
 101 TECH TIPS
For VB Developers For even more tricks and tips go to

 http://www.windx.com

WELCOME TO THE FOURTH
EDITION OF THE VBPJ
TECHNICAL TIPS SUPPLEMENT!
These tips and tricks were submitted by profes-
sional developers using Visual Basic 3.0, Visual
Basic 4.0, Visual Basic for Applications, and Vi-
sual Basic Script. The tips were compiled by the
editors at Visual Basic Programmer’s Journal.
Special thanks to VBPJ Technical Review Board
members Doug Haynes, Karl E. Peterson, and Phil
Weber for testing all the code. Instead of typing
the code published here, download the tips from
the Registered Level of The Development Ex-
change at http://www.windx.com.

If you’d like to submit a tip to Visual Basic
Programmer’s Journal, please send it to User Tips,
Fawcette Technical Publications, 209 Hamilton
Avenue, Palo Alto, California, USA, 94301-2500.
You can also fax it to 415-853-0230 or send it
electronically to vbpjedit@fawcette.com or
74774.305@compuserve.com. Please include a
clear explanation of what the technique does and
why it is useful, indicate if it’s for VBA, VBS, VB3,
or VB4, 16- or 32-bit version. Please try to limit
code length to 20 lines. Don’t forget to include your
e-mail and mailing address. We’ll pay you $25 if

we publish your tip.
VB3, VB4 16/32␣ ␣
Level: Beginning

EASY CR/LF PADDING
When I write text in message boxes, labels, and so on, and I need
to include a carriage return/line feed, I use this function, pass-
ing it the number of CR/LFs I need. This saves a lot of typing and
looking up of ASCII values:

Sub cmdDelete_Click()

msg = "Are you sure you want " & _
"to delete this item?" & NL(2) & "Press OK"

rc = MsgBox(msg, 4 + 32 + 256, "Confirm Delete")
...

end sub

Function NL(num_lines As Integer) As String
'***************************************
' This function returns a New Line
' character for the number of times
' passed to the function.
'***************************************
Supple

Dim msg As String
Dim i As Integer

For i = 1 To num_lines
msg = msg & Chr(13) & Chr(10)

Next

NL = msg
End Function

—Bret Cutler, Layton, Utah

VB3, VB4 16/32
Level: Beginning

AUTOSELECT TEXT BOX
CONTENTS
Users often find it faster to retype the entire contents of a text
box rather than position the cursor within the data, and then
edit the data. This is especially true if the length of the data is
short or if the data isn’t visible, as with a password field, for
example. Double-clicking or using a mouse to select the control’s
contents is slow and inconvenient.

I created this small routine to automatically select all data within
a control. I place this routine in a code module so that it’s acces-
sible from all forms. I call this routine from a control’s GotFocus
event. This way, the data is selected if the user tabs to or clicks on
the control, or if a data validation routine does a SetFocus:

Private Sub MyTextBox_GotFocus()
AutoSelect MyTextBox

End Sub

The AutoSelect routine is quite simple:

Sub AutoSelect(SelObject As Control)
' The AutoSelect routine "selects" the
' control’s entire contents as if it were
' doubled-clicked.

SelObject.SelStart = 0
If TypeOf SelObject Is MaskEdBox Then

SelObject.SelLength = Len(SelObject.FormattedText)
Else

If TypeOf SelObject Is TextBox Then
SelObject.SelLength = Len(SelObject.Text)

End If
End If

End Sub
—Kevin Forth, St. Clair Shores, Michigan

VB4 16/32
Level: Beginning

CLEAR THE CLUTTER
Provide your users with a quick way to clear their “messy desk-
top” of extraneous forms by dropping this code into the Click
event of a command button:

For Each Form In Forms
If Form.Name <> Me.Name Then

Unload Form
End If

Next Form
ment to Visual Basic Programmer’s Journal FEBRUARY 1997 1

—James Bell, Charlotte, North Carolina

 101 TECH TIPS
For VB Developers
VB3, VB4 16/32
Level: Beginning

CALCULATE AGE USING DATEDIFF
Use the function DateDiff to calculate an individual’s exact age
based on birth date. DateDiff first calculates the total number of
days an individual has been alive and then divides by 365.25 to
account for leap years. The Int function truncates the division
results by removing the decimal and not rounding:

Function CalcAge(datEmpDateOfBirth as Variant) as Integer
CalcAge = Int(DateDiff(“y”,datEmpDateOfBirth,Date())_

/365.25)

End Function
—Michael Finley, Clarendon Hills, Illinois

VB4 16/32␣ ␣
Level: Intermediate

PREVENT UNWANTED RECURSION
A bug affecting the Sheridan 3D Controls appears in VB 4.0a. I
don’t believe it was in 4.0, and I am certain it was not in 3.0. In
any case, even if you use 4.0, you should pay attention because
the newer OCX may be installed already on users’ machines when
your apps are distributed. I use the Sheridan command buttons
quite a bit for their ability to display an icon as well as text, and
I ran into this problem when I installed VB 4.0a.

If the user double-clicks on a common dialog box (for example, to
select a file), and the double click is physically located above a
Sheridan 3D command button, the Click procedure of that command
button will be fired. To test this, start a new project and place a
Sheridan command button and a common dialog control on Form1.
In the Click procedure of the command button, include this code:

Private Sub SSCommand1_Click()
Const CDERR_CANCEL = &H7FF3
CommonDialog1.DialogTitle = "Open File"
CommonDialog1.filename = "*.*"
CommonDialog1.DefaultExt = ".*"
CommonDialog1.CancelError = True
CommonDialog1.Filter = "All Files (*.*)|*.*"
On Error Resume Next
CommonDialog1.Action = 1
If Err = CDERR_CANCEL Then

Exit Sub
End If
On Error GoTo 0

End Sub

Run the program, click on the command button, and when
the common dialog appears, move it so that the name of any file
appears over the button. Double-click on the file name. The com-
mon dialog will disappear and a new one will appear, resulting
from the SSCommand1_Click event firing again.

The solution is to declare a static “flag” variable, FalseClick,
within the button’s Click event. Then change the code in the
SSCommand1_Click procedure to read:

Private Sub SSCommand1_Click()
Const CDERR_CANCEL = &H7FF3
Static FalseClick As Boolean
2 FEBRUARY 1997 Supplement to Visual Basic Programmer’s Jou
If FalseClick Then Exit Sub
FalseClick = True
CommonDialog1.DialogTitle = "Open File"
CommonDialog1.filename = "*.*"
CommonDialog1.DefaultExt = ".*"
CommonDialog1.CancelError = True
CommonDialog1.Filter = "All Files (*.*)|*.*"
On Error Resume Next
CommonDialog1.Action = 1
If Err = CDERR_CANCEL Then

FalseClick = False
Exit Sub

End If
On Error GoTo 0

DoEvents 'allow for recursion
FalseClick = False

End Sub

The DoEvents function is required in any procedure that is so short
that the last statement executes before the recursion begins. I hope
this workaround can help others fix the same problem.

—Michael P. Rose, Kingwood, Texas

VB3
Level: Intermediate

OBTAINING SYSTEM DATE FORMAT
The DateCheck function is useful when you use the Masked Edit
control for entering the date according to the system format.
Some countries use the MM/DD/YYYY format, and other coun-
tries, like India, use the DD/MM/YYYY format. Instead of hard-
coding the Masked Edit controls format as well as mask proper-
ties, use this function to set the required date format according
to the control panel settings.

In the General declaration section of the module, define this:

Declare Function GetProfileString Lib _
"Kernel" (Byval Sname$, ByVal Kname$, Byval Def$, _
Byval Ret$, Byval Size%) as integer

global datemask as variant
global dateformat as variant

Sub DateCheck()
Dim Strsecname as string
Dim Strkeyname as string
Dim Varsuccess as variant
Dim Strretdate as string
Dim Strretsep as string
Dim Strchar as string * 1

Strsecname = "Intl"
Strkeyname = "sShortDate"
Strretdate = string$(11,0)
Varsuccess = GetProfilestring_

(Strsecname,Strkeyname,"",Strretdate,_
Len(Strretdate))

Strsecname = "Intl"
Strkeyname = "sDate"
Strretsep = String$(2,0)
Varsuccess = GetProfileString_

(Strsecname,Strkeyname,"",_Strretsep,Len(Strretsep))
Strretsep = Left$(strretsep,1)
Strchar = Ucase$(Left$(strretdate,1))
datemask = "##" & Strretsep & "##" & Strretsep & "####"

Select case strchar
case "D" : dateformat = "DD" _

& strretsep & "MM" & strretsep & "YYYY"
rnal

case "M" : dateformat = "MM" _

 101 TECH TIPS
For VB Developers For even more tricks and tips go to

 http://www.windx.com

—Andrea Nagar, Torino, Italy
& strretsep & “DD” & strretsep & "YYYY"
case "Y" : datemask = "####" _

