101 TECH TIPS

For VB Dewelopers

WELCOME TO THE 3*° EDITION
OF THE VBPJ TECHNICAL TIPS
SUPPLEMENT!

VBPJ’s 101 Tech Tips are back again, in full
force. These tips and tricks were submitted by
professional developers using both Visual Ba-
sic 3.0 and Visual Basic 4.0, and compiled by
the editors at Visual Basic Programmer’s
Journal. 7o save yourself from typing in the
code, download the tips from the Registered
Level of The Development Exchange at
http://www.windx.com.

If you’d like to submit a tip to Visual Basic
Programmer’s Journal, please send it to User
Tips, Fawcette Technical Publications, 209
Hamilton Avenue, Palo Alto, California, USA,
94301-2500. You can also fax it to 415-853-0230 or
send it electronically to 74774.305@compuserve.com.
Please include a clear explanation of what the
technique does and why it is useful, indicate if
it’s for VB3, VB4, or both, and try to limit code
length to 20 lines if possible. Don’t forget to
include your e-mail and mailing addresses; we’ll
pay you $25 if we publish your tip.

VB SHORTCUTS WITH
WINDOWS 95

With the release of VB4 and the new development environment
for 32-bit operating systems, I use three versions of Visual Basic
in developing VB applications. Some of my clients won'’t accept
apps built with VB4. Some will not soon upgrade to a 32-bit op-
erating system. After installing both the 16-bit and 32-bit VB de-
sign environments on my Windows 95 development machine, |
discovered that any project named *.VBP would be opened with
the 32-bit VB design environment. This quick way to fire up the
correct VB design environment on my development machine
works pretty well:

e Store all files for a project in the same folder.
e Add a shortcut to the proper VB design environment to the
folder or on the desktop if you wish.
¢ Drag the project file (*.VBP) on top of the VB design environ-
ment shortcut and (voila’) open the project with the proper de-
sign environment.

—Joe Sytniak

For even more tricks and tips go to
http://www.windx.com

DON’T LET GO WITHOUT NOTICE

Users may unexpectedly quit your application by clicking the
close menu in the control box or by clicking the close button
under Windows 95. Add a procedure to the QueryUnload event
on the main form of your application to prevent the problem.

If the UnLoad attempt to your application’s form is not is-
sued explicitly by your code, the UnLoadMode parameter is not
equal to 1 (VB4 Constant - vbFormCode). You can cancel this
attempt by setting the Cancel parameter to True. Visual Basic
Help explains the details of QueryUnload event:

Private Sub Form_QueryUnload(Cancel _
As Integer, UnLoadMode As Integer)

‘check if the unload attempt is issued
'explicitly by code
If UnLoadMode <> 1 Then
Cancel = True
'prompt message box for
‘confirmation, and exit or
‘continue according to user input
End If

End Sub

=

PROGRAMMATICALLY
DIFFERENTIATE BETWEEN DESIGN
MODE AND RUN TIME

This code enables and/or disables functions during design and
testing. The code can remain during initial deployment without
affecting the end user. Make sure the path string being searched
is part of your project path and is not in your final application’s
directory:

—Jiyang Keven Luo

If InStr(App.Path, "VB") Then
' Set Test Locations
' Modify Settings without changing
' ini or registry settings
' Defeat security
' Set options
End If

'A simple variant of this technique is
If InStr(App.Path, "VB") Then Stop
You can insert this during debugging, but if you forget, it won’t

cause users problems.
—John Bailey

Supplement to Visual Basic Programmer’s Journal

AUGUST 1996 1

101 TECH TIPS

For VB Developers

NEW REGISTRY FUNCTIONS

There is a list of our new functions in Visual Basic 4.0 for work-
ing with an application’s Windows registry entries (or .INI file
on 16-bit Windows platforms):

GetSetting(appname, section, key[, default])
GetAllSettings(appname, section)
SaveSetting(appname, section, key, setting)
DeleteSetting(appname, section[, key])

The new functions eliminate the need to declare any Windows
API calls. For more information, search in VB Help for the func-
tion name or “Additional Information on VBA Registry Functions.”

—Denis Basaric and Norbert Steinhoefel-Carqueville

=
LOAD A VB4 FORM IN VB3

You cannot load a VB4 form in VB3 directly. You must modify
the form definition. When you open a VB4 form, the file will re-
semble the example:

VERSION 4.00

Begin VB.Form Forml
Caption = "Forml"
ClientHeight = 5940

End

Attribute VB_Name = "Forml"
Attribute VB_Creatable = False
Attribute VB_Exposed = False
Option Explicit

Change the VERSION 4.0 statement to VERSION 2.0. Remove
all the postfix “VB.” from the form which you can see in the Be-
gin VB.Form Form1 statement. Remove all the Attribute decla-
rations. Save the form and load it in VB3.

=
How TO CALCULATE THE X, Y OF
ANY POSITION ON A CIRCLE

The DegreesToXYsubroutine, part of CodeBank’s standard proce-
dure library, calculates the X (horizontal) and Y (vertical) coordi-
nates of any point, measured in degrees, on the circumference of a
circle or ellipse. As you can see, it’s a pretty simple routine, but
extremely valuable when drawing graphics or placing objects:

—Saji Varghese

Public Sub DegreesToXY(CenterX As _
Long, CenterY As Long, degree _
As Double, radiusX As Long, _
radiusY As Long, X As Long, Y _
As Long)

Dim convert As Double
convert = 3.141593 / 180

'pi divided by 180
X = CenterX - (Sin(-degree * _
convert) * radiusX)
Y = CenterY - (Sin((90 + _
(degree)) * convert) * radiusY)
End Sub

Pass the subroutine the center X, Y of your ellipse, the de-
gree position, and the horizontal and vertical radii (if they are
equal, you're specifying a circle, if not, it is an elongated el-
lipse). DegreesToXY will return the coordinates in the X and Y
parameters. This routine has any number of uses, limited only
by your imagination. For example, various CodeBank routines
rely on it when drawing arched and rotated text, triangles, poly-
gons, and jagged “smash” ovals when implementing motion
effects, and much more.

—Ward Hitt, author of Visual Components Inc.’s CodeBank

PARSING A VARIABLE NUMBER OF
ARGUMENTS

Optional parameters are a great new feature in VB4, but the
ParamArray keyword is an overlooked addition to function and
subroutine declarations. The ParamArray keyword allows an
unspecified number of Variant parameters to be passed to a rou-
tine as an array. This subroutine uses the ParamArray keyword
to parse a string into a variable number of arguments, handling
text and numerics as it goes:

Public Sub SplitIt(ByVal S As String, _
ByVal Delim As String, ParamArray _
OQut() As Variant)

'Dim xIndex As Integer, xPos As
'Integer, xNext As String

'For xIndex = LBound(Out) To
'UBound(0Qut)
xPos = InStr(sS,
If xPos = 0 Then

xNext = §
g =
Else
xNext = Left$(S, xPos - 1)
S = Right$(S, Len(S) - xPos _
+ 1 - Len(Delim))

Delim)

End If
Select Case VarType(Out(xIndex))
Case vbInteger To vbCurrency
Out(xIndex) = Val(xNext)
Case vbString
Out(xIndex) = xNext
End Select
Next

End Sub

Now you can use Splitlt to split any text string into any variables
at each delimiter. For example:

2 AUGUST 1996 Supplement to Visual Basic Programmer’s Journal

101 TECH TIPS

For VB Dewelopers

Dim X As String, Y As Double, Z As Integer

SplitIt "A,5.5,6", ",", X, Y, Z
returns:
X="A", Y=5.5, 7=6,
While:

Splitlt "AxxxBxxxC", "xxx", , X
returns:

X="8"

—Andy Brundell

=
CHECK FOR NULLS RETURNED
FROM DLL CALLS

After a call to a DLL, the return value often contains a null. One
way to eliminate the null is to look for Chr$(0), as in the example:

Dim CheckForNull As Integer

CheckForNull = Instr(YourString, _
Chr$(0))

If CheckForNull > 0 then YourString = _
Left$(YourString, CheckForNull - 1)

LICENSE ERRORS IN VB4

I ran across an interesting problem trying to install VB4 Enter-
prise Edition in the Windows 3.1 environment. The new version
of VB uses the Registry database, which in Win 3.1 is limited to
64K.

As a computer consultant with a big-six firm, [have an exten-
sive list of software installed on my laptop to work in various
client environments.

I had previously installed Microsoft Office, MS Project, and
the standard Lotus Suite software. The REG.DAT file was appar-
ently just about maxed out.

When [installed VB4, I got no indications of errors during
setup, but when I tried to run VB and use certain custom con-
trols, I got “License” errors.

A call to Microsoft verified the problem and brought this
workaround:

—Marc Mercuri

Manually remove VB4.

Manually remove all OCX’s and OCA’s from \windows\system.
Manually remove OC25.DLL from \windows\system.
Rename Reg.Dat to Reg.Old.

Remove all items from the Windows Startup Group.

Remove all programs auto started in the WIN.INI file with the
“Load” or “Run”sections.

Remove all TSRs from the Autoexec.Bat file.

8. If you are running a compressed drive, free up 6MB of space

S U W

~

For even more tricks and tips go to
http://www.windx.com

in a non-compressed volume.
9. Exit Windows and reboot.
10. Start up Windows and re-install VB4.
11. Restore system settings.

Technical Reviewer’s Note: The license errors happened to me in
Windows 95. An uninstall of VB and reinstall of VB corrected the
problem. Thanks for the tip!

RETURN VALUES NOT REQUIRED!

You do not have to use the return value of any function! This
new behavior is in the manual (under CALL), but is a shocker,
and a little dangerous:

—Jim Gilligan

Private Sub Form_Load()
dice
End Sub

Function dice() As Integer
dice = Int(Rnd * 6) + 1
InputBox "Don't bother typing,
I DON'T CARE ABOUT IT!"

End Function

UPDATING BOUND CONTROLS
FROM A LIST OR COMBO BOX

When you want your bound controls to be updated in reaction
to a user click in a list box or combobox, add this code to the
click-event (or double-click event) of the list or combo control:

—Andy Rosa

Datal.Recordset.Bookmark = _
DBCombol.SelectedItem

As a result, your current record is now the record of which
the key is presented in the list part of your DBCombo/List. All
bound controls are updated automatically.

You need to set only the RowSource and the ListField prop-
erties of the bound combo/list to achieve this behavior. It saves
a lot of trouble converting text strings or other data-type con-
versions.

—Peter Klein

Supplement to Visual Basic Programmer’s Journal

AUGUST 1996 3

101 TECH TIPS

For VB Developers

V3 T

DOES AN OBJECT HAVE A VALUE?

You cannot use the IsEmpty function to determine if a variable
of type Form or any Object has been assigned a value. You can,
however, use this method to determine if the Object has ever
been assigned a value other than Nothing:

If Not frmChild Is Nothing Then
frmChild.Unload
End If

CENTER FORMS — REVISITED

I use this procedure to center my forms. With frmParent, the
last loaded form is centered against the parent form. Otherwise,
it'’s centered against the screen. [always center forms in the Load
event and often forget to put Me as the parameter. To center any
form, put CenterForm in the Form_Load event:

—Arn Cota

Public Sub CenterForm(Optional _
frmParent)
If Forms.Count = 0 Then Exit Sub
If IsMissing(frmParent) Or Not TypeOf _
frmParent Is Form Then
Forms(Forms.Count - 1).Move _
(Screen.Width - _
Forms(Forms.Count - _
1) .Width) / 2, _
(Screen.Height - Forms(Forms. _
Count - 1).Height) / 2
Else
Forms(Forms.Count - 1).Move _
(frmParent.Width - Forms(Forms. _
Count - 1).Width) / 2, _
(frmParent.Height - _
Forms(Forms.Count - _
1).Height) / 2
End If
End Sub

ve3 T

GET RID OF LEADING ZEROS

Eliminate “leading-zeros” in a text string in this interesting way:

—Denis Basaric

instring$ = "00030"

' set the string with some leading-zeros
' now to get rid of them....

instring$ = CStr(Cint(instring$))

' now instring$ should contain "30"

' Another way...

instring$ = "00030"
' set the string with some leading-zeros

' now to get rid of them....
instring$ = Val(instring$)
' now instring$ should contain "30"

=]
CONVERTING IDENTIFIERS INTO
LABELS AND COLUMN HEADINGS

Programmers are in the habit of creating meaningful identifiers
by concatenating the words of a “title case” phrase that describes
the identifier, such as LastName or FinalPaymentDate.

