhan, Lowell, Massachusetts

VB6
Level: Intermediate

Load a Combo Box Array With a Compound Recordset in One Call
This code takes an array of combo boxes and fills them using a compound recordset. This allows all combo
boxes on a form to be loaded with one sub call. Match the recordsets in the same order as the combo boxes
in the array. Specify the display item as the first field, and ItemData as the second field in the select
statements:

Sub FillComboBoxArray(cbArray As Variant, rsCbo _
 As ADODB.Recordset)
 Dim cb As ComboBox
 For Each cb In cbArray
 cb.Clear
 If rsCbo.Fields.Count = 1 Then
 ' If only 1 column then no index
 Do Until rsCbo.EOF
 cb.AddItem rsCbo(0)
 rsCbo.MoveNext
 Loop
 Else
 Do Until rsCbo.EOF
 ' If 2 fields then 2nd is index
 cb.AddItem rsCbo(0)
 ' Numbers only
 If IsNumeric(rsCbo(1)) Then _
 cb.ItemData(cb.NewIndex) = rsCbo(1)
 rsCbo.MoveNext
 Loop
 End If
 Set rsCbo = rsCbo.NextRecordset
 Next
 Set rsCbo = Nothing
End Sub

 Here’s an example of how to create a compound resultset and call the FillComboArray subroutine:

Private Sub Form_Load()
 Dim sql As String
 Dim rs As New ADODB.Recordset
 Dim cn As ADODB.Connection
 Set cn = New ADODB.Connection
 With cn
 .ConnectionString = "driver={SQL Server};" & _
 "server=YOURSERVER;uid=sa;" & "pwd=;database=pubs"
 .Open
 End With
 sql = "SELECT au_lname FROM Authors; " & _
 "SELECT lname, job_id FROM Employee; " & _
 "SELECT pub_name FROM Publishers"
 Set rs = New ADODB.Recordset
 rs.Open sql, cn
 FillComboBoxArray cboData, rs
End Sub

—Kirk Ward, Hendersonville, Tennessee

VB4/32, VB5, VB6
Level: Intermediate

Determine the Correct Screen Dimensions
The latest video drivers can change the display resolution without rebooting. Unfortunately, the Screen object
doesn’t always properly return the new display size; it only remembers the display size when the app first
used it. This behavior appears to be driver-dependent, although it might be produced by the operating system
(it occurs on my Windows NT machine but not on my Windows 98 system). If you need to determine screen
dimensions at any time other than the Form_Load event, use the Windows API rather than the Screen object:

Private Type RECT
 Left As Long
 Top As Long
 Right As Long
 Bottom As Long
End Type
Private Declare Function GetDesktopWindow Lib _
 "user32" Alias "GetDesktopWindow" () As Long
Private Declare Function GetWindowRect Lib _

 "user32" Alias "GetWindowRect" (ByVal hwnd _
 As Long, lpRect As RECT) As Long
Public Function ScreenWidth() As Single
 Dim R As RECT
 GetWindowRect GetDesktopWindow(), R
 ScreenWidth = R.Right * Screen.TwipsPerPixelX
End Function
Public Function ScreenHeight() As Single
 Dim R As RECT
 GetWindowRect GetDesktopWindow(), R
 ScreenHeight = R.Bottom * Screen.TwipsPerPixelY
End Function

—Matt Hart, Tulsa, Oklahoma

VB3 and up
Level: Beginning

Produce Shrinking Text
Use this code to get the shrinking text effect—similar to the opening of Star Wars:

' Requires a Label and Timer on the form
Private Sub Form_Load()

 With Me
 .BackColor = vbBlack
 .WindowState = vbMaximized
 End With
 With Label1
 .Alignment = vbCenter
 .AutoSize = True
 .BackColor = vbBlack
 .Caption = "Shrinking Text"
 .Font.Name = "Arial"
 .Font.Size = 150
 .ForeColor = vbGreen
 .Visible = True
 End With
 With Timer1
 .Interval = 1
 .Enabled = True
 End With

End Sub
Private Sub Timer1_Timer()
 With Label1
 If .FontSize > 2 Then
 .FontSize = .FontSize - 2
 .Left = (Me.Width - .Width) / 2
 .Top = (Me.Height - .Height) / 2
 Else
 .Visible = False
 Timer1.Enabled = False
 End If
 End With
End Sub

—Michael Unger, Brandon, Florida

VB5, VB6, VBA (Access)
Level: Intermediate

Reattach and Refresh SQL Links
You often need to reattach or refresh links in Microsoft Access. This code refreshes all currently linked tables
to sync the attached tables with the server, then remove “dbo_” from all attached SQL Server tables. The two
table Def loops allow you to re-sync tables after “dbo_” is removed:

Dim tbDef As TableDef
Dim db As Database
Dim strDBLocation As String
On Error Resume Next
CommonDialog1.ShowOpen
strDBLocation = CommonDialog1.FileName
If strDBLocation = "" Then