& Strretsep & "##" & strretsep & "##"
dateformat = "YYYY" & _

strretsep & "MM" & strretsep & "DD"
End select

End Sub

In the Form_Load event, call the DateCheck procedure to get
the current date format, and assign format and mask properties
of the Masked Edit control:

Sub Form_Load()
DateCheck
' Call the datecheck procedure
Mskdd.format = dateformat
Mskdd.mask = datemask

End Sub
—S. Saravanan, Selaiyur, Madras, India

VB4 32
Level: Intermediate

LONG FILE NAMES CAN BE
CONFUSING
If you want to open Paint with a file from your application, it’s
better to convert the path of the file you want to open from long
to short names. Doing so is wise because in some situations—if
your path contains spaces, for example—Paint may refuse to work
properly. Before passing a file name to Paint, convert it to short
names with this routine, which takes advantage of the Win32 API:

Declare Function GetShortPathName Lib "kernel32” Alias _
"GetShortPathNameA" (ByVal lpszLongPath As String, _
ByVal lpszShortPath As String, _
ByVal cchBuffer As Long) As Long

Function ShortName(LongPath As String) As String
Dim ShortPath As String
Const MAX_PATH = 260
Dim ret&
ShortPath = Space$(MAX_PATH)
ret& = GetShortPathName(LongPath, ShortPath, MAX_PATH)
If ret& Then

ShortName = Left$(ShortPath, ret&)
End If

End Function

This trick may prove useful with any application you pass
file names to. It would be smart to try passing “strange” file
names/paths to make sure.

—Andrea Nagar, Torino, Italy

VB3, VB4 16/32
Level: Beginning

“FILE EXISTS?” REVISION
To adapt the tip “File Exists?” (see “101 Hot Tech Tips for VB
Developers,” Supplement to the August 1996 issue of VBPJ, page
7) to a directory list box, it is necessary to control the error that
occurs when the user selects the root (C:\):
Supplem

Sub Dir1_Change
Dim File As String
File = Dir1.Path
If Right$(File, 1) = "\" Then

File = File & "himem.sys"
Else

File = File & "\" & "himem.sys"
End If
' Chuong Van Huynh’s tip
If Dir$(File) <> "" Then

MsgBox "himem.sys exists !"
End If

End Sub

Without testing to see if the path already ends with a
backslash, as it would when it’s the root directory, an error oc-
curs because of the string “c:\\himem.sys.”

—Michel Rohan, Menthonnex Sous Clermont, France

VB3, VB4 16/32
Level: Intermediate

TRIMMED TO FIT
This piece of code trims long file names to fit into forms cap-
tions, text boxes, and other limited spaces. The code allows you
to specify the number of characters a file name must be before
it performs the trimming. For example, if the label can hold 50
characters, then you would type LongDirFix(nFile,50). It’s as
simple as that. Here’s the code:

Function LongDirFix(Incomming As _
String, Max As Integer) As String

Dim i As Integer, LblLen As Integer, StringLen As Integer
Dim TempString As String
TempString = Incomming
LblLen = Max
If Len(TempString) <= LblLen Then

LongDirFix = TempString
Exit Function

End If
LblLen = LblLen - 6
For i = Len(TempString) - LblLen To Len(TempString)

If Mid$(TempString, i, 1) = "\" Then Exit For
Next
LongDirFix = Left$(TempString, 3) + _

"..." + Right$(TempString, Len(TempString) - (i - 1))
End Function

—Shafayat Kamal, Wallington, New Jersey

VB3, VB4 16/32
Level: Beginning

USE RLES TO REDUCE EXE SIZE
Many programs use a splash screen to display the logo of the
program. The logo is usually made by an image. You used to store
it as a BMP (uncompressed) in an image box. Perhaps you don’t
know that you also can put an RLE image (compressed bitmap—
PaintShop Pro supports this format) within VB4. Select the im-
age, click on All Files, and select your RLE file. The size of your
EXE will decrease and your app may load faster. There’s a trade-
off, however, in the fact that it will be smaller to read from disk,
but it will consume more time as it’s decoded to the screen.
ent to Visual Basic Programmer’s Journal FEBRUARY 1997 3

 101 TECH TIPS
For VB Developers
VB4 16/32
Level: Beginning

WHERE DOES IT END?
When using the line-continuation character facility—the combi-
nation of a space followed by an underscore (_) used in the de-
velopment environment to extend a single logical line of code to
two or more physical lines—it can be difficult to determine where
the sentence begins and ends.

One easy way to avoid this difficulty is to set a breakpoint in
the desired line. The line will be set to the breakpoint color, be-
coming an obvious code line. To remove the breakpoint from
the Run menu, choose Toggle Breakpoint (F9) again.

To set a breakpoint, position the insertion point anywhere in
a line of the procedure where you want execution to halt. From
the Run menu, choose Toggle Breakpoint (F9). The breakpoint
is added, and the line is set to the breakpoint color defined in
the Editor tab of the Options dialog box.

—Jose Alberto Marques da Silva, Coimbra, Portugal

VB3, VB4 16/32
Level: Beginning

CHEAP GRAPHIC BUTTONS
You can use the Wingdings font to put simple graphics on a stan-
dard command button. Put a standard command button on a
form, and in the Properties window, change the button’s font to
Wingdings. Load the Character Map application that comes with
Windows, and change the font to Wingdings. Select the picture
you want and copy it to the clipboard. Now change back to VB
and select the Caption property for the command button in the
Properties window. Paste the new character in the Caption prop-
erty (you can also use the Keystroke that is shown at the bot-
tom of the character map window). You can make the picture
bigger by changing the font size. This method is useful if you
don’t need color graphics and don’t want the additional over-
head of a 3-D command button. Be forewarned that it’s possible
your user might have removed this font from his or her system,
and this could cause unexpected runtime errors.

—David Moulton, Knoxville, Tennessee

VB3, VB4 16/32
Level: Intermediate

“REMEMBER SWAP?”
CORRECTION
The tip “Remember SWAP?” [“101 Hot Tech Tips for VB Develop-
ers,” Supplement to the August 1996 issue of VBPJ, page 13] has
a common error. This line actually creates three variants and
one string, rather than the four strings desired:

Dim a, b, c as string * 4

The line should read:

Dim a as string * 4
Dim b as string * 4
Dim c as string * 4
4 FEBRUARY 1997 Supplement to Visual Basic Programmer’s Jou

—Timothy J. Hoffmann, El Segundo, California
VB4 16/32
Level: Intermediate

SHELLING MS INTERNET MAIL
If you are using the new mail program that can be downloaded
for free from Microsoft’s Web site, you can run it from within
your program. Simply add this command to a command button:

X = Shell("C:\WINDOWS\EXPLORER.EXE /root,C:\WINDOWS\ _
Internet Mail.{89292102-4755-11cf-9DC2-00AA006C2B84}", 3)

Note that for this example, the Windows directory name is hard
coded. For a production app, call the GetWindowsDirectory API
and use that return value instead.

—Fred Lyhne, Salt Spring Island, British Columbia, Canada

VB4 16/32
Level: Intermediate

REFER TO COLUMNS IN A DBGRID
CONTROL
Columns in a DBGrid control are bound to database fields. How-
ever, the index number of a column doesn’t tell you which field
it represents. Therefore, referring to DBGrid1.Columns(0).Value
is not very descriptive. It’s better to introduce variables with
clear names, which are bound to specific columns. In the decla-
rations section of the form, for example, the code reads:

Dim ColOrder_ID As Column
Dim ColArticle_ID As Column
Dim ColAmount As Column

In the Form_Load event of the form, the code reads:

With DBGrid1
Set ColOrder_ID = .Columns(0)
Set ColArticle_ID = .Columns(1)
Set ColAmount = .Columns(2)

End With

It’s no longer necessary to refer to DBGrid1.Columns(0).Value, for
example, but you can use ColOrder_ID.Value instead. ColOrder_ID
is, of course, the same as DBGrid1.Columns(0). If any property
value of DBGrid1.Columns(0) changes, the same property value
of ColOrder_ID changes accordingly, and vice versa.