Often, you can use these names to create labels or column
headings at run time.

SpaceName takes such an identifier and inserts spaces ap-
propriately. Thus, X$ = SpaceName “FinalPaymentDate”) returns
“Final Payment Date”:

—Brad Herbert

Function SpaceName (src As String) _
As String
Dim i As Integer, tgt As string
tgt = Left$(src, 1)
For i = 2 To Len(src)
Select Case Mid$(src, i - 1, 1)
Case "a" To "z"
Select Case Mid$(src, i, 1)
Case "A" To "Z":tgt =

tgt & " "
End Select
End Select
tgt = tgt & Mid$(src, i, 1)
Next i

SpaceName = tgt
End Function

=
THE MID STATEMENT AND
FUNCTION

You're probably familiar with the Mid function, which returns a
substring of a specified number of characters from its string ar-
gument. But are you aware that Mid can also be used to replace
characters in the middle of a string? The Mid statement is a bit
of an oddity in VB because it alters one of its arguments, but
this saves a lot of string concatenation code:

—Pat Dooley

Dim Strl As String
Strl = "SOME STRING"
If Mid(Strl, 2, 1) = "0" _
Then Mid(Strl, _
2, 1) = "A"
MsgBox Strl
—William Storage

4 AUGUST 1996 Supplement to Visual Basic Programmer’s Journal

101 TECH TIPS

For VB Dewelopers

=
GET THE LENGTH OF THE
LONGEST WORD IN A STRING

LenLongestWord finds the length of the longest word in a string
where a word is defined to be bounded by spaces or the ends of
the string.

It also illustrates a case where a recursive implementation
works well in VB. For example, you would use it to decide how
to spread a column heading over multiple lines:

Function LenLongestWord (ByVal src _
As String) As Integer
Dim i As Integer, j As Integer
i = InStr(src, ™ ™)
If i > 0 Then
J = LenlLongestWord(Mid$(src, i _

+ 1))

If j >1i -1 Then _
LenLongestWord = j Else _
LenLongestWord = i - 1

Else
LenLongestWord = Len(src)
End If

End Function

ve3 T

WHEN TO USE SENDKEYS

Use the SendKeys function to exploit the delete functionality of
many grid and spreadsheet controls that have a delete function-
ality. Use this functionality without writing code to delete each
row if your form has an option that deletes all highlighted rows.
This method works much faster than writing code to check for
each highlighted row in the grid, and then deleting that row.

Remember not to use SendKeys to send a key value without
first setting the focus of the control to which you are sending
the key value.

Call this procedure to simplify the process:

—Pat Dooley

'Pass the Key value to send and the
'Control to which the value to be sent

Sub SendKeyTo(KeyValue As String, cCnt _
As Control)

cCnt.SetFocus
SendKeys KeyValue

End Sub
—Saji Varghese

For even more tricks and tips go to

http://www.windx.com

X [Es

MONITOR RESOLUTION THROUGH API

There is a simple way to get Monitor resolutions through a
WinAPI call. Declare this in a module:

Declare Function GetsystemMetrics Lib "User" (ByVal _
nIndex As Integer) As Integer

And make a call to this APl in Form_Load or Form_Resize event:
Sub Form_Resize()

dim xRes as integer
dim yRes as integer

XRes
YRes

GetsystemMetrics(0)
GetsystemMetrics(1l)

If xRes < 1024 and yRes < 768 Then
' Write your control resize
' and reposition code here
Else
Exit Sub
End If

ve3 T

UNLOAD ALL FORMS

PubTic Sub UnloadAl11()
Dim f As Integer
f = Forms.Count
Do While f > 0
Unload Forms(f - 1)
' If form isn't unloaded exit (User had canceled...)
If f = Forms.Count Then Exit Do
f=F-1
Loop
End Sub

LOST LONG FILE NAMES?

Never, never, never assume that a given API call or control/OCX
works the same under Win95 and Windows NT. For example, the
32-bit file common dialog handles long file names, right? Well, it
does in Win95, but under NT 3.51, long file names/directory
names show up as short names if that name contains an embed-
ded space. The solution? If your program needs to run on both
platforms, check for the operating system in your code. If it is
Win95, use the common dialog. If it is NT, call your own form
that imitates the common dialog (the DirListBox and FileListBox
show long filenames with embedded spaces just fine). Or, just
tell your users to wait for NT 4.0.

—Sanjay Mawalkar

—Denis Basaric

—L.J. Johnson

Supplement to Visual Basic Programmer’s Journal

AUGUST 1996 5

101 TECH TIPS

For VB Developers

ELASTIC FONTS

Designing monitor resolution-independent applications is a fre-
quent problem Visual Basic programmers face. The simplest
solution is to design forms at the 640 by 480 resolution found in
most lap-top computers. Such a form design, however, looks
awkward in desktop computers which have resolutions of 1024
by 768.

Solutions to resolve this include VSElastic control from
VideoSoft’s VS-OCX and FarPoint’s Tab Pro VBX. In VSElastic,
you can paste all child controls on the Elastic control. You must
adjust the control’s two properties, Align = 5 (Fill Container, here
the form itself) and AutosizeChildren = 7 (Proportional).

Should your forms require tabbed folders (in case of large
number of controls), use Tab Pro and set the AutoSize = 5 (Fill
Parent) and AutosizeChildren = 3 (size and location of control).

The controls now will automatically resize and reposition
when the resolution of the monitor changes or when the form is
resized. The remaining problem is that these custom controls
cannot resize or reposition child controls that are pasted on
frames, picture boxes, or panel controls (option buttons). As
the custom controls do not alter the fontsize of the controls,
captions are truncated. To overcome this problem, you need to
use a true-proportional font such as Arial and insert this code in
the Form_Resize event:

Sub Form_Resize()

dim i as integer, j as integer
dim curFormHeight as integer
dim curFormWidth as integer
dim DefaultFontSize as integer
dim orgFormHeight as integer
dim orgFormWidth as integer

On Error GoTo FormResizeError
DefaultFontSize = 8

' Or whatever fancies you
orgFormHeight = 8000

' In twips, or whatever your desired
' height is

orgFormWidth = 8000

curFormHeight = Me.Height
' Get current form height
curFormWidth = Me.Width
' Get current form width

= 0 to Controls.Count -1
Controls(i).FontName
Controls(i).FontSize = _

DefaultFontSize * _
(curFormHeight / _
orgFormHeight)

For i

"Arial”

Next i

' If the form contains option buttons or

'check box control group then

For j = 0 To Optionl().Count - 1
Optionl(j).Height = 200 * _

(curFormHeight / orgFormHeight)
Optionl(j).Width = 1000 * _
(curFormWidth / orgFormWidth)
Optionl(j).Top = 250 * _
(j + 1) * (curFormHeight _
/ orgFormHeight)
Optionl(j).Left = 250 * _
(curFormWidth / orgFormWidth)
Next j

FormResizeError:
If Err = 438 Then
Resume Next ' If the form
contains a control whose Font
' properties do not exist
End If

SUBCLASSING CHDIR

If your application’s current directory is D:\OldDir, the call
ChDir(C:\NewDir) will change the C Drive’s default directory to
NewDir, but the application’s current directory will remain
D:\OldDir. It seemed to me that ChDir should change the
application’s current directory in all cases. This subclassed ChDir
subroutine handles drive changes, too:

—Sanjay Mawalkar

Sub ChDir(Path As String)
Dim TargetDrive As String

' if 2nd and 3rd letters of target
'are ":\"

If Mid(Path, 2, 2) = ":\" Then
TargetDrive = Left(Path, 3)
If TargetDrive <> _
Left(CurDir, 3) Then
ChDrive TargetDrive
End If
End If

' Call VB's ChDir function
VBA.ChDir Path

End Sub
—Bruce Hamilton, Centric Development

= [Eg

FADING COLORS

Use this as a fast way to paint the background of any form with
areally cool “fading” color (lighter at top to darker at bottom).
To specify base color, pass True/False for Red, Green, and Blue.
Use combinations to fade blue, red, green, yellow, purple, gray,
and so on:

Sub FadeForm (frm As Form,
Green%, Blue%)

Red%, _

6 AUGUST 1996 Supplement to Visual Basic Programmer’s Journal

101 TECH TIPS

For VB Dewelopers

Dim SaveScale%, SaveStyle%, _
SaveRedraw%
Dim i&, j&, x&, y&, pixels%

' Save current settings.
SaveScale = frm.ScaleMode
SaveStyle = frm.DrawStyle
SaveRedraw = frm.AutoRedraw

' Paint screen.
frm.ScaleMode = 3
pixels = Screen.Height / _
Screen.TwipsPerPixelY
x = pixels / 644 + .5
frm.DrawStyle = 5
frm.AutoRedraw = True
For j = 0 To pixels Step x
y = 240 - 245 * j \ pixels
'can tweak this to preference.
If y <0 Theny =0
'just in case.
frm.Line (-2, j - 2)- _
(Screen.Width + 2, j + _
x + 3), RGB(-Red * y, -Green _
*y, -Blue * y), BF
Next j

' Reset to previous settings.

frm.ScaleMode = SaveScale

frm.DrawStyle = SaveStyle

frm.AutoRedraw = SaveRedraw
End Sub

For blue fading, just put this in the Form_Load procedure:

FadeForm Me, False, False, True

X [Eg

FILE EXISTS?

One way to test whether a specific file exists is to open the file
for input and check VB’s error flag. An error will occur if the file
does not exist.

Use VB’s ‘Dir$’ function to accomplish the same task. Call
‘Dir$’ with the complete filespec. ‘Dir$’ will return the exact file
name if that file exists or a null string if it does not. For example:

—Timothy L. Birch

If Dir$("C:\WINDOWS\WIN.INI") _
<> "" Then
'file Win.ini exists!
Else
'file Win.ini does not exist!
End If

—Chuong Van Huynh

For even more tricks and tips go to
http://www.windx.com

= [Eg

PADDING A DATE STRING

Some functions return dates in single units (1st May 1996 may
be returned as 5-1-96). This makes formatting difficult where you
have dates like 5-1-96 and 12-15-96 on the same column.

The function below returns a string preceded by “0” if the
length of the string is less than two. If “5” is passed to the func-
tion, it returns a “05.” Passing “15” to the function returns “15”:

Function cto2d (u As String) As String

If Len(u) < 2 Then
cto2d = "0" & u

Else
cto2d

End If

I
(=

End Function

CONSTANT FAILURE?
DON’T DO THAT!

Most things in VB4, including the VBA and VB engines, are OLE
objects. In some cases, objects can expose properties or meth-
ods with the same name as in another object. Theoretically, the
object that is highest in the references list will take priority, and
the VBA and VB objects will take priority over any add-ins. But if
you do run into this problem, the solution is easy. For example,
if a built-in VB or VBA function doesn’t seem to work and noth-
ing else is obviously wrong, try prefixing it with VB or VBA
(VBA.Left$ instead of Left$). Note that this should not happen
in the case of the VBA and VB objects, but it does.

Also, it is possible to redefine the built-in VB and VBA con-
stants to some other value, and you will get no compile error.
But when you actually use the redefined constant, it will fail in
some really neat ways. As the doctor said to the patient who
reported a pain when he raised his arm above his head, “Then
don’t do that.”

=]
HAVE A 3-D LINE BETWEEN A
PULLDOWN MENU AND A TOOLBAR

Draw an SSPanel with a height of 30. You can’t set the height by
hand, so you must draw it, a difficult but possible task. Delete
the caption, set BevelOuter to 1-Inset, border width to 1, and
align Top. Draw the Toolbar and make the pulldown menu.
—Mario Manuel Mourao Coelho

—Segun Oyebanji

—L.J. Johnson

Supplement to Visual Basic Programmer’s Journal

AUGUST 1996 7

101 TECH TIPS

For VB Developers

=
LOGGING USER ACTIVITY WITH VB
AND ACCESS

A while back, I wrote a simple orders application that allowed
users to query and update order information. The application
worked fine, but lacked a user activity log. It was difficult for me
to determine what a user had done with a particular order.

By creating a table (I'll call it UserLog) with fields such as
DATE, TIME, USERID, ACTION _TYPE (A for accepted entry or Q
for queried database), SQLSTRING (for the actual SQL command
issued against the database), and other data element fields, I
was able to capture user activity at key points in the applica-
tion. The Additem method allowed me to quickly add records to
the UserLog table when the user queried the database or when
the user accepted data.