 End
End If
Set db = OpenDatabase(strDBLocation)
For Each tbDef In db.TableDefs
 ' Refresh table links
 db.TableDefs(tbDef.Name).RefreshLink
Next tbDef
For Each tbDef In db.TableDefs
' Remove all dbo_'s from tables
If Left(tbDef.Name, 4) = "dbo_" Then
 tbDef.Name = Mid(tbDef.Name, 5, Len(tbDef.Name) - 4)
End If
Next tbDef

—Michael Finley, Clarendon Hills, Illinois

VB5, VB6
Level: Advanced

Undocumented Boolean Field Constant
Consider the Data Definition Language statements: "ALTER TABLE [My Table] ADD COLUMN [My New
Field] Single" and "ALTER TABLE [My Table] ADD COLUMN [My New Field] Double". According to
Microsoft documentation, Double and Single are correct constants for field types dbDouble and dbSingle.
Boolean is also indicated as the Type property for dbBoolean, yet "ALTER TABLE [My Table] ADD COLUMN
[My New Field] Boolean" doesn’t work. Why?
 Further reading about the Boolean datatype in the DAO documentation declares that Boolean is “A
True/False or yes/no value. Boolean values are usually stored in Bit fields in a Microsoft Jet database;
however, some databases don’t support this datatype directly.” "ALTER TABLE [My Table] ADD COLUMN
[My New Field] Bit" works. Ironically, nothing is listed in the table of Type properties for dbBit or Bit itself.

—Al Meadows, Oklahoma City, Oklahoma

VB5, VB6, VBS
Level: Beginning

Retrieve Recordset Fields Faster
Suppose you have a table with this field:

Customer_Code

You can retrieve the field in many ways:

rs.(0)
rs("Customer_Code")
rs.fields(0)
rs.fields("Customer_Code")
rs.fields.item(0)
rs.fields.item("Customer_Code")

In VBScript, the versions that use field indexes instead of names are faster and the extended syntax—
rs.fields.item(0)—is fastest. The reason: Although VBScript, like VB, supports default properties, VBScript
doesn’t have to search manually for the default property of the object being referenced.

—Mostafa Fiad, Tanta, Egypt

VB5, VB6
Level: Intermediate

Use Tag Property in SQL Statements
When building SQL statements, use the Tag property to hold the Field Name and Data Format. I use a
naming convention of str, int, dat, and so on to determine the datatype; the rest of the tag holds the field
name in the database—such as strCompanyName, datStartDate, or intQuantity. This routine iterates through
the controls on the form and determines whether the control has a tag (you should tag only the controls that
hold data). The routine then checks the type of control—Textbox or MaskedEditBox—to determine whether it
should use the Text or FormattedText property. If the control has a value, it builds a string consistent with the
datatype. Otherwise, it adds a Null value. After running through the controls, it combines the strings. You can
then use the resulting SQL statement to execute an Insert operation into the database:

Dim strSQL as String
Dim strColumns as String
Dim strValues as String
strSQL = "INSERT INTO [TableName] "

' start SQL statement
strColumns = "("
' hold column names
strValues = "VALUES("
' holds corresponding column values

For Each ctrl In frmSite.Controls
' iterate thru controls
 If Len(ctrl.Tag) > 0 Then
 ' if no tag, do not use
 strColumns = strColumns & Mid(ctrl.Tag, _
 4) & ", " ' add column name
 Select Case TypeName(ctrl)
 ' find control type
 Case "TextBox", "ComboBox"
 If Len(ctrl.Text) > 0 Then
 Select Case Left(ctrl.Tag)
 ' find datatype, whether to
 ' include single quotes or not
 Case "str"
 strValues = strValues & _
 "'" & ctrl.Text & "', "
 Case "int"
 strValues = strValues & _
 ctrl.Text & ", "
 End Select
 Else
 strValues = strValues & "Null, "
 End If
 Case "MaskEdBox"
 If Len(ctrl.Text) > 0 Then
 Select Case Left$(ctrl.Tag, 3)
 ' find data type, whether to
 ' include single quotes or not
 Case "dat", "phn", "ipa"
 strValues = strValues & _
 "'" & ctrl.FormattedText _
 & "', "
 Case "int"
 strValues = strValues & _
 ctrl.FormattedText _
 & ", "
 End Select
 Else
 strValues = strValues & "Null, "
 End If
 End Select
 End If
Next

'remove last comma and space
strColumns = Left$(strColumns, Len(strColumns) - 2)
strValues = Left$(strValues, Len(strValues) - 2)
'add last parentheses
strColumns = strColumns & ") "
strValues = strValues & ")"
'combine strings
strSQL = strSQL & strColumns & strValues

—Blake Thomas, Highlands Ranch, Colorado

VB4, VB5, VB6
Level: Advanced

Export Records to CSV File for Excel
Most of my end users use laptops, which can have a wide variety of spreadsheet software installed. I often
use this function when working with database tables or queries to produce a spreadsheet when I don’t know
what program will be used to open it. The function takes any database table or SQL Select statement and
turns it into a comma-delimited text file a user can open using Notepad, Excel, or any spreadsheet program,
allowing you to send data easily to another user or program. In this sample, Db is a global object variable
equal to the database and has already been set by the calling program. sSource is the table or SQL
statement that needs to be written to a spreadsheet:

Public Function TableToSpreadsheet(sSource _

 As String, sFile As String) As Boolean
 On Error GoTo TableToSpreadsheet_Err
 ' SYNTAX:
 ' If TableToSpreadsheet("SELECT * FROM
 ' Authors", "C:\Temp\Authors.csv") = True
 ' Then....
 Dim rsTemp As Recordset
 Dim sHeader As String
 Dim sRow As String
 Dim i As Integer
 Set rsTemp = Db.OpenRecordset(sSource)
 With rsTemp
 ' Make sure there are records to write
 If .RecordCount = 0 Then
 TableToSpreadsheet = False
 .Close
 Set rsTemp = Nothing
 Exit Function
 End If

 ' Create new target file
 Open sFile For Output As #1
 ' Write the header row
 For i = 0 To .Fields.Count - 1
 If i = 0 Then
 sHeader = .Fields(i).Name
 Else
 sHeader = sHeader & "," & .Fields(i).Name
 End If
 Next i
 Print #1, sHeader

 ' Loop through the table and write data rows
 .MoveFirst
 Do Until .EOF
 For i = 0 To .Fields.Count - 1
 If i = 0 Then
 sRow = .Fields(i).Value & ""
 Else
 sRow = .Fields(i).Value & ""
 End If
 Next i
 Print #1, sRow
 .MoveNext
 Loop
 .Close
 End With
 Close #1 ' Target file is complete
 Set rsTemp = Nothing
 ' Release recordset, but NOT database objects
 TableToSpreadsheet = True
TableToSpreadsheet_Exit:
 Exit Function
TableToSpreadsheet_Err:
 LogIt "TableToSpreadsheet : " & Err.Description
 ' LogIt is a function that creates an error log
 Resume Next
 ' Most errors result in a blank cell and can be ignored.
End Function

—Robert Feldsien, Hillsboro, Missouri

VB6
Level: Beginning

Use the Data Environment to Build Connection Strings
If you usually use DSN-less connections with ADO, you know it can sometimes be a pain to figure out the
correct connect string. In that case, you can let the VB Data Environment do the work. Start a dummy project,
bring up the Data View windows, and connect to the database you’re interested in. Add a Data Environment
to the project and drag a table to it. Press F4 on the connection to bring up the properties for the connection.
The ConnectionSource property then has the connection string you need.

—Gary Merrifield, Madison, Wisconsin

VB6
Level: Advanced

Handle Advanced Arrays With RDS
Often you need a data structure similar to a two-dimensioned array or collection, but you need to manipulate
it. For example, you need to sort on certain columns, filter certain rows, or find certain values. These
functionalities are already available in the ADO Recordset object. The Microsoft Remote Data Services
provides a way to store nondatabase data in a recordset using the DataFactory object. This class can help
you create in-memory recordsets. Set the reference to Microsoft Remote Data Services Server 2.1 Library:

' code forRInMemoryRS
Option Explicit
Private df As New RDSServer.DataFactory
Private vColInfo()
Private nTotalCols As Long
Public Function Create() As ADODB.Recordset
 If nTotalCols > 0 Then
 Set Create = df.CreateRecordSet(vColInfo)
 End If
End Function
Public Sub Clear()
 ReDim vColInfo(0)
 nTotalCols = 0
End Sub
Public Sub AddColumn(szName As String, _
 nColType As ADODB.DataTypeEnum, Optional _
 nColSize As Long = -1, Optional bNullable _
 As Boolean = True)
 Dim vCol(3)
 ReDim Preserve vColInfo(nTotalCols)
 vCol(0) = szName
 vCol(1) = CInt(nColType)
 vCol(2) = CInt(nColSize)
 vCol(3) = bNullable
 vColInfo(nTotalCols) = vCol
 nTotalCols = nTotalCols + 1
End Sub
Private Sub Class_Initialize()
 nTotalCols = 0
End Sub

Use code like this:

Dim rsMem As ADODB.Recordset
Dim RMemRS As new RInMemoryRS
' Create Two Column Table
RMemRS.AddColumn "Name", adChar, 10, False
RMemRS.AddColumn "Age", adchar, 10
Set rsMem=RMemRS.Create
' Now, you can add the data to the "Memory
' Recordset" for example
rsMem.AddNew
rsMem!Name = "John"
rsMem!Age = 15
rsMem.Update
rsMem.AddNew
rsMem!Name = "Kevin"
rsMem!Age = 25
rsMem.Update

You can manipulate rsMem like this:

rsMem.Filter = "Age > 15"
rsMem.Sort = "Age ASC"
rsMem.Save szFileName
rsMem.Find "Name = 'John'"

—Rajesh Pohuja, Singapore

VB6
Level: Beginning

Clean Quotes From SQL Parameters With Replace
If you’ve ever used SQL commands against the ADO Connection object, you might have had a problem
allowing the user to enter text that contains an apostrophe:

ADOCon.Execute "Insert Into Emp(Name) Select '" _
 & txtName.Text & "'"

This works fine if the name is Smith, but fails if the name is O’Connor. You can easily solve this problem with
VB6’s Replace function. Use the Replace function to parse the string and replace the single apostrophe with
two apostrophes (not double quotes):

ADOCon.Execute _
 "Insert Into Emp(Name) Select '" _
 & Replace(txtName.Text, "'", "''") & "'"

—Scott Summers, Denver, Colorado

VB5, VB6
Level: Beginning

Dynamically Populate MSFlexGrid Control
If you use an MSFlexGrid control to display data returned in an ADO recordset, you can use this code to
dynamically populate the grid—including the header row —with the information in the recordset. You need an
open ADO recordset named rst and a form containing an MSFlexGrid control named msfGrid:

Dim cln As Field
With msfGrid
 .Rows = 2
 .Cols = rst.Fields.Count
 'get the number of grid cols
 .FixedRows = 1
 .FixedCols = 0
 .Row = 0
 .Col = 0
 For Each cln In rst.Fields
 .Text = cln.Name
 'populate header row with names of fields
 If .Col < .Cols - 1 Then .Col = .Col + 1
 Next
 Do While Not rst.EOF
 'loop thru recordset to populate grid
 .Row = rst.AbsolutePosition
 'move to the next row
 .Col = 0
 'reset ourselves back to column(0)
 For Each cln In rst.Fields
 If Not IsNull(cln.Value) Then
 .Text = Trim(CStr(cln.Value))
 Else
 .Text = ""
 End If
 If .Col < .Cols - 1 Then .Col = .Col + 1
 Next
 rst.MoveNext
 .Rows = .Rows + 1
 'add a new row to the grid
 Loop
 .Rows = .Rows - 1
 'remove the last row because it's blank
 .Row = 0
End With

—David George, Glen Burnie, Maryland

VB5, VB6
Level: Intermediate

Optimize Parametrized Queries With ADO Objects
When you write Insert statements, it can be difficult to accommodate the possible values end users might
enter into a textbox. The most common task is replacing single quotes with double quotes. However,
parameterized queries provide two benefits: You do not have to parse data entered by users—except for

business rules; and SQL Server 7.0 immediately caches the SQL statement:

Dim cmd As ADODB.Command
Dim prm As ADODB.Parameter
Set cmd = New ADODB.Command
Set prm = New ADODB.Parameter
With cmd
 .ActiveConnection = CONNECT_STRING
 .CommandText = "INSERT INTO employees " & _
 "(name) VALUES(?)"
 .CommandType = adCmdText
 Set prm = .CreateParameter(, adChar, _
 adParamInput, 50, Me.txtName.Text)
 .Parameters.Append prm
 .Execute
End With
Set cmd = Nothing
Set prm = Nothing

—Christopher P. Madrid, Austin, Texas

VB4, VB5, VB6
Level: Intermediate

Avoid Installation Problems With the Msldvusr.dll in Win95
If you’re developing multiuser Jet-based applications, you probably know about Microsoft’s msldbusr.dll. It
allows you to read the Jet lock files and get the correct number of connected users and computers they
connect from. However, if you use this unsupported DLL, keep this gotcha in mind: If you include the DLL in a
VB application installation and the user is running an early Windows 95 version, the DLL disappears when
the user shuts down his or her machine.
 To solve this problem, include an uncompressed copy of the DLL with your setup. If, after a reboot, the
user manually copies the file back to the Windows system folder, it will stay there forever and give you back
your functionality. This oddness does not occur when installing to Windows 98 or NT.

—Robert Smith, Kirkland, Washington

VB5, VB6
Level: Advanced

Avoid Cursor Problems in Oracle With Precompiled Queries
ADO and RDO do not support Oracle cursor types; neither Microsoft nor Oracle drivers provide appropriate
conversion. As a result, you cannot use Oracle stored procedures from VB or Active Server Pages (ASP) to
retrieve a multiple-row recordset. Instead, dynamic embedded SQL statements have to be passed. At this
point, the performance degrades and the code becomes difficult to maintain. A better alternative—besides
using a third-party driver—is to use precompiled (prepared) queries with parameters. These queries can be
declared and precompiled when your application or component is first initialized (in the Sub Main, Initialize, or
Load events, or include file). Later, you can assign the parameters and call queries—including stored
procedures consisting of single SQL statements—by their names. This approach can be faster (both in
development and performance) for implementing business logic using VB built-in functionality instead of
customized PL/SQL functions. It also can be applied with any RDBMS if you want to separate the database
logic. (Queries are created by your component, are invisible in DBMS environment, and gone with your app).
It’s also easier to adapt and port components against different RDBMS-modifying SQL statements to a
particular dialect—or using standard SQL—than convert vendor specific “glue” languages such as PL/SQL or
Transact-SQL.