Later on, when you insert a database field into the grid, you
change only the index numbers of the columns in the code of
the Form_Load event.
—George van der Beek, Nieuw Lekkerland, The Netherlands

VB4 32
Level: Intermediate

MAKE COLUMNHEADERS THE
PERFECT WIDTH
When you’re dynamically adding ColumnHeaders to a ListView
control at run time, you may not know how long the text for the
header will be, so the user must readjust the width of the column
to see it. But by making a label with its Visible property set to
rnal

False, and its Autosize property set to True, you can fill up the

 101 TECH TIPS
For VB Developers For even more tricks and tips go to

 http://www.windx.com

—Dave Doknjas, Surrey, British Columbia, Canada
label with the same text that’s going to be in the header. Then use
Label1.Width in the Add argument for the ColumnHeader:

Private Sub Command1_Click()
Dim ColumnText as String, clmx as ColumnHeader
ColumnText = _

"A very long header for " & "the ListView control"
Label1.Caption = ColumnText
set clmx = ListView1.ColumnHeaders.Add_

(, , ColumnText, Label1.Width)
ListView1.View = lvwReport

End Sub
—Rich Wigstone, Hoffman Estates, Illinois

VB3
Level: Beginning

HIDDEN MDI CHILDREN

“Hide” an MDI child form with a non-sizable border style (0 or 1)
using this code in the MDI child’s Form_Load event:

form1.Move form1.Left, form1.Top, 0, 0

Use a label control covering the visible area of the form to
allow switching on and off:

If form1.Height = 0 Then
form1.Move form1.Left, form1.Top, _

form1!Label1.Width, form1!Label1.Height
Else

form1.Move form1.Left, form1.Top, 0, 0
End If

The form remains loaded but invisible and is immediately
available when required. The label control should consume no
extra resources. This method provides a quick popup window
within MDI.

—Ross Gourlay, Edinburgh, Scotland

VB3, VB4 16/32
Level: Intermediate

DISPELLING PERFORMANCE MYTHS
• Omitting the counter from a Next statement does not speed
up a For loop.
• Calling a procedure in a BAS module is not slower than calling
a procedure contained in the same FRM module. The only ex-
ception is the first call to any procedure in a BAS module be-
cause VB loads BAS modules on first reference.
• Because VB is interpreted, the overhead of interpretation far
outweighs the time it takes to execute the actual code that does
the work. Wrong. References to control properties, for example,
can be two to three orders of magnitude slower than references
to simple variables.
Supple

—Pat Dooley, Cleveland, Ohio
VB3, VB4 16
Level: Advanced

GET/PUT ARRAYS TO DISK
The API functions “_hwrite” and “_hread” can be useful for writ-
ing arrays directly to files and, at some later time, reading these
files directly into arrays having the same structure. They are
fast and easy to use:

'this API function is used to write arrays to binary files:
Declare Function hwrite Lib "Kernel" Alias "_hwrite" _

(ByVal hFile As Integer, _
hpbBuffer As Any, ByVal cbBuffer As Long) As Long

'this API function is used to read arrays from binary files:
Declare Function hread Lib "Kernel" Alias "_hread" _

(ByVal hFile As Integer, _
hpbBuffer As Any, ByVal cbBuffer As Long) As Long

The next routine writes a two-dimensional integer array
(“integer_array”) to a binary file (“binary_file”) with the API func-
tion “hwrite.” The array can later be read back from the file with a
nearly identical routine calling the “hread” API function. It is straight-
forward to modify this procedure for other sizes and types of
arrays (except for arrays of user-defined types and variable-length
strings), but it cannot be made generic over any number of array
dimensions because of the way these API functions are called:

Sub WriteIntegerArrayToFile_
(ByVal binary_file As String, _
integer_array() As Integer)

Const INTEGER_BYTE_SIZE = 2
Dim binary_file_handle As Integer, _

dos_file_handle As Integer
Dim bytes_written As Long, bytes_to_write As Long

'get the size of the array in bytes:
bytes_to_write = _

(UBound(integer_array, 1) - _
LBound(integer_array, 1) + 1) _
(UBound(integer_array, 2) - _
LBound(integer_array, 2) + 1) _
INTEGER_BYTE_SIZE

'open the file in binary mode:
binary_file_handle = FreeFile
Open binary_file For Output As binary_file_handle
dos_file_handle = _

FileAttr(binary_file_handle, 2)
'make the API call:
If dos_file_handle <> 0 Then

bytes_written = _
hwrite(dos_file_handle, integer_array (_
LBound(integer_array, 1), _
LBound(integer_array, 2)), _
bytes_to_write)

End If
Close binary_file_handle

End Sub
ment to Visual Basic Programmer’s Journal FEBRUARY 1997 5

 101 TECH TIPS
For VB Developers
VB4 32
Level: Intermediate

DEBUGGING USING THE QUERY
TOPVALUES PROPERTY
I speed up the debugging of applications with queries that return
large record sets by using Access 95 to temporarily set the TopValues
within the query stored in the MDB. VB4 cannot get at the TopValues
property of a stored query. This method allows the query to run in
context without any artificial tests in VB to reduce its output.

Open the MDB with Access 95. Select the Queries tab. High-
light the query. Click on Design, then right-click. Select Proper-
ties and click again. Change the TopValues property and save
the query design. To reverse the change, set TopValues to All.

—Stan Mlynek, Burlington, Ontario, Canada

VB3
Level: Beginning

FIXED DIALOG FORMS IN VB3
A VB3 form that has a fixed double border does not show the
form’s icon in the upper left-hand corner if you have the control
box set to True. Here’s a way to have a double border (3-D dia-
log border) form that sports a visible icon as well as the stan-
dard close “X” in the upper right-hand corner, similar to the VB4
Fixed Dialog form. Choose the form you want and set BorderStyle
to 2 - Sizable, ControlBox to True, and MaxButton and MinButton
to False, and set the form’s icon to your application’s ICO file.
Place this code in the form events:

(general) (declarations)
Dim MeHeight As Integer
Dim MeWidth As Integer

Sub Form_Load ()
MeHeight = Me.Height
MeWidth = Me.Width

End Sub

Sub Form_Resize ()
Me.Height = MeHeight
Me.Width = MeWidth

End Sub

When the user tries to resize the form, the sizing rectangle
will be visible, but the form will snap back to its former size.

—Ken Zinn, Miamisburg, Ohio

VB3, VB4 16/32
Level: Intermediate

NULL HANDLING IN DATABASE I/O
Nulls are still a problem in VB3/VB4—they cause unexpected
errors. To handle them, you can read the MDB field into a vari-
ant, which can hold a null and then test for it later, or replace all
nulls with blank strings to protect the application.

To me, nulls serve no logical purpose. I prefer to eradicate
them immediately. I have developed a family of I/O pick-up rou-
6 FEBRUARY 1997 Supplement to Visual Basic Programmer’s Jou

tines that I use at the physical interface next to the database field:
Public MyDB As Database
Public MyRS As Recordset
Dim TestVariant As Variant
Set MyDB = OpenDatabase("testjet3db")
Set MyRS = MyDB.OpenRecordset("NameTable")
'Sample Calls
TestVariant = ScreenForNull(MyRS![FirstName])
TestVariant = ScreenForNull(MyRS![FirstName], " ")
Public Function ScreenForNull(aField As Variant, Optional _

ByVal DefaultReturn As Variant) As Variant
If IsNull(aField) Then

If Not _
IsMissing(DefaultReturn) Then
ScreenForNull = DefaultReturn

Else
ScreenForNull = ""

End If
Else

ScreenForNull = aField
End If

End Function
—Stan Mlynek, Burlington, Ontario, Canada

VB3, VB4 16/32
Level: Advanced

AUTOMATICALLY UPGRADE
WORKSTATION EXES

I’m programming for a LAN and quite often I add requested fea-
tures to the program. The LAN is set up so that each workstation
is running its own copy of the program and is only reading/writ-
ing data files on the server. This arrangement has significantly
increased the startup speed of the program; however, when the
EXE file is changed, all the workstation programs must be changed.
I get around having to go to each station with this program:

Private Sub Form_Load()
On Error GoTo errorhandler
' the Command function Returns the
' argument portion of the command
' line used to launch Microsoft
' Visual Basic or an executable
' program developed with Visual Basic.
' ie:(thisprog.exe c:\localdir\prgcopied.exe
' k:\servrdir\prgtocopy.exe)
If FileDateTime(Left(Command$, _

InStr(Command$, " ") - 1)) < _
FileDateTime(Mid$(Command$, _
InStr(Command$, " ") + 1)) Then
' case the file does not exist
' locate the form designed to your pref.
Top = (Screen.Height - Height) / 2
Left = (Screen.Width - Width) / 2
' containing a label
label1 = "Copying " & Mid$(Command$, InStr_

(Command$, " ") + 1) & _
" to your hard_disk..."