Not only is the user log concept useful for tracking user ac-
tivity, it’s also useful for analyzing trends in data such as who is
updating the data, how often, and what type of queries are be-
ing performed on the database.

X [Eg

LIST BOX CUMULATIVE SEARCH

By default, VB list boxes use any keyboard input to find the first
item beginning with the pressed letter. Where the number of
items in a list box is large (>100), this is not helpful. Substituting
abinary or hybrid search for the sequential search below speeds
up the algorithm substantially for very large lists (>1000 items).
The code below searches the items in a sorted list box based on
all the characters typed by the user:

—Brian Prebola

Global ListBoxSearch$

Sub ListBox_KeyPress (KeyAscii As _

Integer)
'Return KeyAscii in case you
'want VB to handle certain chars
KeyAscii = SearchlListBox_
(Me.ActiveControl, KeyAscii)
End Sub

Function SearchListBox _
(CurrentActiveControl As Control, _
KeyAscii As Integer)

Dim ListBoxIndex As Integer
Dim Result As Integer
'Result of string compare

ListBoxSearch$ = ListBoxSearch$ & _
Chr$(KeyAscii)

ListBoxIndex = CurrentActive_
Control.ListIndex

While ListBoxIndex < CurrentActive_

Control.ListCount

Result = StrComp(UCase$(List_
BoxSearch$), UCase$(Left$_
(CurrentActiveControl.List_

(ListBoxIndex),
Search$))))

Len(ListBox_

If Result <= 0 Then
CurrentActiveControl.List_
Index_= ListBoxIndex
SearchListBox = 0
Exit Function
End If
ListBoxIndex = ListBoxIndex + 1
Wend
ListBoxIndex = CurrentActive_
Control.ListCount - 1
CurrentActiveControl.ListIndex_
= ListBoxIndex
SearchListBox = 0
End Function

Note: Clearly, the code above is not complete and needs to be
augmented to suit the individual developer. For example, when
to clear ListBoxSearch$ is a subject of much consideration (ac-
tive control changes, user presses arrow keys, and so forth) I
implemented the above scheme on a list of >1500 items with a
separate ClearLBSearch subroutine and a binary/sequential hy-
brid searching algorithm.

ve3 T

MAKING USE OF SHORTCUT KEYS

“Send a Message” (Windows Programming, by Jonathan Zuck,
VBPJ December 1995), a great example of code usable in a text
editor, mentions three ways to code the Clipboard functions
using SendMessage, VB’s Clipboard object, or SendKeys. The
Clipboard object requires hand-coding with the SelText prop-
erty. SendMessage and the Clipboard object require you to
specify which text box is being edited, demanding the
ActiveControl property if you have more than one text box on
the form. Clearly the easiest method is to use SendKeys for Undo
("Z), Delete (Del), Cut (*X), Copy (*C), and Paste (*V), the func-
tions Windows implements natively.

In the Edit menu you’ll probably want to assign Shortcut keys
to these functions, so the control codes are shown to the right
for users as in most Windows applications’ Edit menus:

—Joe Wilson

Undo Ctri+z
*hkkkkkkkhkkkhkkkhkkk
Delete Del

Cut Ctri+x
Copy Ctr1+C
Paste Ctrl1+Vv

The functions no longer work if your Edit menu has Shortcut
keys assigned like this and the Edit subs use SendKeys to ac-
cess the built-in Windows text-box editing functions. The *X, *C,
AV, Del, and "Z keystrokes are captured by the Edit menu short-
cuts and so are never processed. You could use SendMessage,
mimic the functions in VB codes using the Clipboard object, or
leave off the Shortcut keys.

All this seems unnecessary. Windows has the functions built

8 AUGUST 1996 Supplement to Visual Basic Programmer’s Journal

101 TECH TIPS

For VB Dewelopers

in and I want only to show the shortcuts on the menu so users
know what they are. An easy solution is to launch the Notepad,
type a Tab, then copy the Tab to the clipboard. Next, open the
Menu Design Window and paste the Tab character followed by
the shortcut text in the menu’s Caption property:

Caption: &Copy[paste tabchar]Ctr1+C
or:
Caption: &Undo[paste tabchar]Ctrl+Z

Set the Shortcut to (none). Now put the simple SendKeys “*C”
in Sub mnuEditCopy and it works!

A design-time problem with this method occurs if you leave
that menu item and return to it. VB then chops off the Caption at
the Tab character and you lose your shortcut text. You must
repaste the Tab and retype the control code. Or, you could use a
menu array and Load menu items at run time with embedded
Tab characters:

Load mnuEditArray(1)
mnuEditArray(1).Caption = "&Undo™ _
& Chr$(9) & "Ctrl+Z"

I dislike doing anything in code that can be done at design
time, so I prefer the former method and avoid clicking on the
affected menu items.

ve3 ITT

AN IMPROVED USER TiIP

The User Tip submitted by Nick Bulka in the January 1996 issue
of VBPJ was interesting, but, as with so much code, improvable:

—Jon Jensen

Sub TextHiLite(t as TextBox)
t.SelStart =0
t.Sellength = len(t)

End Sub

My improvement is to pass the TextBox control as a parameter.
When VB passes a control as a parameter, it passes the Refer-
ence to it, not a copy of it. With the Reference available, you can
change the properties and so forth without the time and resource
overhead of declaring and instantiating a new object. Besides, it
could be appropriate to change some characteristic for a con-
trol that does not have the focus. By passing it as a parameter,
the programmer is not restricted to the active control.

VB3 can be lax about cleaning up after its objects. Several
VBPJ articles suggest doing clean-up. This little routine I put in
all my <form>_Unload events really helps keep the resources in
check:

If <object_variable> Is _
Nothing then
Else
Set <object_variable> = _
Nothing
End If

For even more tricks and tips go to

http://www.windx.com

This modification is for database result-set (tables, dynasets,
and so forth) objects. The code is more straightforward to cre-
ate and to read with an empty ‘Then’ section and going right to
Else:

' It's time to close the object:
If <object_variable> Is Nothing _

Then
Else
.<object_variable>.Close
Set <object_variable> = _
Nothing
End If

—Richard A. Stiles

CREATE MULTIPLE LEVELS OF
DIRECTORIES

If your users have the option to type a directory where they
want files installed, they may type a directory that doesn't exist
or a directory that is several levels below another directory.

This procedure checks to see if the directory exists and cre-
ates it if it doesn’t. No matter how long the request, it will create
any and all directories. This procedure allows users to create
long directory names in VB4, but truncates each directory to 8.3
characters in VB3. The only requirements are that sDrive be
passed as “<drive>:” (i.e. “C:”) and that sDir be formatted as “\<di-
rectory>\" (i.e. “\Dir1\Dir2\"). Add your own error handling to
make sure these elements exist properly.

Here is an example of creating a directory several levels deep
and using a long directory name:

Sub CreatelLongDir(sDrive As String, _
sDir As String)
Dim sBuild As String

While InStr(2, sDir, "\") > 1
sBuild = sBuild & Left$(sDir, _
InStr(2, sDir, "\") - 1)
sDir = Mid$(sDir, InStr(2, _
sDir, "\"))
If Dir$(sDrive & sBuild,
"" Then
MkDir sDrive & sBuild
End If
Wend
End Sub

16) = _

Sub Test()
Call CreatelLongDir("C:", _
"\Test\TestDir\Long Directory _
Name\")
End Sub
—Jeffrey Renton

Supplement to Visual Basic Programmer’s Journal

AUGUST 1996 9

101 TECH TIPS

For VB Developers

=
MOVE AND RESIZE CONTROLS
WITH ACCURACY

Ever tried to align controls just right, or resize them to just the
exact size? It can be tricky with the mouse, and modifying the
properties can be time consuming. This tip works in Access 2
and 95.

When you want to resize a control:

1. Select the control.
2. Hold down the SHIFT key, and use the arrow keys
to change the size.

When you want to move a control:

1. Select the control.
2. Hold down the CTRL key, and use the arrow keys
to change the size.
—Chris Kunicki (forwarded by John Chmela, Visual BASIC

Developer’s Network)

32-BIT GETMODULEUSAGE
WORKAROUND

I have found a solution to the problem of GetModuleUsage not
working in 32-bit VB4. The TaskID returned by Shell can be used
by AppActivate like this:

TaskID = Shel1("DOSAPP.EXE", _
vbNormalFocus)
On Error GoTo finished
While True
DoEvents
AppActivate TaskID
Wend
finished:
On Error GoTo 0
—John Muir (forwarded by John Chmela, VBDN)

ACCURATE TIME DELAY

This routine allows you to put a fairly accurate time delay, very
useful for I/O routines and nice, graphic-delayed drawing rou-
tines in your code:

Sub Delay (milliseconds As Integer)
' This Routine uses a Timer to trigger
' a fixed Time Delay.

Dim Temp As Integer
If (milliseconds > 0 and milliseconds _
< 32767) Then
TimeExpired = False
Main.Delay.Interval = milliseconds

Main.Delay.Enabled = True
While (TimeExpired = False)
Temp = DoEvents()
Wend
End If
End Sub

Sub Delay_Timer ()

! This Routine is the Timer Event. That is, when
the timer expires, it is disabled and the global
variable TimeExpired = set to True.

TimeExpired = True

Delay.Enabled = False

End Sub

= &g

STREAMLINE YOUR
API DECLARES, PART 1

Most Windows API routines are functions and must be declared
as such, but in many cases we are not really interested in their
return value. The SendMessage function, for example, depend-
ing on the message sent, might not return any significant value.
Even in this case, however, we are compelled to call it as a func-
tion, writing something like:

—Gary Sinde

Dim dummy As Integer
dummy = SendMessage(Textl.hWnd, _
WM_PASTE, 0, 0&)

In other words, you are forced to declare more variables and
make your code less readable only because of a syntactical con-
straint of Visual Basic. Luckily, you can add an aliased Declare
which converts SendMessage to a Sub:

Declare Sub SendMessageSub Lib "User"™ _
Alias "SendMessage" _
(ByVal hWnd%, ByVal msg%, ByVal _
wParam, TParam As Any)

Now you can call SendMessage and discard its return value:

SendMessageSub Textl.hWnd, WM_PASTE, _
0, Byval 0&

Note that your code will also be slightly faster because you
save an assignment and do not waste any time dimensioning a
dummy variable.

—Francesco Balena

10 AUGUST 1996 Supplement to Visual Basic Programmer’s Journal

101 TECH TIPS

For VB Dewelopers

CREATING DATABASE PASSWORDS
IN VB4

Jet 3.0 (32-bit VB4 only) includes a new security system based
on database passwords that you may use instead of the more
complex, more secure, workgroup security system. This system
allows you to set a single, all-user password to open a database.
While much simpler to implement and use, this system is very
easily compromised because all users use the same password.
In addition, it doesn’t let you track individual user activity in a
shared database. However, you can use both workgroup-based
security and database passwords at the same time.

Set a database password in VB using the NewPassword
method of the database object, using code like this:

Dim wrk As Workspace
Dim dbPwd As Database

Set wrk = DBEngine.Workspaces(0)

' You must open the database
' exclusively (note 2nd parameter).
Set dbPwd = _
wrk.OpenDatabase_
("MyData.MDB", True)

' Set the database password which
' currently is blank to "NewPass".
dbPwd.NewPassword "","NewPass"

OPENING PASSWORD-PROTECTED
DATABASES

Use the connect parameter of the OpenDatabase method to open
a database that is password-protected in VB4-32. For example,
this code opens the Secure database with a password of “dirt”:

—Paul Litwin

Dim wrk As Workspace
Dim dbTest As Database

Set wrk = DBEngine.Workspaces(0)

' Open Secure database with a

' password of "dirt".

Set dbTest = wrk. _
OpenDatabase("Secure.mdb", _
False, False, ";PWD=dirt™)

The connect parameter is case sensitive. In addition, and
contrary to the VB documentation, you must set the exclusive
and read-only parameters (the second and third parameters)
when using the connect parameter.