—Victor Karlovich, Bayonne, New Jersey

VB4, VB5, VB6
Level: Intermediate

Sort DBGrid Contents With Recordset Refresh
It’s often useful to sort a DBGrid field in either descending or ascending order. You do this by using the
HeadClick event and the DataField property of columns. You must change the query string (Qry) with one of
your own (be sure it contains the code in bold):

Private Sub DBGrid1_HeadClick(ByVal ColIndex As Integer)
 Dim Qry as string
 Qry = "SELECT * FROM MyTable WHERE Key='" _
 & txtKey & "' "
 Qry = Qry & "ORDER BY " & _
 DBGrid1.Columns(ColIndex).DataField _
 & " " & DBGrid1.Tag

 data1.RecordSource = Qry
 data1.Refresh
 DBGrid1.ReBind
 'toggle ASC and DESC keywords
 If DBGrid1.Tag = "ASC" Then DBGrid1.Tag _
 = "DESC" Else DBGrid1.Tag = "ASC"
End Sub

—Juan Jose Ochoa, Nogales, Arizona

VB6
Level: Beginning

Edit Field in DataGrid on F2
Sometimes you want to give your DataGrid the ability to edit fields, while the original data in the field is
highlighted. Normally, you can click on the field to start editing it. However, in case your users prefer to use
the keyboard instead of the mouse, put this code in the grdDataGrid_KeyDown event:

Private Sub grdDataGrid_KeyDown(KeyCode _
 As Integer, Shift As Integer)
 Select Case KeyCode
 Case vbKeyF2
 grdDataGrid.SelStart = 1
 SendKeys "{End}"
 End Select
End Sub

—Decha Srivorapun, Bangkok, Thailand

ASP
Level: Intermediate

Display Client-Side Message Box From Server-Side Script
If you have a form validated using server-side Active Server Pages (ASP) code and you need to display an
error message, you would normally display it at the top or bottom of your form and send the form back so the
user can correct his or her mistake. For example: “The password you have entered is invalid. Please try
again.”
 However, it would be nice if the error message popped up in a message box instead. The issue is how to
make a client-side message box pop up when your code is executing on the server. The answer is simple: If
your message is in the variable strErrMsg, use this code at the bottom of your ASP page displaying the form:

<%
 if strErrMsg <> "" Then
 ' There is an error, pop it up
%>
 <SCRIPT LANGUAGE="JavaScript">
 <!—
 alert('<%= strErrMsg %>');
 // —>
 </SCRIPT>
<%
 End if
%>

After your page loads, it displays the error message in a message box.

—Rama Ramachandran, Stamford, Connecticut

VB6
Level: Beginning

Fix Justification Glitch in MSFlexGrid
The MSFlexGrid tries to automatically determine how to justify text. If the first character is numeric, then that
cell will be right-justified. If it is an alphanumeric character, then that cell will be left-justified. The problem
arises when you try to display a freeform note in one of the cells. If the note starts with a number, such as “30
days until renewal,” MSFlexGrid right-justifies that cell. The solution is to prefix all cells with a space:

Sub FillGrid(rs As RecordSet)
 Dim sItem As String
 Dim i as Long
 '//Loop through the recordset

 rs.MoveFirst
 Do Until rs.EOF
 '//Loop through the fields
 sItem$=""
 For i = 0 To rs.Fields.Count -1
 'Build the row to be inserted, vbTab
 'first so that we skip the fixedcol and
 'space so that everything is left justified
 sItem = sItem & vbTab & " " & rs.Fields(i)
 Next i
 '//Add The row to the grid
 grd.AddItem sItem
 '//Move to the next record
 rs.MoveNext
 Loop
End Sub

—Pat Labelle, Ottawa, Ontario, Canada

VB6, ASP
Level: Advanced

Pass Arrays ByVal From ASP Scripts to VB COM Objects
In Microsoft Knowledge Base article Q217114, “How to: Implement Array Arguments in Visual Basic COM
Objects for Active Server Pages,” Microsoft says you can’t pass an array to a COM method by value.
However, you want to do this for Microsoft Transaction Server (MTS), so here is a workaround that does it
ByVal. Add a file called test.asp with this Active Server Page (ASP) code to a virtual Internet Information
Server (IIS) directory:

<%
dim PassArrayByValWorks
dim ary(1)
dim iReturn
ary(0) = "firstone"
ary(1) = "2ndone"
' pass the array to a non array declared variable then
' pass the non array variable instead
PassArrayByValWorks = ary
dim obj
set obj = server.createobject ("prjFormCheck.clsFormCheck")
iReturn = obj.formcheck(PassArrayByValWorks, 0)
%>
<%=iReturn%>
' build ActiveX dll named "prjFormCheck", name
' class "clsFormCheck" add the function below
' and start it in the VB IDE
Public Function FormCheck(ByVal _
 arrFldNameValuePairs As Variant, ByVal _
 ErrLogType As Variant) As Variant
 If IsArray(arrFldNameValuePairs) Then
 FormCheck = "You can do it!"
 Debug.Print arrFldNameValuePairs(0)
 Debug.Print arrFldNameValuePairs(1)
 Else
 FormCheck = "Didn't work"
 End If
End function

Right-click on the test.asp file in the virtual directory of IIS and click on Browse. The browser should show
“You can do it!”