' make the form it visible so the
' operator has something to look
' at while the program is copied
Visible = True
Refresh
' copy file as per parameters in Command$
FileCopy Mid$(Command$, _
rnal

InStr(Command$, " ") + 1), _

 101 TECH TIPS
For VB Developers For even more tricks and tips go to

 http://www.windx.com

—Clinton D. Hess, Ocoee, Florida
Left(Command$, InStr(Command$, " ") - 1)
End If
'start the program
x = Shell(Left(Command$, InStr(Command$, " ") - 1), 3)
End
Exit Sub

errorhandler:
If Err = 53 Then 'file not found

Resume Next 'copy the file anyway
Else 'trap other errors

MsgBox "Error # " & Err & Chr(10) & Error _
& Chr(10) & "program will be terminated"
End

End If
Exit Sub

End Sub
—Fred Lyhne, Salt Spring Island, British Columbia, Canada

VB3, VB4 16/32
Level: Beginning

AUGMENTING ERROR$
In many places, I include Error$ as picked up in an error trap in
a descriptive message. I use a function to expand its meaning. I
call the function TSS for Time Stamped String to keep it short. It
works something like this:

MsgBox TSS(Error$) & " in Mytest"
Public Function TSS (ByVal aString As String)

If Len(aString) Then
TSS = aString & " at " & CStr(Now)

Else
TSS = "Error$ is Blank at " & CStr(Now)

End If
End Function

—Stan Mlynek, Burlington, Ontario, Canada

VB3, VB4 16/32
Level: Intermediate

CALLING ON WORD
Microsoft Word exposes the WordBasic object. Through this
object, you can execute WordBasic statements. The WordBasic
statements and functions can be used as methods of the
WordBasic object. Most WordBasic method names match the
menu selection available in Word, and the parameters match
the dialog items:

'Declare form level
Dim wd As Object
Sub CreateWordObject()
Set wd = CreateObject ("Word.Basic")
wd.FileNewDefault
wd.FontSize 20
wd.Insert "Hello, World"
wd.FileSaveAs "Hello.Doc"
wd.FileClose

If you are familiar with Microsoft Word, you know that each
method name corresponds to the menu name concatenated by
submenu option names, and the functionality is the same as in
Word. You can also use the Word Macro recorder to create code
and then copy that code to your Visual Basic application.
Supple

—Shikha Arora, Detroit, Michigan
VB3
Level: Intermediate

PRINTING PROBLEM WITH WIN95
Microsoft is currently working on a printing problem. Visual Basic
3.0 applications running in Windows 95 cannot print to shared
printers with an embedded space. If a shared printer has an
embedded space in the computer or printer name, the Visual
Basic application will generate an Error 482.

To work around this problem, change the computer or shared
printer name to a name without an embedded space, or create a
local printer and redirect the output to the shared printer with
an embedded space (see Windows 95 online help).

Add this code to your Visual Basic 3.0 applications to check
for the error. Warning your users with a polite message box is
more tolerable than an Error 482 message. This code assumes
that you have declared the Windows API functions GetVersion
and GetProfileString:

Function Win95PrintBug ()
Dim LongReturn As Long, IntegerReturn As Integer, _

PortName As String
Dim StringReturn As String * 256, _

NullString As String * 256
LongReturn = GetVersion ()
If LongReturn = 0 Then

Win95PrintBug = False
'Code for failed GetVersion call

Else
LongReturn = LongReturn And &HFFFF&

'Mask-Off upper two bytes
If LongReturn = (95 * 256) + 3 _

Then ' (Minor Version * 256) _
' + Major Version Code for Windows 95
' operating system
IntegerReturn = GetProfileString ("windows", _

"device", NullString, StringReturn, 256)
StringReturn = Left$ _

(StringReturn, IntegerReturn)
StringReturn = Right$ _

(StringReturn, Len(StringReturn) - _
InStr(StringReturn, ","))

PortName = Trim$ (Mid$ (StringReturn, InStr_
(StringReturn, ",") + 1))

If InStr(PortName, " ") <> 0 Then
Win95PrintBug = True
' VB 3.0 cannot print to this port

Else
Win95PrintBug = False
' VB 3.0 can print to this port

End If
Else

Win95PrintBug = False ' Operating
' system is not Windows 95

End If
End If

End Function

For more information, check out the Microsoft Knowledge
Base article Q130650.
ment to Visual Basic Programmer’s Journal FEBRUARY 1997 7

 101 TECH TIPS
For VB Developers

—David S. McBride, Scottsdale, Arizona
VB4 16/32
Level: Beginning

MANAGE FOCUS WITH MDI
TOOLBARS

While developing MDI applications in VB 4.0, you probably have
noticed that the cursor on the MDI child disappears when you
click on the toolbar on the MDI parent. You cannot navigate
through Tab or any other key. To avoid this problem, put this
one line of code in the MouseUp event of every Toolbar object:

Private Sub tbMain_MouseUp(Button As Integer, Shift _
As Integer, X As Single, Y As Single)
me.setfocus

End Sub
—Rajeev Madnawat, Sunnyvale, California

VBA, VB4 16/32
Level: Intermediate

HARD-LOCK A TABLE
In many applications, I want to make absolutely sure that the
data in a Jet table doesn’t get modified under any circumstances.
I hard-lock the table in addition to using any system-level secu-
rity to protect it. Also, this hard lock stays with the MDB if it is
issued with an application.

Place the expression True=False into the ValidationRule prop-
erty of the table to lock it. The Jet evaluates this expression to
False and blocks updates to the table:

'Declarations
Public MyDB As Database
Dim Dummy As Integer
'Sample calls
Dummy = HardLockTable("UnLock", "TestTable")
Dummy = HardLockTable("Lock", "TestTable")
Function HardLockTable_

(ByVal whichAction As String, _
ByVal aTable As String) As Integer

On Error GoTo HardLockTableError
'Default return
HardLockTable = True
Select Case whichAction
Case "Lock"

MyDB.TableDefs(aTable).ValidationRule = "True=False"
MyDB.TableDefs(aTable).ValidationText = _

"This table locked via " & _
"ValidationRule on " & Now

Case "UnLock"
MyDB.TableDefs(aTable).ValidationRule = ""
MyDB.TableDefs(aTable).ValidationText = ""

Case "TestThenUnLock"
If MyDB.TableDefs(aTable)._

ValidationRule = "True=False" Then
MyDB.TableDefs(aTable).ValidationRule = ""
MyDB.TableDefs(aTable).ValidationText = ""

End If
End Select
HardLockTableErrorExit:

'subFlushDBEngine
'optional, see next suggestion

Exit Function
8 FEBRUARY 1997 Supplement to Visual Basic Programmer’s Jou

HardLockTableError:
HardLockTable = False
MsgBox Error$ & " error " & _

"in HardLockTable trying " & _
"to " & whichAction & " " & _
aTable

Resume HardLockTableErrorExit
End Function

—Stan Mlynek, Burlington, Ontario, Canada

VB4 16/32
Level: Intermediate

NEW FEATURE ALLOWS DATA
STRUCTURES TO BE MORE
COMPLEX
VB4 allows you to create data structures that are more dynamic
than previous versions allowed, thanks to the possibility of hav-
ing dynamic arrays within types. For example, a tree structure
with three levels can be created with user-defined types and
dynamic arrays:

Private Type LeafType
'we’ll let the leaves be integers
Leaf As Integer

End Type
Private Type BranchType

'a branch is an array of leaves:
Branch() As LeafType

End Type
'a tree is an array of branches:
Private Tree() As BranchType

This next code sets up a tree with three branches. The first
branch has three leaves, the second branch has two leaves, and
the third branch has five leaves:

ReDim Tree(1 To 3) 'three branches
ReDim Tree(1).Branch(1 To 3)
'three leaves on the first branch
ReDim Tree(2).Branch(1 To 2)
'two leaves on the second branch
ReDim Tree(3).Branch(1 To 5)
'five leaves on the third branch

You can add other fields to allow parts of the tree other than
the leaves to store data.

—Dave Doknjas, Surrey, British Columbia, Canada

VB3, VB4 16/32
Level: Intermediate

REGARDING “VALIDATING
NUMERIC INPUT”
The tip you published on page 70 of the September 1996 issue of
VBPJ on “Validating Numeric Input” was a good tip. However,
the function failed to take into account the use of the comma (,)
as the decimal separator. The United States uses the period, but
Europeans tend to use the comma. To correct this problem, use
the value of the “sDecimal” variable from “win.ini.”
rnal

 101 TECH TIPS
For VB Developers For even more tricks and tips go to

 http://www.windx.com

—Kenneth L. Creel, Lynden, Washington
VB3, VB4 16/32
Level: Intermediate

CODE ALL KEYPRESS EVENTS IN
ONE MOVE
Do you need to tab through all those edit boxes? Are you tired
of coding all of their KeyPress events? If so, set the tab indexes
as you normally would. Then set the form key preview to True.
In the form KeyPress event, enter this code:

If KeyAscii = 13 Then
SendKeys "{Tab}"
KeyAscii = 0

End If

This will tab to all the controls, so if you don’t want to tab to
a command button, set its tab stop to False.

—Mark Patenaude, Santee, California

VBA, VB3, VB4 16/32
Level: Intermediate

TEST FOR LEAP YEAR
The tip “Leap Year Rules” [“101 Hot Tech Tips for VB Develop-
ers,” Supplement to the August 1996 issue of VBPJ, page 22] illus-
trated how to easily determine if any given year is a leap year. I
believe I can offer a simpler, smaller function that does the same
thing.