—Paul Litwin

For even more tricks and tips go to

http://www.windx.com

=]
HOW TO AUTOMATICALLY RESIZE
FORMS

The ElasticForm subroutine, part of CodeBank’s standard pro-
cedure library, automatically repositions and sizes all controls
on an SDI form when the user or code resizes the form. To use
the routine, simply lay out the form as you normally would in
design mode. Then call the subroutine once in the Form_Load
event, with the Init parameter set to true, so that it can record
the initial positions of the controls. Call the sub in the
Form_Resize event, with Init set to False, to automatically resize
and reposition the controls. The procedure accommodates any
number of nested containers, any ScaleMode, and all types of
controls. Note, however, that the procedure relies on the Tag
property to store position information for each control, and so
cannot be used if Tag is being used for another purpose (see
ElasticFormArray). Also, MDI child forms are resized by VB be-
fore the Form_Load or Form_Initialize events, so the proportions
of each form will be distorted. With MDI children, you must use
ElasticFormArray (available in CodeBank’s standard library) and
specify the optional DesignWidth and DesignHeight parameters:

Public Sub ElasticForm(frm As Form, _
Init As Integer)

On Error Resume Next

Dim ctl As Object

If Init = True Then
For Each ctl In frm.Controls
ct1.Tag = Format$(ctl.Left _
/ frm.ScaleWidth, ".0000") _
& Format$(ctl.Top / frm.Scale_
Height, ".0000") & Format$_
(ct1.Width / frm.ScaleWidth, _
".0000") & Format$(ctl._
Height / frm.ScaleHeight, _
".0000™)
Next ctl
Else
For Each ctl In frm.Controls
ctl.Move Val(Mid$(ctl.Tag, 1,
5)) * frm.ScaleWidth, _
Val(Mid$(ct1.Tag, 6, 5)) * _
frm.ScaleHeight, Val(Mid$_
(ctl1.Tag, 11, 5)) * frm._
ScaleWidth, Val(Mid$(ctl.Tag, 16, _
5)) * frm.ScaleHeight
Next ctl
End If

End Sub

—Ward Hitt, author of Visual Components Inc.’s CodeBank

Supplement to Visual Basic Programmer’s Journal

AUGUST 1996 11

101 TECH TIPS

For VB Developers

POSITIONING A COMMON DIALOG

If you are you unhappy with Microsoft’s comment in the help
(“Note: You cannot specify where a common dialog box is dis-
played”), but like the idea of common dialog controls, try this.

Start a hidden dummy form instead of calling the open dia-
log box directly from your main form:

(frmDummy_OpenSaveAs.Hide),

Define the Left and Top properties as you wish and then start
the common dialog box from this form. On a Windows 95 sys-
tem using the 32-bit version of Visual Basic, the open dialog box
appears exactly over the left/top coordinates of the form that
called the dialog box. This also works if the calling form is hid-
den and not visible to the user.

PROVIDING CONTEXT MENUS FOR
YOUR UI OBJECTS

Much of the ease of use of Windows 95 comes from the fact that
its user interface objects have their own context menus, which
can be accessed through a simple right-click of the mouse. In
keeping with this theme, you can provide context menus for the
interface objects in your applications too. Making and respond-
ing to a context menu is a pretty straightforward and simple
process. These steps illustrate how this is done using a stan-
dard list box called IstSample as the interface object:

—Reinhard Salchner

1. Define the context menu. The context menu is really a stan-
dard menu item which has submenu items just like your Help
menu item would. Unlike your Help menu item, however, a con-
text menu item will have its Visible property set to False so that
the user never sees it on the form’s menu. For this example,
open a new form and use the Menu Editor to make a new top-
level menu item and give it the name mnu_lstSampleContextMenu.
The caption will never be seen by the user, but should be some-
thing descriptive that reminds you what the menu is used for,
such as “Context Menu For IstSample Control.” Set the Visible
check box for this menu item to False. Now, define the sub-menu
items that will appear when the user right-clicks on the control:
“&Clear,” “Clear A&ll,” “&Add Item,” “&Remove Item,” and so
forth.

2. Write the code that will show the context menu when the user
right-clicks the control. This is done by invoking VB’s PopupMenu
method in the control’s _MouseDown event. Here is a code
sample:

Private Sub 1stSample_MouseDown(Button _
As Integer, Shift As Integer, X As _
Single, Y As Single)

' if the user right clicked on
' control then show the popup menu
' for this control

If Button And vbRightButton Then
PopupMenu _
mnu_lstSampleContextMenu

End Sub

3. All that is left to do is to write the code in the click event for
each of the context menu’s submenu items. The PopupMenu
method can also do neat things like bold a menu item, place the
menu at a specific location, and so forth. For more information
on the PopupMenu method, see the VB help file.

—Hassan Davis, MicroHelp Inc.
=

STREAMLINE YOUR API
DECLARES, PART 2

While we are speaking of SendMessage, there is another trick
you may find interesting enough to include in your programming
habits. When used with some particular messages, the IParam
argument is really considered as two words combined. The
EM_LINESCROLL can scroll a multilined text box, the low word
of IParam contains the number of lines to scroll vertically (posi-
tive values scroll up), and the high word contains the number of
lines to scroll horizontally (positive values scroll left); other, simi-
lar messages are EM_SETSEL for text boxes, CB_SETEDITSEL for
combo boxes, and LB_SELITEMRANGE for list boxes. In such
cases you need to prepare the long value to be passed to the
routine, which slows down your code and makes it less read-
able. It seems that a simple multiplication should do the work:

scroll a multilined textbox "HO"
Tines horizontally

' and "VE" Tlines vertically
beware: this approach does NOT
work properly

lTongValue& = HO * 65536& + VE

The above code does not work correctly when HO is positive
and VE is negative, and for a more general scrolling routine you
have to resort to a more convoluted and slower method:

tmp$ = Right$("000" & Hex$(HO), 4) & _
Right$("000" & Hex$(VE), 4)
lTongValue = Val("&H" & tmp$)

The solution is declaring an aliased function that splits the
IParam into two distinct parameters of Integer type, as in:

Declare Sub SendMessageSub2 Lib _
"User" Alias "SendMessage" _
(ByVal hWnd%, ByVal msg%, ByVal _
wParam, ByVal 1Paraml%, _

ByVal 1Param2%)

Now the call is much simpler:

SendMessageSub2 Textl.hWnd, _
EM_LINESCROLL, 0O, HO, VE

12 AUGUST 1996 Supplement to Visual Basic Programmer’s Journal

101 TECH TIPS

For VB Dewelopers

The trick works because a push of a Long value onto the stack
has the same effect as the push of its high word followed by the
push of its low word.

=
SAVE MEMORY WITH A
PICTURE BOX

Set the AutoRedraw property to True and the benefits and trade-
offs include much faster repaints and some wasted memory. If
your form is resizable, you waste a lof of memory, because the
persistent bitmap used by AutoRedraw is as large as the maxi-
mum dimensions of the form to reveal the hidden output when
the user resizes or maximizes the window. If the graphic output
you want to preserve is limited to a relatively small portion of a
large and/or resizable form, you may save some precious
memory drawing your graphic output in a picture box with
AutoRedraw = True and possibly BorderStyle = 0, while leaving
the AutoRedraw property of the form set to False.

—TFrancesco Balena
=
REMEMBER SWAP?

I was surprised to learn that the SWAP command was not imple-
mented in Visual Basic when [read a letter in the February 1996
issue of VBPJrequesting that Microsoft bring to Visual Basic the
Qbasic Command SWAP.

In a routine [use to sort a file, this code performs the swap. |
use character strings for this example, but the logic will work
with other data types.

Here is an example:

—Francesco Balena

Option Explicit

Private Sub Form_Load()

Dim a, b, ¢ As String * 4
a = "AaAa"
b = "BbBb"

Debug.Print a; Spc(5); b
'Before the swap

c=a
a=>b
b=c

Debug.Print a; Spc(5); b
'After the swap.
End Sub

X [vEs]

A TALE OF THREE BEEPS

Are your programs not executing instructions in VB4 that were
executing in VB3? Try this in Qbasic, VB3, and VB4:

—David Ferber

BEEP: BEEP: BEEP

For even more tricks and tips go to
http://www.windx.com

If you F8-step through this very complex code, you will hear
three beeps except when running on VB4, which will produce
only two beeps. Reserved words, such as Beep, and Cls are
treated as labels. Notice the colon.

Using VB4:

BEEP
BEEP
BEEP

will give the expected three beeps.

= [Es

MORE ON NULL CONVERSION

This tip has been published more than once on pages of VBPJ
(See “99 of the Hottest Tech Tips For VB Developers,” Supple-
ment to the February 1996 issue of VBPJ, page 17).

This code is recommended to convert Null values in the nu-
meric database fields to zeroes:

—David Ferber

Dim nVar As Integer
nVar = 0 & rsinField

' assumed that nField

' is a numeric field in
' the recordset

The expression 0 & rs/nField actually returns a string, not a num-
ber. If, say, rs/nField contains 1, 0 & rs/nField results in “01.”
The code above works due to the automatic conversion of
types. If, however, you need to assign the numeric value, not to
a numeric variable, but to a grid cell or a text box, you do not
get what you want, and additional data formatting is required.
You might consider three other ways to get rid of Nulls:

' This will work, and in VB4 you do

' not have to include MSAFINX.DLL

' with your project

' (as you did in VB3). However, the

' expression might look a bit too long...

nVar = IIf(IsNull(rs!nField), O,
rs!nField)

This will work, both in VB3 and VB4:
nVar = Val("" & rsinField)
Or:
nVar = Val(0 & rs!nField)
[always use:
" &
instead of Str$(n) when I do not need (and I hardly ever need it!)

the leading space produced by Str$() function.
—Garold Minkin

Supplement to Visual Basic Programmer’s Journal

AUGUST 1996 13

101 TECH TIPS

For VB Developers

DETERMINE THE CLASS OF
YOUROBJECT WITH THE TYPEOF
STATEMENT

In VB4 the TypeOf statement works with any valid object type,
not just forms and controls. This allows you to pass objects of
different classes to the same procedure for a class-specific imple-
mentation. Here is an example:

'This procedure prints information

'specific to the object referenced

'in the YourObject parameter

PubTic Sub PrintObjectInfo(YourObject _
As Object)

If TypeOf YourObject Is CDesk Then
' tell what type of object this is
Print "Object Type: Desk"
' print the number of legs that
'this object has
Print "Number of legs: "™ & Your_
Object.NumberOflLegs
Elself TypeOf YourObject Is CHouse _
Then
' tell what type of object this is
Print "Object Type: House"
Print "Number of doors: ™ & Your_
Object.NumberOfDoors
End If
' both classes have the following
' properties
Print "Height: "™ & YourObject.
Height & " ft."

Print "Width: ™ & YourObject.Width
& " oft."
Print "Built by:

BuilderName
Print "Purchase date: " & Your_
Object.PurchaseDate
Print "Purchase price: $" & Your_
Object.PurchasePrice

" & YourObject._

End Sub
—Hassan Davis, MicroHelp Inc.

USE MULTIPLE OBJECT TYPES TO
REDUCE DUPLICATE CODE

In the “Determine the Class of YourObject with the TypeOf State-
ment” tip, the Desk and House objects have many properties in
common. Instead of duplicating code by having a separate Print
method for each object, we can write a generic routine to handle
printing of each object type. Note that the advantage of this
implementation rises as the number of object types and/or the
number of similarities between object types increases.

—Hassan Davis, MicroHelp Inc.
=

REMOVE THAT MOVE!

Sometimes it is desirable to prevent a user from moving a form.
A little known feature of Windows is that for any form, function-
ality that doesn’t appear in the control menu (ControlBox in VB
terms) is not available to that form. Therefore, remove the Move
command from that form’s control menu to prevent a form from
being moved:

Declare Function GetMenu% Lib "User" (ByVal hWnd%)

Declare Function RemoveMenu% Lib "User" (ByVal hMenu%, _
ByVal nPosition%, ByVal wFlags%)

Const SC_MOVE = &hF010, MF_BYPOSITION = &H400

' This deletes the Move command from the form’s

' control menu

Dim Res%

Res = RemoveMenu(GetMenu(Form.hWnd),

JET 3.0 QUERY OPTIMIZATION,
GET WITH THE PLAN

If you need to analyze the performance of a Jet 3.0 query by the
query execution plan, you may do so by adding this registry key
and running regedit:

SC_MOVE, MF_BYCOMMAND)

—Phil Parsons

\\HKEY_LOCAL_MACHINE\SOFTWARE_
Microsoft\Jdet\3.0\Engines\Debug

For the new Debug key, add a name value of JETSHOWPLAN
(all capital letters) and a data value of ON. Jet will generate a file
called SHOWPLAN.OUT, which will display query execution plans
associated with your application. Because these files can get to
be big quickly, please remember to set the data value to OFF
once you're done.