—Mark Kanter, received by e-mail

VB5, VB6
Level: Intermediate

Add a Scripting Engine to Your Application
It’s easy to add scripting functionality to your VB project, especially if you have been developing through
classes all along. The more classes you program, the more objects you can expose to your script language.
You can use both VBScript and JScript as the basis for your scripting engine.
 First, download the Microsoft Script Control from msdn.

microsoft.com/scripting/scriptcontrol. Install the control according to the instructions provided. You might need
to register the control manually (run regsvr32 on it). The footprint on this control is low; the whole download
including help is only 243K. Next, create a script file with a text editor such as Notepad:

Sub Main()
 MsgBox "Hello, world"
End Sub

Save it as c:\temp.txt and add this code to your application:

Private Sub Command1_Click()
 Dim iFileNum As Long
 Dim sFileBuffer As String
 Dim sTemp As String
 iFileNum = FreeFile()
 Open "c:\temp.txt" For Input As #iFileNum
 Do While Not EOF(iFileNum)
 Line Input #iFileNum, sTemp
 sFileBuffer = sFileBuffer & sTemp & _
 vbCrLf
 Loop
 Close #iFileNum
 ScriptControl1.Reset
 ScriptControl1.AddCode (sFileBuffer)
 ScriptControl1.Run "Main"
End sub

 You have now successfully implemented a scripting engine. You can expose objects in your application
like this:

Private Sub Command1_Click()
 Dim objMyClass As New MyClassNameHere
 With dlgCommon
 .ShowOpen
 sFileName = .FileName
 End With
 iFileNum = FreeFile()
 Open sFileName For Input As #iFileNum
 While Not EOF(iFileNum)
 Line Input #iFileNum, sTemp
 sFileBuffer = sFileBuffer & sTemp & vbCrLf
 Wend
 Close #iFileNum
 ScriptControl1.Reset
 ScriptControl1.AddObject "Database", objMyClass
 ScriptControl1.AddCode (sFileBuffer)
 ScriptControl1.Run "Main"
End sub

 You can even try code such as this to give ad hoc capabilities to an application:

ScriptControl1.ExecuteStatement "x = 100"
MsgBox ScriptControl1.Eval("x = 100") ' True
MsgBox ScriptControl1.Eval("x = 100/2") ' False

—Dan Newsome, Denver, Colorado

VB5, VB6
Level: Intermediate

Connect to Microsoft Excel Using OLE DB
Microsoft documentation says you can connect to Excel 97 or Excel 2000 using the Microsoft.Jet.OLEDB 4.0
provider. If you use the Microsoft ADO Data Control, however, you will have problems. From the property
page for the ADO Data Control, choose the Use Connection String radio button and click on the Build button.
Then, select the database name, choosing an Excel file as your database. Now, if you click on Test
Connection, you get an error message saying the connection failed because the file is in an unrecognized
format.
 But wait, there’s hope! Acknowledge the error message and return to the General tab of the property
pages. In the Connection String textbox, add this code to the end of the connection string:

Extended Properties = Excel 8.0;

Your full connection string now looks like this:

Provider=Microsoft.Jet.OLEDB.4.0; Data Source = FileName; Extended Properties=Excel 8.0;

Now if you click on the Build button, then click on the Test Connection button, the connection is successful.

—Michael J. McElwee, Highland Park, Illinois

VB4, VB5, VB6
Level: Intermediate

Define Named Ranges in Excel Before Executing Queries Against Worksheets
Once you’ve established a connection to Microsoft Excel using OLE DB, you’re not out of the woods. You still
have to define a Named Range in Excel; then you can treat this named range like a database table to
perform queries against. To do this from Excel, select the range of cells you want to represent the table—
column headers in the first row —then choose Name | Define from the Insert menu to bring up the Define
Name dialog. Choose a name for your table and click on OK. Be sure to have valid column names or they will
be renamed for you in the recordset or table you bring into your application.
 As a different approach, you might wish to do things through VB code. Using the Excel 8.0 object as a
reference, this example takes a file specified by the FileName string and creates a named range whose name
is specified by the variable TableName. This example chooses the used portion of the first sheet as the table
range:

Public Sub MakeExcelTable(FileName As String, _
 Tablename As String)
 Dim BookXL As Excel.Workbook
 Dim RangeXL As Excel.Range
 Dim SheetXL As Excel.Worksheet
 Set BookXL = GetObject(FileName)
 With BookXL
 Set SheetXL = BookXL.ActiveSheet
 Set RangeXL = SheetXL.UsedRange
 ' Selects the entire used range of the first sheet
 .Names.Add TableName, RangeXL
 .Windows.item(1).Visible = True
 .Save
 End With
 Set BookXL = Nothing
End Sub