Simply pass in the year you are testing, append that year to
02/29/, and use the IsDate function to see if that is a valid date. If
02/29/xx is not a valid date, then you know it is not a leap year:

Function IsLeap(sYear As String) As Integer
If IsDate("02/29/" & sYear) Then

IsLeap = True
Else

IsLeap = False
End If

End Function
—Michael Willeson, Tea, South Dakota

VB3
Level: Intermediate

PRINT A SINGLE SUB OR FUNCTION
Need a fast way to print only one sub or function in VB3 that
also takes care of the problem some printers have in printing
the last page?

Create a small form with one command button. Change the
button’s Caption to Print Sub. Add this code to the button’s Click
event:

Sub Command1_Click ()
'Make sure VB has the focus.
AppActivate "Microsoft Visual Basic"
'Clear the Clipboard just in case.
Clipboard.Clear
'Select the Sub or Function and copy
'it to the Clipboard.
SendKeys "^{HOME}" & "^+{END}" & "%EC", True
Supple

'Print the Clipboard
Printer.Print Clipboard.GetText ()
'Form Feed in case printer needs it
'to print the last page.
Printer.NewPage
'End the print job.
Printer.EndDoc
'Unmark the Sub or Function.
SendKeys "{HOME}", True

End Sub

Move the form to a spot you want it to appear in when run-
ning. Compile it to an EXE file. Run it along with Visual Basic.
When you want to print a sub or function, make sure the cursor
is in the Sub or Functions code box, and click on the Print Sub
button.

Printer.EndDoc called immediately after Printer.NewPage
ensures that no blank page is printed.

—Kenneth L. Creel, Lynden, Washington

VBA, VB3, VB4 16/32
Level: Intermediate

A FAST WAY TO CHANGE CASE
Do you need to convert user input to all upper case in VB3? All
the ways I have seen to force user input to all upper case is to
make calls to the Chr and UCase functions in the variant or string
form, in addition to calling the Asc function.

Why not use integers only, eliminating calls to these func-
tions? This method is easy because the only difference between
lower and upper case letters is bit five. The number 223 conve-
niently has all bits except bit five:

Lower case a = 01100001
Upper case A = 01000001
Number 223 = 11011111

Sub AllUppers (KeyAscii As Integer)
'If KeyAscii is in range, then
'perform bit-wise comparison and assign result.
If KeyAscii > 96 And KeyAscii < 123 Then KeyAscii = _

(KeyAscii And 223)
End Sub

If you have multiple text controls needing this input, put the
Sub in a code module, and call it from the KeyPress event of the
Text controls whenever you need it.

Similarly, 32 = 00100000, so to convert from upper to lower
case, use:

If KeyAscii > 64 and KeyAscii < 91 Then KeyAscii = _
(KeyAscii Or 32)
ment to Visual Basic Programmer’s Journal FEBRUARY 1997 9

 101 TECH TIPS
For VB Developers
VBA, VB3, VB4 16/32
Level: Intermediate

TABLE CHECKER
I use a housekeeping routine to check the state of tables during
system initialization. The routine tests whether the table is in a
collection, whether the table has data, and whether the table is
local or attached. The routine helps to establish the state of the
application at startup.

For example, a table name that appears in the Tables collec-
tion can be either attached or local. If it is attached and the sec-
ond MDB where it resides is not present, this state is only dis-
covered when the application first attempts to access it. Usu-
ally, an error condition occurs in the middle of application logic.
I prefer to test for this condition at the beginning as opposed to
being surprised later on. I perform a trial read on the attached
table:

Public MyDB As Database
Dim Dummy As Integer
Set MyDB = OpenDatabase("testjet3db")
'Sample call
Dummy = CheckTable("NameTable", "readarecord", "local")

'More sophisticated call to trial read an attached table
If Not CheckTable("AnotherTable", _

"readarecord", "attached") Then
'we’ve got trouble in River City

End If
Function CheckTable(ByVal whichTable As String, _

ByVal whichTest As String, _
ByVal whichAttach As String) As Integer

Dim ErrorStage As String
Dim aTable As Recordset
' This is a comprehensive table checker
' which tests for:
' .is the table in the collection
' .is it attached or local as the case may be
' NOTE: have found subtle differences in
' how DAO Find FindNext
' commands behave wrt attached and
' local tables
' message boxes are useful in
' debugging, can be removed
On Error GoTo CheckTableError

'Set Default return condition
CheckTable = True
ErrorStage = " Test for table in collection "
If Not CheckIfTableInCollection(whichTable) Then

CheckTable = False
MsgBox ErrorStage & whichTable _

& " failed in CheckTable"
Exit Function

End If
ErrorStage = "SetTable"
Set aTable = MyDB.OpenRecordset(whichTable)

ErrorStage = "Test read a record "
If whichTest = "readarecord" Then

aTable.MoveFirst
End If
ErrorStage = "Test attachment status "
Select Case whichAttach

Case "attached"
If InStr(MyDB.TableDefs(whichTable).Connect, _

"DATABASE=") = 0 Then
10 FEBRUARY 1997 Supplement to Visual Basic Programmer’s Jo

CheckTable = False
MsgBox ErrorStage & whichTable & _
" failed " & whichAttach & _
" in CheckTable"

End If
Case "local"

If MyDB.TableDefs_
(whichTable).Connect <> "" Then
CheckTable = False
MsgBox ErrorStage & whichTable & _

" failed " & whichAttach & _
" in CheckTable"

End If
Case "dontcare", ""

End Select
CheckTableErrorExit:

If ErrorStage <> "SetTable" Then
aTable.Close

End If
Set aTable = Nothing
Exit Function

CheckTableError:
CheckTable = False
MsgBox Error$ & " ErrorTrap " & _

ErrorStage & " " & whichTable _
& " failed in CheckTable"

Resume CheckTableErrorExit
End Function
Function CheckIfTableInCollection_

(ByVal TableName As String) _
As Integer

' This function checks that the tables
' collection has a table
' it looks for tables by name and
' returns true/false setting
Dim i%

CheckIfTableInCollection = False
For i% = MyDB.TableDefs.Count - 1 _

To 0 Step -1
DoEvents
If TableName = Trim$(MyDB._

TableDefs(i%).Name) Then
CheckIfTableInCollection = True

End If
Next i%

End Function
—Stan Mlynek, Burlington, Ontario, Canada

VB3, VB4 16
Level: Intermediate

MANIPULATE THE HEIGHT OF THE
LIST-BOX ITEM(S)
These two routines enable you to get the height of an item of a
list box in terms of pixels, and they also enable you to set the
height of all the list-box items to a given value in pixels:

Declare Function SendMessage Lib _
"User" (ByVal hWnd As Integer, ByVal wMsg As Integer, _
ByVal wParam As Integer, 1Param As Any) As Long

Const WM_USER = &H400
Const LB_GETITEMHEIGHT = (WM_USER + 34)
Const LB_SETITEMHEIGHT = (WM_USER + ee)
Const WM_SETREDRAW = &HB
'Height is returned in terms of pixels
Function ListBox_getItemHeight (1st as Control) As Integer
urnal

'Retrieve the height of the listbox

 101 TECH TIPS
For VB Developers For even more tricks and tips go to

 http://www.windx.com

—John Muller, Woodstock, Georgia
'item
ListBox_getItemHeight = SendMessage ((1st.hWnd), _

LB_GETITEMHEIGHT, 0, &)
End Function
'Sets the height of the items of the
'listbox to a specified one.
Sub ListBox_setRowHeight (1st As Control, 1Height As Long)

Dim ignore as integer
ignore = SendMessage ((1st.hWnd), LB_SETITEMHEIGHT, 0, _

ByVal 1Height)
'Refresh the listbox
ignore = SendMessage ((1st.hWnd), WM_SETREDRAW, True, 0&)

End Sub

—Vishwanath Khasarla, Waltham, Massachusetts

VBA, VB3, VB4 16/32
Level: Intermediate

QUICK TEST FOR WEEKEND
To test whether a date falls on a weekend, you might be inclined
to do this:

nDay = weekday (sDate)
If (nDay = 1) or (nDay = 7) Then

'It's a weekend
End If

However, you can use VB’s MOD operator to perform the test
in roughly half the time:

If (Weekday (sDate) MOD 6 = 1) Then
'It’s a weekend

End If
—Phil Weber, Tigard, Oregon

VB4 16/32
Level: Intermediate

SHORTCUT FOR 16/32-BIT
DEVELOPMENT
Here is a tip that should make life simpler for all VB program-
mers doing mixed 16/32-bit development in VB4 under Windows
95. I have three additional items in my project menu. These items,
Open Win16, Make Win16 EXE File, and Run Win16 Project, allow
me to develop in either 16- or 32-bit versions of VB4 at the click
of a mouse button.