Well-designed queries and databases will generate query ex-
ecution plans that refer to steps of the query execution that uti-
lize table indices and/or Rushmore technology as much as pos-
sible. Poorly designed ones often exhibit query execution steps
where table scanning (reading rows sequentially) occurs.

—Rob Karatzas

14 AUGUST 1996 Supplement to Visual Basic Programmer’s Journal

101 TECH TIPS

For VB Dewelopers

TO FLASH OR NOT TO FLASH

Often, to create status-bar help, you place code in the mouse-
move event procedures of controls to place text describing the
control on the status bar. Every time you update the text prop-
erty, the control repaints.

Because the mouse-move event will fire many times over one
control, the repainting causes flashing. To avoid the strobe light
effect, check the text property of the status bar to determine if
the appropriate text is already shown. Then the repainting is
done only once for every control.

This subroutine is handy for use with all controls:

PubTic Sub StatusText(NewText As String)

'If status text is already correct,

‘don’t change it

If FrmMain.StatusBar.Panels(1l).Text <> _
NewText Then

FrmMain.StatusBar.Panels(l).Text = _
NewText

End If

End Sub

To use the subroutine, add this code to the mouse-move event
procedure of the controls you wish to have status-bar help:

Private Sub _
CmdEnterValue_MouseMove(Button As _
Integer, Shift As Integer, X As
Single, Y As Single)
Call StatusText("Press here to _
change the current steps value.™)
End Sub

MAINTAINING CONSTANTS

Ilike to use the Constant.txt file Microsoft has been kind enough
to provide. For a new project, copy Constant.txt to a new file
such as MyConst.txt. Place MyConst.txt in the same directory
as the MAK file and then include MyConst.txt in the project. In
debug mode open MyConst.txt and do a FIND on the string Glo-
bal and replace with ‘Global. MyConst.txt is changed to a large
comment file.

When a new constant is required, check MyConst.txt to see if
Microsoft has defined it. If it is there, then create it by removing
the quote. This keeps all of the Microsoft constants in context
and makes the program easier to maintain.

=
CLOSE ALL FORMS BEFORE THE
END OF A PROGRAM

It is well known that VB3 is not always as conscientious as it
should be about unloading all the forms in an application when

—Dave Robins

—Stan Mlynek

e o o s o o s s o s s s s e s s e s s e e

For even more tricks and tips go to

http://www.windx.com

the application terminates. Because unloading all the forms for
an application manually can be tricky, | have developed a small
routine that can be called as a prelude to the End statement:

Sub Main ()

' Blah,

blah, blah...our code here....
CloseForms
End

End Sub

Sub CloseForms()
Dim iFormCount As Integer
Dim i As Integer
'Nothing’s gonna stop us now....
On Error Resume Next

'Store the number of forms NOW
'because the count will change as
'we close them

iFormCount = Forms.Count - 1

'Step downward through the Forms
'Collection to ensure we get
'ALL of them...
For i = iFormCount To 0 Step -1
Unload Forms(i)
Set Forms(i) = Nothing
Next
End Sub

The key here is to get the count of the number of open forms
and then loop from that number down to make absolutely sure
that all forms in the application are unloaded.

—Joe Ackerman
VB3 |

OVERCOME ODBC ERRORTIP
CORRECTION—SAME OL’ STORY

A tip on page 48 of the March 1996 issue of VBPJ states that an
ODBC error message occurs when using VB3 with the Access
2.0 compatibility layer. An error occurs if DB_SQLPASSTHROUGH
is used to create a record set and then another record set is
created without fully populating the previously opened one. The
article concludes by saying that the error does not occur in VB4.

I currently use the 32-bit version of VB4 which uses Jet 3.0,
and this error still occurs. [use the above method to get around
it. If you create a record set that is only going to return one row
you do not need to do this, and you can use DB_FORWARDONLY,
which speeds up the query.

—Dave Barraclough

Supplement to Visual Basic Programmer’s Journal

AUGUST 1996 15

101 TECH TIPS

For VB Developers

=
APPLICATION PATH
INCONSISTENCY

Be aware that when using the Path property of the Application
object (App.Path), if your EXE is run from the root directory of a
drive, App.Path will return the drive letter and a backslash (C:\),
while an EXE in a subdirectory returns only the directory name
(C:\DIR). Your application should, therefore, test for the pres-
ence of the backslash before adding a file name to it:

MyPath=App.Path
If Not Right(MyPath,1)=Chr(92) +_
Then MyPath=MyPath & Chr(92)

VB3 |
AVOIDING COPY AND PASTE
FUNCTIONS IN A TEXT BOX

Copy (Ctrl+C) and Paste (Crtl+V) functions are already included
in a text-box control, but what if you want to avoid these func-
tions? You might suppose that you can handle Ctrl key combina-
tions with the KeyDown event, but Crtl+C and Ctrl+V are not
detected in the KeyDown event. The answer is to capture these
key combinations in the KeyPress event. Type this line in the
KeyPress event of the text box:

—Clint Walker

If keycode = 3 or keycode = 22 _
then keycode = 0
' Where keycode = 3 is the combination
' of Ctr1+C and keycode = 22 is
' Ctrl+v.

V3 T

COLOR MY WORLD—IN DEFAULT!

Just before performing your final ‘make EXE,” switch your desk-
top color scheme and see just how many backgrounds you have
hard-coded! (Sadly, several excellent shareware controls fail here,
VBPJ contributors are guilty of this, and even the VB4 help file
examples slip up!)

Try the desert desktop scheme in Win95 as a starting point,
or, better still, create a new ugly scheme just to test all your
control colors.

VB4 provides 24 system colors though a set of constants
(search help for Color Constants or VBTranslateColor) for use
in your code, many of which are used as a default for VB con-
trols, but if you've changed the property setting with the VB
palette, you must retype (or paste) the hexadecimal number
shown next to the color into the property text box, substituting
the 0x for &H. Alternatively, you could click on another control
that already has the correct color value, copy the property value,
and paste it into your control. Then you won'’t be so gray.

—Pedro Velazquez Davila

Technical Reviewer’s Note: In VB4, there is a new Color Palette
View Window with a DEFAULT button. Select each Form or Control
one at a time, select the DEFAULT button and the control will be
set to the Windows Default. Be aware that the Appearance prop-
erty should be set to 3-D for best results.

PRINTING PROBLEMS

Here is a tip to help with missing or mispositioned text. This
failing code works fine with VB3:

—Clint Walker

Cls

Print Spc(10); "Enter Your Name";
currentx = 0

currenty = currenty + 1

Print Spc(10); "Enter Your Name";

The messages will be far to the right in VB4. Check the last
semicolon in the first Print line to correct this. To show this,
precede each Print statement with “debug”:

Debug.Print Spc(10); "Enter Your Name"

CurrentX =0
CurrentY = CurrentY + 1
Debug.Print Spc(10); "Enter Your Name";

or change the statement to:

Print Space$(10); "Enter Your Name";

USE CODE PROFILER FOR
DEBUGGING

Sometimes a runtime error only manifests itself after an EXE is
made and not in debug mode. This can be hard to track down,
even with message-box statements. Use the code profiler add-in
to find the offending line of code. Following these steps should
lead to your error:

—David Ferber

1. First back up your code.

2. Select the code profiler add-in.

3. Select the source code file (or all source code files).

4. Select the Line Hit Count option.

5. Select the Add Profiler Code button.

6. Compile the code into an EXE.

7. Run the code to the error.

8. Go back to the code profiler and select View Results from the
File menu.

Look for the last line that was executed in the offending mod-
ule. You may have to trace through your code in debug mode at
the same time that you look for the last line executed in the profiler.

—Rich Spencer

16 AUGUST 1996 Supplement to Visual Basic Programmer’s Journal

101 TECH TIPS

For VB Dewelopers

LISTVIEW COLUMN SORTING

Give your ListView control in report view the sort functionality
of the Win95 Explorer. This code will allow you to sort by any
column. If your list is already sorted by the column header you
press, the sort order is toggled:

Private Sub ListViewl ColumnClick_
(ByVal ColumnHeader As ColumnHeader)
With ListViewl
'If current sort column header is
'pressed then
If (ColumnHeader.Index - 1) = _
.SortKey Then
'Set sort order opposite of
' current direction.

.SortOrder = (.SortOrder + _
1) Mod 2
Else
'Otherwise sort by this column
'(ascending)
.Sorted = False
'Turn off sorting so that the
' 1ist is not sorted twice
.SortOrder = 0
.SortKey = _
ColumnHeader.Index - 1
.Sorted = True
End If
End With

End Sub

ve3 T

WHERE’S THE BEEP?!

This code will prevent a beep when you hit [ENTER] or [TAB] in
a text box whose maximum character limit has been reached:

—Joe Tuttle

Sub Form_KeyPress (keyascii As Integer)
'Eliminate beep if {ENTER} or {TAB}
If keyascii = 13 Or keyascii = 9 Then _
keyascii =0
End Sub
—Lonnie Broadnax, Michael Ottomanelli, & Preston Werntz

HOW TO DESELECT ALL ITEMS IN
A LIST BOX

A quick way to deselect everything in a multiselect listbox is:

Tistl.Selected(-1) = False

This doesn’t work in VB4.
—John Muller

e o o s o o s s o s s s s e s s e s s e e

For even more tricks and tips go to

http://www.windx.com

=]

AUTOMATIC TAB TO THE NEXT
FIELD WITH MAXIMUM
CHARACTER LIMIT IN A TEXT BOX

This need was established by developing VB applications for
3270 mainframe apps. A user typing in a 3270 edit field is auto-
matically placed into the next field once reaching the maximum
number of characters for the field:

Code:

Sub Textl_KeyUp (keycode As Integer, _
Shift As Integer)

If keycode > 47 And keycode < 123 _
Then

'Only advance if they have just typed

'a number or character.

If Len(Me.ActiveControl.Text) = _
(Me.ActiveControl.MaxLength) Then

SendKeys "{TAB}", True

End If

Endif

End Sub

—Lonnie Broadnax, Michael Ottomanelli, & Preston Werntz

VB3 |
SIMPLIFYING THE CONDITION-
PART OF AN IF STATEMENT

When you write an If statement such as:

If Category = "CM" or Category = "M2" or Category = "P1" or
Category = "ZZ" then

ProcessEmployee

Endif

it can be simplified by:

dim ValidValues as string

ValidValues = "CM M2 P1 77"

' don’t forget to insert any

' categories between Pl and ZZ

if (instr(l, ValidValues, Category)) > 0 then
ProcessEmployee

endif

Not only does this version not require you to go on scrolling
horizontally while writing the code but is faster as well, based
on simple tests | conducted using VB3 on a 486DX-66. Note that
[have used a space to separate categories in ValidValues string.
You may use any separator, such as semicolon, comma, etc. If
you do not use a separator, the ValidValues string will become
“CMM2P1ZZ” and you might get incorrect results and make the
ValidValues string less readable.

—Jaspreet Singh

Supplement to Visual Basic Programmer’s Journal

AUGUST 1996 17

101 TECH TIPS

For VB Developers

=
ELIMINATING THE IF STATEMENT
WHEREVER POSSIBLE

If you have to assign True or False to a variable after testing a
certain condition, then the If statement may be done away with
altogether.

For example, if you have something like this:

If (age < 13 and sex = "M") or (age > _
14 and sex = "F") then FetchRecord _
= true

it can be replaced by:

FetchRecord = (age < 13 and sex = "M")
or (age > 14 and sex = "F")

This performs the same function as the If statement above.
The FetchRecord variable is correctly assigned True or False.
The advantage is that it allows the splitting condition-part of
the If statement (see example below). Further, if you like replac-
ing your If statements by IIf, then you know that IIf requires you
to add msainfx.dll to your projects in VB3. The above version
doesn’t.