—Michael J. McElwee, Highland Park, Illinois

VB6
Level: Advanced

Pass MTS Object References Safely Between Processes
SafeRef returns a reference to the context wrapper instead of a reference to the object itself. You should
never pass a direct reference of a Microsoft Transaction Server (MTS) object to a client application. If you do,
the client application can make a call on the MTS object without going through the context wrapper. This
defeats the interception scheme set up by the MTS runtime. You should use the SafeRef function, which
returns the outside world’s view of an MTS object. Let’s say you’re writing a method implementation for an
MTS object. In the method, you want to create an object of some class, then pass your own reference to the
newly created object. To do this, you might write this code:

Dim pSomeClass As CSomeClass
Set pSomeClass = New CSomeClass
pSomeClass.SomeMethod Me
' Incorrect code

 However, this code is incorrect under MTS. The child object—pSomeClass—can invoke method calls on
your object without going through the context wrapper. You should never bypass the interception scheme set
up by the MTS runtime. Instead, you should pass a reference to your object:

pSomeClass.SomeMethod SafeRef(Me)
' Correct code

By calling SafeRef, you allow the child object to establish a connection that passes through the context
wrapper. This technique keeps things in line with what the MTS runtime expects. The Me keyword is the only
valid parameter you can pass when calling SafeRef with Visual Basic.

—Deepak Pant, Lowell, Massachusetts

VB4, VB5, VB6
Level: Intermediate

Convert Numbers to Excel Column Names
Microsoft Excel labels its columns A though Z, then AA, AB, and so on. To access a given cell of an Excel
sheet using the Excel object library reference, use a statement like this:

Dim xlapp as New Excel.Application
xlapp.Range("A1").Value = 6

This statement sets the first cell of the sheet to 6. If you convert the column names from alphabet-like (A
through IV) to numbers, you can then go through a loop to access every cell in a given sheet or range. This
function performs the required conversion. It works only through Column 701, but Excel doesn’t allow nearly
that many columns, so it’s a nonissue:

Private Function GetXLCol(Col As Integer) As String
 ' Col is the present column, not the number of cols
 Const A = 65 'ASCII value for capital A
 Dim iMults As Integer
 Dim sCol As String
 Dim iRemain As Integer
 ' THIS ALGORITHM ONLY WORKS UP TO ZZ. It fails on AAA
 If Col > 701 Then
 GetXLCol = ""
 Exit Function
 End If
 If Col <= 25 Then
 sCol = Chr(A + Col)
 Else
 iRemain = Int((Col / 26)) - 1
 sCol = Chr(A + iRemain) & GetXLCol(Col _
 Mod 26)
 End If
 GetXLCol = sCol
End Function

—Michael J. McElwee, Highland Park, Illinois

VB6
Level: Advanced

Use Asynchronicity for Speed
If you need to run a complicated query that returns a large recordset, ADO 2.1 gives you the best of both
worlds. Sometimes you just need to put a recordset into an AddItem type grid, or prepare it for a report. So, if
you need to process the recordset as soon as the first record is fetched, you should start processing in the
Execute_Complete event of the connection object. If you can also use a disconnected recordset, you can set
the ActiveCon-nection property equal to nothing. This code might be the fastest way to process a large
recordset with ADO:

Private WithEvents m_adoConEvent As ADODB.Connection
' the RS that enables the event Fetch_Complete
' to be fired off Attribute
Private WithEvents m_adoRstEvent As ADODB.Recordset
Private Sub GetRecordSet()
 Dim sSQL As String
 'A large or complicated SQL statemtent
 sSQL = "select a large complicate query"
 Set m_adoConEvent = New ADODB.Connection
 Set m_adoRstEvent = New ADODB.Recordset
 m_adoConEvent.Open "Connection String"
 m_adoRstEvent.CursorLocation = adUseClient
 Me.Caption = "Started"
 'Do something to tell the user where the process is
 'at. Have the command execute and fetch at the same
 'time without interrupting workflow.
 m_adoRstEvent.Open sSQL, m_adoConEvent, _
 adOpenStatc, adLockReadOnly, adCmdText _
 Or adAsyncFetch Or adAsyncExecute

End Sub
Private Sub m_adoConEvent_ExecuteComplete(ByVal _
 RecordsAffected As Long, ByVal pError _
 As ADODB.Error, adStatus As ADODB.EventStatusEnum, _
 ByVal pCommand As ADODB.Command, ByVal pRecordset As _
 ADODB.Recordset, ByVal pConnection As ADODB.Connection)
 Do Until pRecordset.EOF
 'start processing the recordset
 Loop
End Sub
Private Sub m_adoRstEvent_FetchComplete(ByVal pError _
 As ADODB.Error, adStatus As ADODB.EventStatusEnum, _
 ByVal pRecordset As ADODB.Recordset)
 Set pRecordset.ActiveConnection = Nothing
 'this will speed processing time
End Sub
Private Sub m_adoRstEvent_FetchProgress(ByVal Progress _
 As Long, ByVal MaxProgress As Long, _
 adStatus As ADODB.EventStatusEnum, ByVal _
 pRecordset As ADODB.Recordset)
 'let the user know work is happening
End Sub

By using both adAsyncFetch and adAsyncExecute, you can start processing even while you’re returning
data.