To get this result, start REGEDIT and find the subkey
VisualBasic.Projects under HKEY_CLASSES_ROOT. Then add
three subkeys under this key. These keys are Open Win16, Make
Win16 EXE File, and Run Win16 Project.

Under each of these keys, add another subkey and name it
Command. Now set the value of Command. For Win16, set the
value to “c\vb\vb.exe %1.” Note that REGEDIT automatically
adds the opening and closing quotes. For Win16 EXE File, set
the value to “c:\vb\vb.exe /m %1.” For Run Win16 Project, set
the value to “c:\vb\vb.exe /r %1.” These paths assume that the
16-bit version of VB4 is installed under c:\VB. If you have in-
stalled 16-bit VB4 in another folder, substitute its path for
c:\vb\vb.exe. Now you can conveniently open, run, and make
EXE files in either Win16 or Win32.
Supplem

—Lalit Bhargava, Edmonton, Alberta, Canada
VB4 32
Level: Intermediate

CREATE NUMERIC-INPUT TEXT
BOXES
In almost every application’s project you come across, fields
necessitate the use of numeric text boxes—text boxes that
should accept only numeric values. You can deal with this situ-
ation by either using a Masked Edit control or by writing code in
the KeyPress event procedure of every text box. Here is an alter-
native method for accomplishing the same objective that can
be used with the 32-bit version of VB4. The advantage of this
method is that it eliminates the need to write code in every text
box. Also, because this method is applicable to the basic text-
box behavior of control in VB4, you don’t need to worry about
the specific behavior of the Masked Edit control.

To see how this method works, load a new project and insert
a new module, “Module1,” into it. Now insert these statements
in the declarations section of Module1:

Declare Function SetWindowLong Lib "user32" Alias _
"SetWindowLongA" (ByVal hwnd As Long, ByVal nIndex As Long, _

ByVal dwNewLong As Long) As Long
Declare Function GetWindowLong Lib "user32" Alias _

"GetWindowLongA" (ByVal hwnd As Long, _
ByVal nIndex As Long) As Long

Sub NumericEdit(TheControl As Control)
Const ES_NUMBER = &H2000&
Const GWL_STYLE = (-16)
Dim x As Long
Dim Estyle As Long
EStyle = GetWindowLong(TheControl.hwnd, GWL_STYLE)
EStyle = EStyle Or ES_NUMBER
x = SetWindowLong(TheConrol.hwnd, GWL_STYLE, EStyle)

End Sub

Next, insert a new form into the project. Add a text box, Text1,
to this form and place this code in the Form_Load event proce-
dure:

Call NumericEdit(Text1)
—Vinit Budhiraja

Fountain Valley, California

VB4 16/32
Rank: Beginning

DON’T FORGET YOUR REFERENCES
If you get the error “User-defined type not defined” on a line
where you are declaring a database, go to Tools, then go to Ref-
erences, and select the appropriate DAO library.
ent to Visual Basic Programmer’s Journal FEBRUARY 1997 11

 101 TECH TIPS
For VB Developers
VB3, VB4 16
Level: Intermediate

SET CURSOR TO CONTROL BY
DEFAULT
Sometimes it is useful to set a cursor to determine control when
a form is loading—after the form is done loading, the cursor
stays on the control you have ordered:

Type pointapi
x As Integer
y As Integer

End Type
'Sets the mouse cursor position in
'screen coordinates
Declare Sub SetCursorPos Lib "User" _

(ByVal x As Integer, ByVal y As Integer)
'Converts client point to screen coordinates
Declare Sub ClientToScreen Lib "User" _

(ByVal hWnd As Integer, lpPoint As pointapi)

Sub SetCursorToDefaultControl (Control As Control)
Dim Pnt As pointapi
Dim x As Integer
Dim y As Integer
Pnt.x = Pnt.y = 0
'Determine coordinates left top corner of Control
Call ClientToScreen(Control.hWnd, Pnt)
x = Pnt.x + Control.Width/ _

(2 * (Scree.ActiveForm.Left + Control.Left)/Pnt.x)
y = Pnt.y + Control.Height/ _

(2 * (Screen.ActiveForm.Top + Control.Top)/Pnt.y)
Call SetCursorPos(x, y)
End Sub

—Aleksandr Dvigubskiy, Brooklyn, New York

VB4 16/32
Level: Beginning

ADD NEW FILE TYPE INTO THE
REGISTRATION ON THE FLY
In reference to “Unregister a DLL with the Right Mouse Button in
Win95” [VBPJ March 1996, page 72], I would like to suggest a tip
that is much easier to use and edit. Any Win95 or NT 4.0 user
can easily customize this tip.

The tip given in the March issue had restrictions. It has no
edit facility because the lines have to be coded and not all users
can understand the code. Using Windows Explorer, you can eas-
ily perform all the operations.

First, open Windows Explorer and select Options in the View
menu. You will see the tab, which has two options—View and
FileTypes. Select the FileTypes tab, where you can see all the
registered file types. They have three buttons—NewType, Re-
move, and Edit.

If you want to register an OCX file type, press the NewType
Button. You will see an AddNewFileType dialog. Next, specify
the Description of the file type, Associated extension, and Ac-
tions. Enter the description as “OCX File.” In the Associated ex-
tension, type “OCX.” Suppose you want to add a “Register” ac-
tion—press the New button, and you get the NewAction dialog.

Next, specify the action name and browse to select the appli-
12 FEBRUARY 1997 Supplement to Visual Basic Programmer’s Jo

cation file, which will perform the given action or give the com-
mand line with full path. Here you give the action name as “Reg-
ister” and press Browse to select the regsvr32.exe file. Normally,
Regsvr32.exe resides in the Windows directory. Now the entry
looks like “C:\Windows\Regsvr32.” Press OK to save the action.
Then, for Unregister, give the action name as “Unregister” and
press Browse to select the regsvr32.exe file. Add the parameter
/u for unregister. Now the entry looks like “C:\Windows\Regsvr32
/u.” Remember, when adding a parameter, the path name should
follow the MS-DOS path convention. By pressing the right mouse
button on any OCX file listed in the Explorer, you will see the
Register and Unregister option. Select the appropriate action to
perform. The same procedure can be done for any file type.

Using this option of Explorer, you can edit any existing ac-
tion on any file type shown in the list, as well as remove the
actions or the whole entry for the selected file type.

—System Builders International, New Dehli, India

VB3, VB4 16/32
Level: Beginning

SCROLLABLE VIEWPORT FOR A
PICTURE
It’s easy to make a scrollable viewport for a picture in both VB3
VB4. In addition to a picture, you can also use other objects that
grow. First, create a new form. Place a picture box on the form,
name it “picParent,” and resize it. This will be the viewport. Place
a picture box inside the other picture box (picParent) and name
it “picPICTURE.” The value of the Left and Top properties must
be zero. This one will contain the picture you want to view.

Next, place a vertical scrollbar on the right of the picParent Pic-
ture. Name it “vsbPict.” This scrollbar should have the same Top
and Height values as picParent. Do the same with a horizontal
scrollbar. Place it on the bottom of “picParent”—the Left and Width
values should be equal to picParent. Name it “hsbPic.” In both
scrollbars, set the LargeChange property to the height and width
of picParent, respectively. Then place this code on the declarations
section of Form1. You can also copy this code to the Scroll event:

Private Sub hsbPIC_Change()
picPicture.Left =hsbPIC.Value

End Sub
Private Sub vsbPIC_Change()

picPicture.Top =vsbPIC.Value
End Sub
Private Sub picPicture_Resize()

If picPicture.Height > picParent.Height Then
vsbPIC.Max =picParent.Height - picPicture.Height

Else
vsbPIC.Max = 0

End If
If picPicture.Width > picParent.Width Then

hsbPIC.Max =picParent.Width - picPicture.Width
Else

hsbPIC.Max =0
End If

vsbPIC.Value = 0
hsbPIC.Value = 0

End Sub

Every time you load a new picture, the scrollbars will adjust
to its size. Write the code to load the pictures, and write other
code to deal with exceptions to the rules.
urnal

—Joel Paula, Carcavelos, Portugal

 101 TECH TIPS
For VB Developers For even more tricks and tips go to

 http://www.windx.com

VB3, VB4 16/32
Level: Beginning

AVOID THE VALIDATION ROUTINE
WHEN THE USER PRESSES CANCEL
When a user presses the Cancel button, the control that previ-
ously had focus triggers its LostFocus event, which is where
many programs do their validity checking. If the input wasn’t
filled, as is often the case when the user clicks on Cancel, the
validation may display a message. The user won’t expect this
after clicking on Cancel, and shouldn’t ever see it.

To avoid this problem, add a form-level variable to indicate if
Cancel has been clicked on. In the Cancel’s MouseDown event,
set it to True. In the MouseUp event, set it back to False—this
way the LostFocus event occurs between the two.