If the condition-part of if statement is very lengthy, then the
above technique allows you to split it. Thus, if you have some-
thing like this in VB3:

If (Age > 25 and Category = "M1") or _
(Age > 35 and Category <> "C1") or _

(Age > 45 and Category = "M7") or _
(Age > 45 and Category = "P1") then
ProcessRecord
Endif

you can do this:

Dim Result as integer

Result = (Age > 25 and Category = "M")
or (Age > 35 and Category <> "C1")

Result = Result or (Age > 45 and _
Category = "M7") or (Age > 45 and _
Category = "P1™)

if Result then ProcessRecord

The advantage is that it allows limited splitting of lines in VB3,
thus making the code more readable.
By the way, the technique:

x = (y op z)

to assign True or False to x works in C, Pascal and FoxPro as
well. Remember to use = for assignment in Pascal and == for
testing in C.

—Jaspreet Singh

=
SIZABLE FORMS WITHOUT A TITLE
BAR

If you set a form properties caption to "" and control box to False,
then a form with borderstyle 3 (fixed dialog) will display with-
out its title. Unlike borderstyle zero (none), it keeps the form’s
3-D properties. If you do this with a borderstyle 5 (sizable
toolwindow) form, then you have a completely resizable (down
to 1x1 twip) form.

This can also be done from your code in run time. Adding or
removing the caption will add or remove the title bar. Be aware
that this triggers a form resize event, and that the task bar cap-
tion will also be blank. Finally, remember to put a close button
on your form!

=]
BLANKS IN THE MASKED EDIT
CONTROL

The Microsoft Masked Edit control only allows input that
matches the mask. Similarly, you can only set the Text property
to a string that matches the mask. If you have a mask for a phone
number that only allows numbers (#), you cannot set the text to
blanks. An easy way to set the text to blank is with this code:

"

—Clint Walker

vTemp = mskPhone.Mask
mskPhone.Mask = ""
mskPhone.Text = ""
mskPhone.Mask = vTemp

Removing the mask allows you to set the text to any appro-
priate string. Restore the mask afterwards. I use this code in the
validation event of a data control when adding a new record.

—Scott Wallace
VB3 |

EDITING THE REGULAR GRID

The regular grid that comes with Visual Basic cannot be edited
directly. However, this problem can be easily circumvented with
one line of code:

Private Sub Gridl_KeyPress(KeyAscii As _
Integer)

Gridl.Text = Gridl.Text & Chr(KeyAscii)

End Sub

All the user has to do is select the cell to edit.

—Lev Muginshteyn
=]

ENFORCE UPPERCASE CHARACTERS

Do you want to facilitate the user to enter only uppercase char-
acters during editing in text boxes and other edit controls? Irre-

18 AUGUST 1996 Supplement to Visual Basic Programmer’s Journal

101 TECH TIPS

For VB Dewelopers

spective of the position of CAPS LOCK key, this code in the
KeyPress event of the Form will force the user always to enter
uppercase characters.

Private Sub Form_KeyPress(KeyAscii _

As Integer)
KeyAscii = Asc(UCase(Chr(KeyAscii)))
End Sub

For this code to work, you need to set the KeyPreview prop-
erty of the Form to True.
—Balamurali Balaji

...............

For even more tricks and tips go to
http://www.windx.com

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\ _
Jet\3.0\Engines\Debug

Create a string registry key under this node called “JetShowPlan”
and set it equal to “On.” Now all queries executed from VB4-32
and Access 95 will be logged to a file named SHOWPLAN.OUT in
the current directory. To turn logging off, set the key equal to
“Off.” Note that this file may get large, so you may wish to delete
it every so often. This feature is, of course, completely unsup-
ported and may cause unwanted side effects, so use it with cau-
tion.

—Paul Litwin

=
ADD ‘TYPE AHEAD’
FUNCTIONALITY TO COMBO BOXES

You can add ‘Type Ahead’ functionality to the standard VB
ComboBox control with this subroutine:

Sub ComboTypeAhead(Combo As ComboBox)
Dim i As Integer, _

KeyString As String, _

KeyLen As Integer

KeyString =3D Combo.Text

KeyLen =3D Len(KeyString)

gb1TypeAhead =3D False

If KeyLen > 0 Then

For i =3D 0 To Combo.ListCount - 1

If Left(Combo.List(i), KeylLen) =3D _
KeyString Then

Combo.SetFocus

Combo.ListIndex =3D i

Combo.SelStart =3D Keylen

Combo.SellLength =3D Len(Combo.Text) _
- KeylLen

Exit For

End If

Next i

End If

End Sub

Call this routine from the Change event of the ComboBox with
the name of the ComboBox as the only parameter. Additionally,
you may want to add some code to the KeyPress event to handle
the Delete and Backspace keys (that is where the gblTypeAhead
variable is used), but other than that, this routine will handle all
of the type-ahead functionality.

UNDOCUMENTED FEATURE LOGS
JET QUERIES

Jet 3.0 includes an undocumented feature that lets you log Jet’s
optimization plan of queries. To enable this feature, you must
create this registry key using Windows’ RegEdit program:

—Jon Rauschenberger

=
SECURING A JET DATABASE THE
RIGHT WAY

To secure a Jet database, you must purchase Access 2 for VB3/
VB3-16 or Access 95 for VB4-32 and follow these steps:

1. Use the Access Workgroup Administrator to create a new
workgroup with a non-null Workgroup ID.

2. Start Access and set a password for the default Admin ac-
count.

3. Create a new user account, adding it to the Admins group so it
will have administer privileges. Remove the Admin account from
the Admins group.

4. Restart Access, logging on as the new user, and set a pass-
word.

5. Run the Access Security Wizard. (For Access 2, download a
copy from http://www.microsoft.com/accdev.)

6. Create the user and group accounts for the workgroup.

7. Set permissions on objects for the group accounts. Don’t as-
sign any permissions to the built-in Admin user or Users group
accounts.

Don’t skip any of these steps!

=
INTEGRALHEIGHT PROPERTY OF
LIST AND COMBO BOXES

In VB3, if you wanted to display a list box adjacent to another
control such as a PictureBox on a sizable form, you were con-
fronted with the problem that a list box’s height was constrained
to an integral number of list items. By using a series of Windows
and VB API calls (requiring a special DLL, such as Desaware’s
SpyWorks), you could destroy an existing list-box control, reset
its style bits to include LBS_NOINTEGRALHEIGHT, and re-create
the control, which could then be resized to any height.

The IntegralHeight property is now included in the standard
and data-bound list controls, so you’ll get the expected behav-
ior with automatic resizing tools such as VideoSoft’s Elastic. The
DBList and DBCombo also include a VisibleCount property that
returns the number of visible items in the list.

—William Storage

—Paul Litwin

Supplement to Visual Basic Programmer’s Journal

AUGUST 1996 19

101 TECH TIPS

For VB Developers

REGEDIT ADDITION
“AUTOMATION”

This sample file from Microsoft allows a more automated Win-
dows 95 Registry Addition. You can create a similar file in
Notepad or your favorite text editor, replacing the appropriate
entries in place of the MS Internet Explorer entries listed. Make
sure REGEDIT4 is the first line in the file:

REGEDIT4

[HKEY_LOCAL_MACHINE\SOFTWARE\Microsof_
t\Internet Explorer\Main]

"Default_Page_ URL"="http://www.msn.com"

"Default_Search_URL"="http://www.msn._
com/access/allinone.htm"

[HKEY_CURRENT_USER\Software\Microsof_
t\Internet Explorer\Main]

"Start Page"="http://www.msn.com"

"Search _
Page"="http://www.msn._
com/access/allinone.htm"

Now run the file you create or double-click on the icon. If the
REGEDIT association is set properly, RegEdit will run and place
the appropriate information in the registry.

=
SET FORMS TO NOTHING WITH
CAUTION

It’s a good idea to set your form variables to Nothing to recover
all memory that was allocated for the form module. Executing
Set Form1 = Nothing for a loaded form, however, will have no
apparent effect, but will leave the form module in a confused
state. You can demonstrate this by executing:

—Douglas Haynes

Form2.Show

Set Form2 = Nothing

Form2.Show

Msgbox Forms.Count & " loaded forms"
Unload Form2

Unload Form2

The second line of this code seems to do nothing, but the
second use of Form2’s Show method will in fact load and dis-
play a second instance of Form2. The forms collection will know
about both instances, but only one of them will be unloaded
with the Unload statement.

To avoid these problems, always be sure a form is unloaded
before setting it to Nothing. While you cannot execute Set Me =
Nothing, you can achieve the same effect in a form’s Unload
event:

Form_Unload (Cancel As Integer)

Dim Form As Form
For Each Form In Forms
If Form Is Me Then
Set Form = Nothing
Exit For
End If
Next Form
End Sub

ve3 T

AVOID REDUNDANT EXECUTION
OF CODE

Most collections are zero-based. The COUNT property returns
the number of members of a collection, as opposed to the high-
est member number. So when we see code that loops through
all the members of a collection, it usually looks something like
this:

—William Storage

Dim I%

For I% = 0 To Controls.Count - 1
Controls(I%).Enabled = True
Next

If your application does not mind stepping through the col-
lection in reverse order, this code can be more efficient by elimi-
nating the need to read the collection’s COUNT property and
deducting 1 for each iteration of the loop:

Dim I%

1% = Controls.Count

While 1%
1% = 1% - 1
Controls(I%).Enabled = True
Wend

Irecommend the next technique for similar situations to avoid
redundant execution of code. For example, to count the number
of spaces in a string, we could write:

Dim 1%, C%

C%h =0
For 1% =1 To Len(SomeString$)
If Asc(Mid$(SomeString$, 1%)) _
= 32 Then C% = C% + 1
Next

which calls the Len() function for every iteration of the loop.
Or, you could do it this way:

Dim I%, C%

C% =10
1% = Len(SomeString$)
While 1%

If Asc(Mid$(SomeString$, 1%)) = _

20 AUGUST 1996 Supplement to Visual Basic Programmer’s Journal

101 TECH TIPS

For VB Dewelopers

32 Then C% = C% + 1
1% =1% -1
Wend

=
CHANGE THE MOUSEPOINTER TO
PREVENT USER INPUT

Because setting the MousePointer property for a form only
changes the shape and does not prevent the application from
accepting user input from the mouse or keyboard, [have devel-
oped this tip.

The tip works on an MDI form where there may be several
open child windows, and you need to disable one or all of the
windows during long processing periods (e.g., long database
updates). If you have only one MDI child open or need to dis-
able only one form, you can disable it by setting the Enabled
property to False. If you have several child forms open, create a
collection of forms and scroll through the collection, disabling
each form again by setting the Enabled property to False. When
the selected forms are disabled, set the MousePointer property
for the MDI parent to an hourglass. This will prevent user input
from the mouse or the keyboard until you reverse the process
by enabling the forms and changing the mouse back to what-
ever shape it was before.

The real trick involves setting the MDI parent’s mouse icon
to the hourglass shape. If you just set the MousePointer for the
child form(s) to an hourglass and then disable the child form(s),
the pointer will turn back into the default shape.

—Al Gehrig, Jr.

STUCK WITH PASTE

When you use some custom controls like QuickPak Professional
by Crescent it’s impossible to use the shortcut “Ctrl+V” for
“Paste.” “Ctrl+V” allows you to paste two times the text of the
clipboard. You can eliminate the shortcut from the menu list
but if you want to show in the menu the string “Ctrl+V” you can
use this code in the “main_load” procedure:

—Robert C. Ashcraft

menu_cut.Caption = "&Cut" + _
Chr$(9) + "Ctrl+X"
menu_copy.Caption = "C&opy" + _
Chr$(9) + "Ctri+C"
menu_paste.Caption = "&Paste" _
+ Chr$(9) + "Ctrl+V"
—Daniele Alberti

For even more tricks and tips go to
http://www.windx.com

STANDARD MATH PROBLEM

A program originally written using the Borland C++ Compiler
has two problems in Visual Basic 3.0, Standard Edition. This pro-
gram uses trigonometry to calculate the distance between two
points, when you know their latitude and longitude, such as N
90 W 123 45 56 S 90 W 0.

The C++ formula, using the Inverse Cosine Function acos()
double distance; double radians = 3.141592654 / 180; double
intermediate_result; distance=(69.094*acos(intermediate_result))
/ radians.

There is a resolution difference between C++ and Visual Ba-
sic results.

Problem 1: Inconsistent results: Assume intermediate_result =
0.999995422198391and printing to 10 decimal places. Distance:
Using C++ 11.9876152369 miles, using VB 11.9931567014 miles.
Inverse Cosine input is -1 to +1, its result is 0 to 180 degrees. In
C++, acos(angle).