—Darren McBratney, Leawood, Kansas

VB5, VB6
Level: Beginning

Encase Query Names in Brackets to Avoid
ADO/Jet Errors
While using OLE DB Provider for Jet to manage Access databases through ADO from VB, follow this tip to
help you access a query defined in your database. If the query name contains blank characters (ASCII code
32), supply this code, enclosing the name in brackets:

'To access the query by the
'Recordset object's Open method:
rs.Open "[Name with blanks]", _ 'Etc.

'To access the query by a Command object:
cm.CommandText = "[Name with blanks]"

If you don’t, your program will show a runtime error when you try to open the recordset. The OLE DB Provider
for Jet databases interprets the supplied string as a SQL statement, which doesn’t match that language
syntax. Specifying different values for the Command object’s CommandType property—or specifying different
values on the Options argument when invoking the recordset’s Open method—doesn’t fix the problem. You
must use the brackets.

—Leonardo Bosi, Buenos Aires, Argentina

VB4, VB5, VB6
Level: Advanced

Binary Search Routine For RDO
RDO does not have a FindFirst or Seek method, and as a programmer, you sometimes need to quickly move
to a particular record. I had a user who wanted to be able to scroll through more than 3,000 records and also
be able to search for a particular record. A linear search was too slow, so I decided to write a binary search
routine. The routine is case-insensitive and finds the matching entry. It can be copied into the form module
and used for searches on any sorted column for a given resultset. It takes three arguments: the rdoResultset
being searched, the column name within the resultset to be searched, and the search string:

Private Sub BinarySearch(ByRef rs _
 As rdoResultset, ByVal strColName As _
 String, ByVal varSearch As Variant)
 Dim lngFirst&, lngLast&, varBookMark
 varBookMark = rs.Bookmark 'set a bookmark
 lngLast = rs.RowCount
 If lngLast = 0 Then Exit Sub
 lngFirst = 0

 rs.AbsolutePosition = (lngLast - lngFirst) _
 \ 2 'move to middle
 varSearch = Trim(UCase(varSearch))
 Do While ((lngLast - lngFirst) \ 2) > 0
 Select Case StrComp(UCase(Left(Trim _
 (rs.rdoColumns(strColName)), _
 Len(varSearch))), varSearch, vbTextCompare)
 Case 0 'found
 Exit Sub
 Case -1 'still ahead
 lngFirst = rs.AbsolutePosition
 rs.Move (lngLast - lngFirst) \ 2
 Case 1 'left behind
 lngLast = rs.AbsolutePosition
 rs.Move (-1) * ((lngLast - lngFirst) \ 2)
 End Select
 Loop
 rs.MoveLast
 If (StrComp(UCase(Left (Trim(rs.rdoColumns(strColName)), _
 Len(varSearch))), varSearch, _
 vbTextCompare)) <> 0 Then
 ' record not found. Return to bookmark and
 ' display message.
 rs.Bookmark = varBookMark
 MsgBox "Entry not found for " _
 & varSearch, vbOKOnly Or _
 vbInformation, "Binary Seacrh"
 End If
End Sub

Because this search always misses the last item, the last record is checked specifically. Also, this routine
finds the last matching record if the record is positioned before the middle of a resultset, or the first matching
record if the record is positioned after the middle of a resultset. For example, say there are three Smith’s—A.
Smith, B. Smith, and C. Smith—in a resultset and the user is searching by last name for Smith. Also assume
there are 100 records in the resultset. If C. Smith is at absolute position of 25 (< 50 = 100/2), then this search
routine finds C. Smith first. However, if A. Smith has an absolute position of 59 (>50 = 100/2), then this
search routine finds A. Smith first. In case the Smiths happen to be somewhere in the middle, this search
routine finds the first Smith encountered. This routine works best for searching on unique keys, such as
Social Security numbers.

—Rajnish Kashyap, Miami, Florida

VB4, VB5, VB6
Level: Intermediate

Delete All Records in a Table
If you find yourself repeating the same Execute method in different parts of your code when clearing tables,
use this method instead to automate the process. When you already have a global variable set to the open
database, delete all the records in a table with this function, where DB is the database object:

Function ZapTable(sTable As String, _
 Optional sWhere As String = "") As Integer
 Dim sSQL As String
 On Error GoTo Err_ZapRecs
 ' For Access Apps only:
 ' docmd.SetWarnings False
 sSQL = "DELETE * FROM " & sTable & " "
 If sWhere <> "" Then
 sSQL = sSQL & "WHERE " & sWhere
 End If
 DB.Execute sSQL, dbFailOnError
 'docmd.SetWarnings True
 ZapTable = True
Exit_ZapRecs:
 Exit Function
Err_ZapRecs:
 ZapTable = False
''ERROR HANDLING IF DESIRED
 Resume Exit_ZapRecs
End Function

Use this function in the code as in these examples:

If Not ZapTable("locLookup") Then
 MsgBox "Cannot delete Table."
End If

Or:

If Not ZapTable("locCities", "STATE = 'NY'") Then
 MsgBox "Cannot delete Table."
End If

—Fabio A. Mir, Sr., Gaithersburg, Maryland