One more catch—if the user activates the Cancel button with
a mouse-down click on the Cancel button, changes his or her mind,
and moves the mouse off the Cancel button and then “mouse-
ups,” you still have it set to Cancel. So set it to False in the
MouseMove event of the parent of the Cancel button. To avoid
doing validations, check against your Cancel Pressed variable.

—Jed Walker, Denver, Colorado

VB3, VB4 16/32
Level: Beginning

CLEAN AND COMPACT YOUR CODE
The last thing you should do before creating your final EXE is
clean your code. This tip explains how to clean the garbage from
your project that is sometimes left behind from moving proce-
dures in and out of different project files. Doing so will make
your project files smaller and, in some cases, eliminate possible
GPFs due to code being left behind by only deleting a pointer to
the code. This routine works for forms and module files.

Start Visual Basic and load your project. Make sure that all
your code windows are closed. Highlight the first file in your
project window. Then select Save Text from the File menu. Click
on OK to save the file in text format. Highlight the same file in
the project window. Click on the View Code button in the project
window. Select Load Text from the File menu. Find and highlight
the previously saved file (FormName.txt). Click on Replace. Fi-
nally, close the code window. Repeat the same steps for each
file in the project and then save your project.

This procedure will remove the transparent dead code left
over from deleting code or moving procedures in and out of dif-
ferent project files. You will be able to see the results in the size
of your project files after you run this routine for each file in
your project and save your project. This cleaning can also pre-
vent GPFs that are caused sometimes by this transparent dead
code. This routine does not remove code that is moved to the
general declaration section of a file because you changed a
control’s name. It removes old data you thought you deleted,
but you actually deleted only a reference pointer to it. The code
is still there, but it is transparent in the code windows.
Supplem

—Stefan Klein, Ridgeland, Mississippi
VB4 16/32
Level: Beginning

AUTOMATICALLY RESIZE
CONTROLS
Sometimes you need to change the size of controls by changing
the size of a container. For example, try this:

Private Sub Form_Resize()
Picture1.Align = vbAlignLeft
Picture1.Align = vbAlignTop

End Sub

Every sizing event that changes the form’s size also changes
the size of the picture box. Make sure that the control you want
to resize has the align property.

—Uwe Pryka, Bochum, Germany

VB4 16/32
Level: Intermediate

“ACCESSING SECURED DATABASES
FROM VB4,” REVISITED
The tip, “Accessing Secured Databases from VB4” [VBPJ Septem-
ber 1996, page 81], is not entirely accurate. There are several
ways to secure an Access database. If the database itself is pro-
tected with a password, but no user access rights or passwords
have been assigned, then the method described will not work
when using the DAO3032.

In order to access an Access95 database protected with a
password using the DAO3032, the workspace must be created
with a blank password and user name. Then the database must
be opened with a blank administrator, but with this parameter:
PWD=[password]. This method opens the database properly
without assigning users particular passwords. Generally, this is
useful when a front end accesses a database located in a distrib-
uted manner, where the user access is actually stored in the MDB
itself.

—David Schneider, Phoenix, Arizona

VB4 16/32
Level: Intermediate

EFFECTIVE ERROR HANDLING
While working with classes in VB 4.0, we found that the errors
raised from our classes were not being trapped at the form level.
We used “On Error Resume Next,” but still the error was being
raised in the class module. We changed the settings of the Ad-
vanced Tab from Options in the Tools menu to “Break Unhandled
Error,” and it worked as we needed.

So, if you want to raise an error from a class module in your
application to the form, you must use the Err.Raise method to
raise the error. The error will be handled in the form only if you
set the option from Options in the Tools menu in the Advanced
Tab to “Break On Unhandled Error.” Otherwise, the error is raised
in the class itself because the default setting is “Break On Class
Module.”
ent to Visual Basic Programmer’s Journal FEBRUARY 1997 13

—System Builders International, New Delhi, India

 101 TECH TIPS
For VB Developers

End Sub
VB3, VB4 16/32
Level: Intermediate

STORED ACCESS QUERIES SPEED
RESPONSE TIME
In general, stored Access queries are faster than embedded SQL
in your VB application. It can be a great benefit to be able to
send parameters to the query directly from VB. Saving these
queries in Access also reduces the amount of code you must
maintain directly in your VB app. These code segments show
how to send a parameter to a stored Access query. Here is the
example Access SQL query:

PARAMETERS ID Text;
SELECT DISTINCTROW Host.IPAddress
FROM Host
WHERE Host.ID=[ID];

This code retrieves an IP address from an Access table, where
the host ID in the table matches the host ID in the parameter.
This code is stored in the Access database and has already been
parsed and optimized. This is the key to gaining the performance
benefits of stored queries. The Jet engine then uses this QueryDef
when it is called from VB.

Assume that there is a form with a data control on it. Here is
the corresponding VB code to send the parameter:

Dim db As Database
Dim rs As Recordset
Dim qd As QueryDef
Set db = dthosts.Database
'dthosts is a data control on a form
Set qd = db.QueryDefs("aq_host")
'aq_host is the MS Access query name
qd.Parameters("ID") = "MY_Host_ID"
'host ID is the parameter for this query
Set rs = qd.OpenRecordset()
'open the recordset
Set dthosts.Recordset = rs
'return the recordset to the data control

You can now use this data control in conjunction with a list-
box control (or whatever control you like) to display the data.
You can also add multiple parameters by adding more
“qd.parameters” to the middle section of this code.

Insert, update, and delete queries (or “action queries,” as they
are called in Access) can use parameters in the same fashion.

—Al Gehrig, Jr., Laguna Hills, California

VB4 32
Level: Intermediate

A BETTER SUBSTITUTE FOR
GETMODULEUSAGE
To synchronously shell an application from a 16-bit VB applica-
tion, some people write code like this:

Const HINSTANCE_ERROR% = 32
Dim hInstChild As Integer
'Shell program, if Shell worked, enter loop
hInstChild = Shell(strExeName, intCmdShow)
If hInstChild >= HINSTANCE_ERROR Then
14 FEBRUARY 1997 Supplement to Visual Basic Programmer’s Jo
While GetModuleUsage(hInstChild)
DoEvents

Wend
End If

This code relies on a 16-bit-only API function,
GetModuleUsage. Several 32-bit workarounds have been pub-
lished, but here is the simplest and most reliable solution I’ve
seen:

Declare Function OpenProcess Lib "Kernel32" _
(ByVal dwDesiredAccess As Long, _
ByVal bInheritHandle As Long, _
ByVal dwProcessId As Long) As Long

Declare Function WaitForSingleObject Lib "Kernel32" _
(ByVal hHandle As Long, _
ByVal dwMilliseconds As Long) As Long

Const SYNCHRONIZE = &H100000
Const INFINITE = &HFFFFFFFF
Private Function SyncShell(ByVal pathname As String, _

windowstyle As Integer) As Boolean
Dim ProcessID As Long
Dim ProcessHandle As Long
' In VB4, an error occurs if Shell
' fails to start the program
On Error GoTo SyncShell_Error
' Shell the program, get its handle,
' and wait for it to terminate
ProcessID = Shell(pathname, windowstyle)
ProcessHandle = OpenProcess(SYNCHRONIZE, True, ProcessID)
WaitForSingleObject ProcessHandle, INFINITE
SyncShell = True
Exit Function
SyncShell_Error:

On Error GoTo 0
SyncShell = False
Exit Function

End Function
—Bob Voges, Woburn, Massachusetts

VB3, VB4 16/32
Level: Beginning

PROTECT YOUR SCREEN SAVER
FROM RESTARTING
When you create a screen saver in Visual Basic, you may some-
times utilize the command-line options such as “/s” to start a
screen saver directly or “/c” to run the configuration. By simply
using App.PrevInstance, your application may not detect the
running screen saver and attempt to start another when the
normal Windows screen saver time-out occurs. To ensure that
Windows will detect the running screen saver, regardless of the
use of command-line options, use this code:

Private Declare Function GetModuleHandle% Lib "Kernel" _
(ByVal lpModuleName$)

Private Declare Function GetModuleUsage% Lib "Kernel" _
(ByVal hModule%)

Sub StartUp()
Dim Inst%

Inst = GetModuleHandle(App.Path + _
"\" + CStr(Trim(App.EXEName) + ".scr"))

If GetModuleUsage_
(GetModuleHandle(App.Path + "\" _
+ CStr(Trim(App.EXEName) + ".scr"))) > 1 Then End
urnal

 101 TECH TIPS
For VB Developers For even more tricks and tips go to

 http://www.windx.com

Call the sub like this:

Sub Main()
Call StartUp

End

This method works well with Windows 3.11. You can use this
basic idea with any application you write, not just screen savers.