Visual Basic 3.0, Standard Edition, does not directly support
Inverse Cosine. But VB help shows “Derived Math Functions.”

Microsoft’s formula is: Arcos(x)=Atn(-x/Sqr(-x*x+1))+1.5708.
The difference in resolution is that 1.5708 is too large. When I
subtract 3.67320510333E-06 from 1.5708, my VB results match
my C++ results. Now, [get the exact same answers with VB as
with C++.

Problem 2: Hang on -1. When a value of -1 is presented to this
“Derived Math Function,” Windows Hangs in this Arcos function.
Fix for Visual Basic: if intermediate_result = 1 then distance = 0,
if intermediate_result = -1 then distance = 180 * 69.094

—David Ferber

SIMULTANEOUS DEBUG FOR
SERVER AND CALLING APPLICATION

VB4 not only allows you to create OLE Automation servers, but
to debug the server and the calling application simultaneously.
If you want to create a remote OLE server, set the Instancing
property of the class modules to Creatable SingleUse. This will
make debugging more interesting.

Each time you call that class, the calling application will try
to create another instance (process) of that server. The server
is running in design mode, and VB will not start another copy of
itself and load the server app again. The solution is to tempo-
rarily set the instancing of the class modules to Creatable
MultiUse for testing purposes. Don’t forget to set the instancing
back to SingleUse before compiling the OLE server.

—L.J. Johnson

Supplement to Visual Basic Programmer’s Journal

AUGUST 1996 21

101 TECH TIPS

For VB Developers

=
LEAP YEAR RULES

One of the trickier parts of handling date values is dealing with
leap years. Everyone knows that every fourth year is a leap year
in which February has 29 days instead of the typical 28. What is
less known is that there are two more rules to check to deter-
mine whether a given year is a leap year or not:

® Years that are evenly divisible by 100 are not leap years;
e Years that are evenly divisible by 400 are leap years.

With that in mind, [wrote this function to test whether any
given year is a leap year:

Function IsLeap (iYear As Integer) _
As Integer

'Set Default Value
IsLeap = False

'Check the 400 Year rule

If (iYear Mod 400 = 0) Then
IsLeap = True
GoTo IslLeap Exit

End If

'Check the 100 Year rule

If (iYear Mod 100 = 0) Then
IsLeap = False

GoTo IslLeap_Exit

End If

'Check the 4 Year rule

If (iYear Mod 4 = 0) Then
IsLeap = True

Else

IsLeap = False

End If

IsLeap_Exit:
End Function

(Note: This is the VB3 version. For VB4 substitute a Boolean
return value for the function.)

IDENTIFY NETWORKED CD DRIVES

The 32-bit API is much richer than the 16-bit API. However, the
GetDriveType still reports networked CD drives as just a
DRIVE_REMOTE (i.e., a networked drive). While true, it is not
particularly helpful. Combine the GetDriveType call with the
GetVolumelnformation call to determine that it is both a net-
work drive and a CD drive.

The next-to-last parameter of this call returns a string that
gives the type of file system on that volume: FAT, NTFS, HPFS,
CDFS (CD File System):

—Joseph H. Ackerman

Declare Function GetVolumeInformation _
Lib "kernel32" Alias _
"GetVolumeInformationA" (ByVal _
TpRootPathName As String, ByVal _
TpVoTlumeNameBuffer As String,_
ByVal nVolumeNameSize As Long, _
TpVolumeSerialNumber As Long, _
TpMaximumComponentLength As Long, _
1pFileSystemFlags As Long, ByVal _
1pFileSystemNameBuffer As String, _
ByVal nFileSystemNameSize As _
Long) As Long

pstrRootPath = "E:\"

pstrVolName = Space$(256)

pstrSystemType = Space$(32)

pIingSysTypeSize = CLng(Len(pstrSystemType))

pingVoTlNameSize = CLng(Len(pstrVolName))

pIngRtn = GetVolumeInformation_
(pstrRootPath, pstrVolName, _
pingVoTlNameSize, plngVolSerialNum, _
pingMaxFilenamelLen, plngSysFlags, _
pstrSystemType, pIngSysTypeSize)

= [Es

DATABOUND GRID BUG SOLUTION

A severe bug in VB4 appears when using the Databound Grid
with modal forms. Create 3 forms: form1, form2 and form3. Put a
button command1 on each of the forms. In the click event of
commandl in form1, show form2 modally. In the click event of
command]l in form2, show form3 modally. Drop a DBGRID on
form3. In the click event of command1 in form3, unload form3.

Run forml. Press each button as the forms show up. When
pressing the third button, I get a stack overflow error in both 16-
bit and 32-bit VB4. Also, on Windows 3.1, the system hangs up.

Solve the problem by avoiding modal forms when using bound
controls. If you need modal behavior in a form, all you have to
do is keep track of the form that opened it, and set its Enabled
property to False. You can create a property procedure to keep
areference to the caller form. Then you could show the “modal”
form like this:

—L.J. Johnson

With FormModal
.Prop_Caller = Me
.Show

End With

Now set Caller.enabled to False in the “modal” form Load
event, and to True in the Unload event.
—Luis Miguel da Costa Pereira Ferreira

22 AUGUST 1996 Supplement to Visual Basic Programmer’s Journal

101 TECH TIPS

For VB Dewelopers

USING THE UNDOCUMENTED
COUNT PROPERTY OF
CONTROL ARRAYS

In VB4, each control array is its own collection and therefore
has a Count property. This was not the case in version 3. It is
now possible to loop through all of the elements of a control
array without having to hard-code the maximum value of the
array index.

This feature is not documented in the VB4 manuals or online
help. The likely reason for this is that a control array collection
does not support all of the standard methods and properties of
a “real” collection. The Count property and the Item method are
supported, but the Add and Remove methods are not.

This simple example uses the Count property to determine
which element of an array of option buttons has been selected:

Private Sub FindSelectedOption ()
Dim ii As Integer

For ii = 0 To Optionl.Count - 1
If Optionl(ii).Value Then

MsgBox "Option Button ™ & ii _
& " is selected.”
End If
Next 1ii
End Sub

This procedure will only work if the array indices are con-
tinuous, with no gaps in the sequence. If, for example, the con-
trol array consists of elements 0, 1, 3, 4, the above procedure
will generate a runtime error 340 when it tries to evaluate Op-
tion1(2), and even if this first error is trapped, Option1(4) will
never be reached in the loop, and therefore will not be evalu-
ated.

=X [Eg

HEXADECIMAL COLOR CONSTANTS

Properly designed Windows programs should change their own
colors according to the system colors. One of the reasons why
developers tend to forget that part of design is that it is not easy
to find values for those colors. Microsoft forgot to mention them
in the manuals and they cannot be found in help files either.

There are several ways to determine constants for the sys-
tem colors. One is by the Object Browser. Unfortunately, it could
be time consuming. From now on, you can use this list:

—Craig Everett

System Color Name Color

Menu Text &H80000007&
Scroll Bars &H80000000&
Window Background &H80000005&
Window Frame &H80000006&
Window Text &H80000008&
Active Border &H8000000A&

For even more tricks and tips go to
http://www.windx.com

Active Title Bar &H80000002&
Active Title Bar Text &H80000009&
Application Workspace &H8000000C&
Button Face &H8000000F &
Button Highlight &H80000014&
Button Shadow &H80000010&
Button Text &H80000012&
Desktop &H80000001&
Disabled Text &H80000011&
Highlight &H8000000D&
Highlighted Text &H8000000E&
Inactive Border &H8000000B&
Inactive Title Bar &H80000003&
Inactive Title Bar Text &H80000013&
Menu Bar &H80000004&

—Frank Coliviras and Dejan Sunderic

DETERMINING IF AN OBJECT HAS
BEEN SET

VB4 provides lots of new capabilities to use objects. Unfortu-
nately, all of them require the object to be set beforehand, which
isn’t always feasible. VB provides no way to see if an object has
been set. The only way of checking is to pass the object to a
function and attempt to access it. If it hasn’t been set, an error
(number 91) will occur.

For example:

PubTlic Function IsSomething(o As _
Object) As Long
Dim j As Long

Err.Clear
On Error Resume Next

If TypeOf o Is TextBox Then
j=1
'just a mindless test
'to see if we get an error
End If

If Err.Number = 91 Then
'error 91 = object not set
IsSomething = False
ElseIf Err.Number = 0 Then
IsSomething = True
Else
Err.Raise Err.Number
'if some other error happened, raise it
End If

On Error GoTo O
End Function
—Evan Dickinson

Supplement to Visual Basic Programmer’s Journal

AUGUST 1996 23

101 TECH TIPS

For VB Developers

CREATING INNER JOINS IN AN
ACCESS DATABASE

This seemingly undocumented SQL table qualification syntax
might be useful to access an external table by using the ‘IN’ key-
word. | had used this ability before, but kept having trouble with
joins (probably due to my syntax) until I used the database path
as a qualifier for the table. In this example I separated the four
tables found in the Biblio database into their own databases and
issued this query in an empty database:

SELECT Authors.*

FROM C:\VB3\Bibliol.Authors _
INNER JOIN _
(C:\VB3\Bib1i02.MDB.Titles

INNER JOIN _
(C:\VB3\Bib1i03.MDB.Publishers

INNER JOIN _
C:\VB3\Bib1i04.MDB.[Publisher _
Comments]

ON Publishers.PubID = [Publisher _
Comments].PubID)

ON Titles.PubID = Publishers.PubID)

ON Authors.Au_ID = Titles.Au_ID;

While this may not work on ODBC, it works perfectly with
Access databases and overcomes the single external database
ability with the ‘IN’ clause.

SEQUENTIAL NAVIGATION OF A
TREEVIEW CONTROL

While the TreeView control with its associated Node objects is a
far cry better than the VB3 Outline control, it lacks a method for
sequentially traversing the tree, as if you were scrolling using
the up and down arrow keys. The For Each construct allows you
to process every node, but in order of Index, which can be mean-
ingless if the tree is sorted by the display text. This code, to be
called after the TreeView has been loaded and sorted, creates a
1-based array of keys in the order that the Nodes appear in a
TreeView:

—Mark P. Atwood

Global asKey() as String

Sub Main()
'...Fil1l the TreeViewl control
ReDim asKey(l To _
TreeViewl.Nodes.Count) As String
KeyArray TreeViewl.Nodes(1l).Root.FirstSibling, 1
End Sub

Private Sub KeyArray(n as Node, _
Optional iStart)
Static i As Integer

If IsMissing(iStart) Then

i=1+1
Else

i = iStart
End If

asKey(i) = n.Key

If n.Children > 0 Then KeyArray _
n.Child

Do While n <> n.LastSibling
i=1i+1
Set n = n.Next
asKey(i) = n.Key
If n.Children > 0 Then _
KeyArray n.Child
Loop
End Sub

The first sibling of the root of an arbitrary node is used to
return the first entry in the TreeView. The use of the Optional
parameter allows the routine to be called whenever the TreeView
is reloaded or modified. Once the array is established, it allows
for sequential navigation or searching, or whatever operation
would benefit from knowing the order of all Nodes.

—Greg Frizzle

USE YOUR OWN POPUP MENUS
IN VB4

In VB4 if you want to show a popup menu for a text box, a sys-

tem-provided context menu appears first, and your popup menu

does not appear until you close the system context menu.
Here is a workaround:

Private Sub Textl MouseDown(Button _
As Integer, Shift As Integer, X _
As Single, Y As Single)

If Button = 2 Then
Textl.Enabled = False
PopupMenu mnuFile
Textl.Enabled = True

End If

End Sub
—Mario Coelho

24 AUGUST 1996 Supplement to Visual Basic Programmer’s Journal

101 TECH TIPS

For VB Dewelopers

WRITING ADD-INS CAN BE TRICKY

Writing add-ins for Visual Basic 4.0 can be challenging, reward-
ing, and tricky. If you are not careful writing add-ins, you can
cause VB to do strange things and even abort. Although I'm sure
that other diagnostics can occur, this error has appeared more
than once for me while I was debugging add-ins. The messages
may vary, depending on the operating system, but the result is
the same.

For example, under Windows 95, you might see “This pro-
gram has caused an error and will be terminated...” or “If the
problem persists, contact the vendor....” Under Windows 3.1, it
may result in a GPF.

These occur when the IDE is being unloaded and will be fol-
lowed on a subsequent reload of VB with this: “xxxxxx add-in
could not be loaded, do you want to remove it from the list of
Add-ins?”

After this, you will have to re-execute the add-in to reregister
it for attachment to VB. | have found two causes for these er-
rors:

1. Referencing a property of the VBIDE Instance Object, such as
ActiveProject.Filename in the ConnectAddin Event of the Con-
nector Class.

2. Connecting more menu or sub-menu items than you discon-
nect.

Most programming is an exact science, and strict adherence
to “mostly undocumented” rules is an absolute necessity when
writing add-ins for VB4.

AVOID UPDATE ERRORS IN ACCESS
DATABASES

Avoid “Couldn’t update; currently locked by user ‘name’ on ma-
chine ‘machine’ ” error in VB4 when two or more applications
access the same MS Access database table.

For the given table, a primary or any nonunique key is de-
fined. The two applications may have opened the database table
as any one of the record-set types such as dynaset or table.

If one of the applications is idle (just opened the record set
and no edit/updation taking place) and the other application
tries to update or add a record to the table, then the Error Code:
3260 (“Couldn’t update; currently locked by user ‘name’ on ma-
chine ‘machine’ ”) is displayed.

To avoid this, after the record set is opened (in case of a table
record set, if index is being set, then after the Index property is
set), include this statement:

—Les Smith

DBEngine.Idle (dbFreelocks)

VBA4 releases the table locks and now the other application will
be able to update the database table. For example:

Dim DB as Database, TB as Recordset

For even more tricks and tips go to
http://www.windx.com

Set Db = WorkSpaces(0).0OpenDatabase_
("Test.mdb")

Set TB = Db.OpenRecordset("Customer_
Master",dbOpenTable)

Tb.Index = "PrimaryKey"

DBEngine.Idle (dbFreelocks)

RETRIEVING DATA FROM A DIALOG
FORM WITHOUT USING GLOBALS

From the days of VB3, you no doubt recall the pain of retrieving
answers from a dialog form that you displayed from another form.
The use of Globals was about the only way provided. In VB4,
forms are objects and you can call methods in them from an-
other form just as if they were in a code module. This new fea-
ture allows you to call a function in a dialog form, which will
display itself, and when the form is unloaded, return your an-
swers. Add this code to your main code that needs user input:

—Rajesh Patil

Dim sAnswer As String
sAnswer = frmDialog.Display()

'when control returns sAnswer
'will have the user reply.

To your frmDialog (.frm) file, add this code:
Dim sRetValue As String

Public Function Display() As String
Me.Show vbModal
Display = sRetValue

End Function

Private Sub cmdOK_Click()
' This function must set up the
' return value because the
' Text box will be unloaded when
'"Display" regains control
sRetValue = Textl.Text
Unload Me

End Sub

Obviously, you can retrieve data from more than one con-
trol. In that instance you would pass an object or array to the
Display function for it to use to return multiple values. User-
defined types (UDTs) don’t appear to work.

—Les Smith

Supplement to Visual Basic Programmer’s Journal

AUGUST 1996 25

101 TECH TIPS

For VB Developers

SPEED YOUR ANIMATIONS AND
SAVE MEMORY

Tired of loading icons or bitmaps or creating many images with
the several styles of pictures in form modules that blow up your
application and slow it down in VB3?

If so, you can create several icons or bitmaps of similar style.
Then create a pure text (ASCII) file like printer.txt or printer.rc
this way:

NameID_keyword _[Toad-option]_
[mem-option]_filename

First, define each of the terms in this code. Where namelD
equals Integer or name, the ID has to be unique for every cat-
egory specified by the keyword:

keyword = ICON,BITMAP

If the code “[load-option]” is equal to PRELOAD, then the re-
source loads immediately. If it is equal to LOADONCALL, the
(Default) resource loads when called.

If the code “[mem-option]” is equal to FIXED, the resource
remains at a fixed memory location. If it is equal to MOVABLE,
then the (Default) Resource can be moved if necessary in order
to compact memory. If it is equal to DISCARDABLE, then the re-
source can be discarded if no longer needed.

And “filename” specifies the name of the file that contains
the resource. The name must be a valid MS-DOS file name, and it
must be a full path if the file is not in the current working direc-
tory. The path can be either quoted or nonquoted string.

The text file looks like this:

1 ICON LOADONCALL DISCARDABLE _
C:\ICONS\...\PRNTMANO.ICO

9 ICON LOADONCALL DISCARDABLE _
C:\ICONS\...\PRNTMAN8.ICO

Open the DOS-WINDOW in Win 3.1 or return to DOS and run
the rc.exe that shipped with the German version of VB4 Pro (also
on the American/English version CD-ROM).

It may look like this:

C:\VB\RESOURCE\RC16\rc -r printer.rc
or for the 32-bit RES file:
C:\VB\RESOURCE\RC32\rc -r printer.rc

Next, push enter and the resource file will soon be gener-
ated. Search for the file named “printer.res” or the name you
have chosen.

Create a new project. Add a picture box and a timer to your
form. Then add the RES file to your project.

The timer-event looks like this:

Private Sub Timerl Timer()
Static ID
ID = ID+1

IF ID = 10 Then
ID =1
End IF

Picture.Picture = _
LoadResPicture(ID,1)
End Sub

Don’t forget to set the timer interval.

UNLOADING OUT-OF-CONTROL
DLLs

When I work with VB under Windows 95, I'll often do something
with a program that causes Windows 95 to be unstable. Nor-
mally, I would shut down Windows 95 and restart to clear out all
loaded VBXs and DLLs, but I recently found an easier way.

Create a DOS batch file called RESTART.BAT with these con-
tents on your hard drive:

—Uwe Pryka

EXIT

Within Windows 95, create a shortcut to this batch file. Un-
der the properties, make sure that you select MS-DOS mode un-
der 'Program / Advanced'. This method is much faster than
rebooting the machine.

= [Eg

MOVING ITEMS IN A LIST BOX

To change the item’s location by dragging the mouse in a list
box, follow this tip:

—Michael J. Dyer

Sub Listl_MouseDown (Button As _
Integer, Shift As Integer, X As _
Single, Y As Single)

01d_Index = Listl.ListIndex
TmpText = Listl.Text

End Sub

While the button mouse is on, this event saves the current in-
dex and text to variables:

Sub Listl _MouseUp (Button As Integer,_
Shift As Integer, X As Single, _
Y As Single)

New_Index = Listl.ListIndex

If 01d_Index <> New_Index Then
Listl.Removeltem 01d_Index
Listl.AddItem TmpText, New_Index

End If

26 AUGUST 1996 Supplement to Visual Basic Programmer’s Journal

101 TECH TIPS

For VB Dewelopers

End Sub

When the button mouse is off, a new variable sets the new
mouse location. To test if it is the same, remove the old item and
add the new item with the text saved in TmpText.

General Declarations:

Dim TmpText As String
Dim 01d_Index As Integer
Dim New_Index As Integer

—Scotti, Marcio Cristaiano de Castro

ACTIVATING A PREVIOUS INSTANCE
OF AN APPLICATION

To prevent users from launching multiple instances of your ap-
plication, check the PrevIinstance property of VB’s App object; if
the property is True, the program is already running. To acti-
vate the previous instance, call Windows’ FindWindow,
ShowWindow, and SetFocus APIs:

Global Const SW_RESTORE=9

Declare Function FindWindow Lib "User™ _
(ByVal TpClassName As Any, ByVal
TbWindowName As Any) As Integer

Declare Function ShowWindow Lib "User™ _
(ByVal hWnd As Integer, ByVal _
nCmdShow As Integer) As Integer

Declare Function SetFocusAPI Lib _
"User" Alias "SetFocus" (ByVal _
hWnd As Integer) As Integer

Sub Main ()

Dim hWnd As Integer
Dim iResult As Integer

App object's Title property may be
' set at runtime, as illustrated
here, or at compile time in VB's
Make .EXE' dialog.

App.Title = "Test Application”

If App.PrevInstance Then

ThunderForm is the class name
' for VB forms (Thunder was the
' original code name for Visual
Basic within 'Microsoft)

' Find the existing instance
hWnd = FindWindow("Thunder_
Form", App.Title)

' FindWindow function returns a
' non-zero value if it finds a
matching window

If hWnd <> 0 Then

For even more tricks and tips go to

http://www.windx.com

' Restore window if minimized
iResult = ShowWindow(hWnd,
SW_RESTORE)
' Set focus to the specified window
iResult = SetFocusAPI(hWnd)
' Close this instance
End
End If
End If
' If no previous instance, show
' main form and proceed normally.
frmMain.Show

End Sub

INCORRECT API LISTINGS

APILOD16.EXE and APILOD32.EXE access the file WIN32APL.TXT
to allow the programmer to paste the TYPE declarations needed
to call the Win32 APL

The file WIN32APLTXT incorrectly allots a LONG field to each
bit field the API requires. A misalignment in parameters results,
rendering those TYPEs somewhere between dangerous and use-
less. This could be very difficult to debug.

WIN32APLTXT (incorrectly) shows:

—Senthil Shanmugham

Type COMSTAT

fCtsHold As Long ' wrong!
fDsrHold As Long ' wrong!
fR1sdHo1ld As Long ' wrong!
fXoffHold As Long ' wrong!
fXoffSent As Long ' wrong!
fEof As Long ' wrong!
fTxim As Long ' wrong!
fReserved As Long ' wrong!

cbInQue As Long
cbOutQue As Long
End Type

The WIN31APLTXT correctly says:

Type COMSTAT
bunch_0f_Bits As Long
cbInQue As Long
cbOutQue As Long
End Type
—Andy Rosa

Supplement to Visual Basic Programmer’s Journal

AUGUST 1996 27

101 TECH TIPS

For VB Developers

DATA ENTRY BECOMES USER
FRIENDLY: MOVE TO THE NEXT
CELL IN DBGRID STD CONTROL

When I replaced the Apex dbGrid, with the free upgrade,
TDBGridS1.0CX, I got complaints about the behavior of the grids
when [entered or edited data in TDBGrid Standard. The cell
pointer stays put and highlights the text just entered. The user
must press the enter key a second time or use the arrow key to
move to the next cell.

Three lines of code automatically move the cursor to the next
cell after entering or editing a cell. The grid is in the Bound mode.

1. Create a form level variable:
Dim KC as integer
2. In the TDBGridS1_Keydown Event:
Private Sub TDBGridS1_KeyDown(KeyCode
As Integer, Shift As Integer)

KC = KeyCode ' Trap the keycode
End Sub

3. In the TDBGridS1_AfterColEdit Event:

Private Sub _
TDBGridS1_AfterColEdit(ByVal _
ColIndex As Integer)
statments go here
on the last Tine use this code:
If KC = 13 Then SendKeys "{Enter}"

End Sub

HIGHLIGHTING A ROW IN A
BOUND DBGRID

To highlight the row containing the active cell in a bound DBGrid,
add the record set’s current bookmark to the grid’s SelBookmarks
collection:

—Philip Speck

Private Sub DBGrid_RowColChange _
(LastRow As Variant, ByVal LastCol As Integer)

If datCtl.Recordset.RecordCount Then
DBGrid.SelBookmarks.Add _
datCt1.Recordset.Bookmark
End If

End Sub
—Peter Chyan

=
IDENTIFYING A GENERIC CONTROL
AT RUN TIME

When a procedure can operate on multiple types of controls,
you can use VB’s TypeOf function to determine a control type at
run time:

Function myFunc(ctl as Control)

' This code works in both VB3 & VB4
If TypeOf ctl Is TextBox Then

' Code for text boxes here..
ElseIf TypeOf ctl Is CommandButton _

Then

' Code for command buttons here..
End if

End Function

VB4 adds the new TypeName function, which allows you to
test the control’s type once, then branch based on the result:

Function myFunc(ctl As Control)
Dim sCt1Type as String

' TypeName is new to VB4
sCt1Type = TypeName(ct1)
Select Case sCt1Type
Case "TextBox"
' Code for text boxes here..
Case "CommandButton"
' Code for command buttons
'here..
End Select

End Function

To learn the type (or class) name of a given control, highlight
it at design time and look at VB’s Properties window. The type
name appears to the right of the control’s name in the combo
box at the top of the window.

ve3 T

BE NICE

If you can’t think of anything nice to say about somebody, get to
know them better.

—Senthil Shanmugham

—John Chmela

28 AUGUST 1996 Supplement to Visual Basic Programmer’s Journal