—Uwe Pryka, Bochum, Germany

VB3, VB4 16/32
Level: Intermediate

USE AN ICO FILE AS A MOUSE
POINTER
If you want to use an ICO file as a mouse pointer, set the
MousePointer property to 99-Custom. Then load the icon into
the MouseIcon property:

Text1.MouseIcon= LoadPicture("c:\vb\icons\elements_
\earth.ico")

For the icon to appear as a mouse pointer, both of these prop-
erties must be set.

—Prashanti Doma, Inkster, Michigan

VB4 16/32
Level: Intermediate

OLE AUTOMATION VERSUS
STANDALONE MODE
There you are, creating an OLE server in Visual Basic. You go to
Options in the Tools menu, select the Project tab, choose “OLE
Server,” and click on OK. After compiling, you run the execut-
able. Is it an OLE server? Unfortunately, it’s not.

What makes a VB4 application an OLE server? You need at
least one class module whose Public property is set to True and
whose Instancing property is set to either “Creatable SingleUse”
or “Creatable MultiUse.”

At this point, however you still do not have an OLE server:
you have an application that is OLE Automation-enabled. If you
were to create an instance of the exposed class via OLE Automa-
tion from another application, then it would be an OLE server. If
the application is run normally, it is a standalone application.

What is the purpose of the StartMode option in the Project
options? Is this strictly for the design environment? When you
are testing an OLE server with two copies of Visual Basic run-
ning, the one with “OLE Server” chosen can be started and will
continue running even if no form ever loads. This feature allows
the second copy of VB to test OLE Automation against the first.
In addition, the first creates a temporary registry entry so that
early binding may be tested as well.

On another note, don’t forget about the StartMode property
of the App object. You can determine whether the app was
started as a standalone or as an OLE server. Excel, for example,
makes use of this by showing itself if it is a standalone, or by
hiding itself if it is run via OLE Automation.
Supplem

—Peter W. DeBetta, Cary, North Carolina
VB3, VB4 16/32
Level: Intermediate

ODBC ERROR DISPLAY
I have seen many posters in the VB newsgroups that say they
have received an ODBC error message such as 3146, but can’t
figure out why they got the message. I suspect that the vast
majority of these posters did not update their error-handling
procedures to use the DBEngine.Errors collection when VB4 was
released. Using this collection usually gives them all the error
messages they need to resolve the problem. I have created an
error-handling subroutine that displays the correct error mes-
sage based on whether the error is a DB error:

Public Sub ShowError()
Dim sError As String
Dim nI As Integer
Dim sTitle As String

sError = ""
' Determine whether or not this is a
' database error
If DBEngine.Errors.Count > 0 Then

If DBEngine.Errors(DBEngine.Errors.Count - 1)._
Number = Err.Number Then
sTitle = "Database Error"
For nI = 0 To DBEngine.Errors.Count - 1

sError = sError & DBEngine.Errors(nI) & _
vbCrLf

Next
sError = sError & vbCrLf

End If
End If
If sError = "" Then

sTitle = "Error"
' add the error string
sError = sError & Err.description & vbCrLf

End If
' beep and show the error
Beep
MsgBox sError, , sTitle

End Sub
—Karl Costenbader, Sacramento, California

VB4 16/32
Level: Beginning

DIRECTORY REFERENCES IN CODE
PROFILER
The Code Profiler does not properly handle relative directory
references in the VBP file. If the file looks like this, Code Profiler
aborts trying to process the CRW45 file:

Module=PASSMAN1; PASSMAN.BAS
Module=CRW45; ..\CM4\CRW45.BAS

Code Profiler does not understand the context of the file ref-
erence. Before running the Profiler, change all the “…” type rela-
tive references to full references:

Module=PASSMAN1; PASSMAN.BAS
Module=CRW45; C:\DEV\CM4\CRW45.BAS
ent to Visual Basic Programmer’s Journal FEBRUARY 1997 15

—Timothy J. Hoffmann, El Segundo, California

 101 TECH TIPS
For VB Developers
VB3, VB4 16/32
Level: Beginning

MAKE TWO (OR MORE) LIST
BOXES FOLLOW EACH OTHER
Suppose you have two list boxes side by side—one to display
the name of a person, the other to display his or her e-mail ad-
dress. If the boxes contain several entries, you want both boxes
to scroll at the same time. For example, when the user uses the
scrollbar of the Names list box, the lines of the e-mail list box
remain at the level of the corresponding Names list-box lines.

Unfortunately, the Click event of list boxes doesn’t let you
monitor the use of its scrollbar. The solution is to use a Timer in
conjunction with the TopIndex property of your list boxes to
compare and adjust the level of both boxes frequently.

Set the Interval property of the Timer to 50, and type this
simple line of code in the Timer event:

Private Sub Timer1_Timer()
If List1.TopIndex <> List2.TopIndex Then _

List2.TopIndex = List1.TopIndex
End Sub

Disable List2 so that the user is forced to use only the scrollbar
of List1, but still sees the information displayed in List2.

—Eric Bernatchez, Montreal, Quebec, Canada

VB3, VB4 16/32
Level: Beginning

TRACK MODEM USE BY OTHER
APPLICATIONS
With applications increasingly using modems, it is quite pos-
sible that users will start your application, forgetting that an-
other application is already using the modem—like a fax ma-
chine, for example.

The MS Comm object that comes with VB has a PortOpen prop-
erty that returns the state of the modem. However, this property
seems to work only when the modem is opened by the VB appli-
cation in which the command is issued. Otherwise, PortOpen re-
turns False even if, for example, a fax machine is running and is
holding the modem port open to monitor incoming faxes. If you
try to open the port, it will cause an error message.

The only solution is to make an error-handling routine that
detects if the port is open by provoking the error and handling it.
In the handling routine, insert a MsgBox that tells the user to check
for other applications and waits for an answer before resuming.
16 FEBRUARY 1997 Supplement to Visual Basic Programmer’s Jo

—Eric Bernatchez, Montreal, Quebec, Canada
VB3, VB4 16/32
Level: Intermediate

USE THE MS DRAW APPLET TO
DRAW LINES AND SHAPES
Rather than using Visual Basic’s line and shape objects when
drawing complex graphic backgrounds on forms, use the MS
Draw applet included with most Microsoft products to draw a
Windows Metafile (WMF) graphic. Then paste the graphic into
the form or image box.

Because there are fewer objects on the form, it loads faster,
is less cluttered during development, and the embedded WMF
graphic rescales with no fuss if you need to resize the form. MS
Draw also supports more graphical objects, such as arcs and
free-form objects, than Visual Basic supports.

To paste a WMF graphic into a form, select Drawing from the
Insert menu of a Microsoft application, such as Works. MS Draw
will start. Draw the background graphic, select all the objects
by using the Select All command on the Edit menu, and copy
them. In Visual Basic, select the form or image box, and paste
the graphic into it.

—Frank Olivier, Jr., Jan Kempdorp, South Africa

Access, VBA, VB3, VB4 16/32
Level: Intermediate

GET OBJECT NAMES OUT OF JET
COLLECTIONS AND INTO VB CODE
To maintain sanity, I use long descriptive names for tables and
queries in Jet MDB files. This leads to errors when I type these
names into VB code. To overcome this problem, I open the MDB
using the appropriate version of Access. I then highlight the name
I want in its collection.

Edit Rename (Access 95) or File Rename (Access 2) brings
up a rename window. I highlight the long name and copy it to
the Clipboard using the Ctrl-C key combination. Edit Copy won’t
take because the rename window is modal. I cancel the rename
window and then paste the long name into the VB code.

—Stan Mlynek, Burlington, Ontario, Canada

VB3, VB4 16/32
Level: Advanced

SPEED TIPS
Reading data into and out of a VB program is straightforward.
Most folks use the Input and Put statements in a For…Next loop.
However, this straightforward technique takes time. Because I am
impatient when it comes to machines—and that includes com-
puters—I use a time-tested technique to speed along the input
and output of data files. The technique involves the use of strings.

I use strings because Basic-type programs, including VB, make
efficient use of strings. One distinct reason for using strings is
that a specific size is not needed for the array definition. This
provides some programming flexibility if you work with files of
different lengths and formats. Also, and more to the point, data
is input and output faster when the Input and Put statements
move strings into and out of computer programs.
urnal

Speed is the big advantage of using strings in conjunction

 101 TECH TIPS
For VB Developers For even more tricks and tips go to

 http://www.windx.com

—Les Smith, Concord, North Carolina
with the Input and Put statements, in lieu of embedding the state-
ments in a For…Next loop. The speed increase is obvious with a
few simple illustrations. Start with this program listing:

Open Path$ For Binary As #1
Datarray$ = Input(31680, #1)
Workarray$ = Datarray$

Close

This listing inputs a string named “Datarray” and copies that
string to a work string named “Workarray.” I do this to maintain
the integrity of the original data. As you can see, the code opens,
inputs, copies, and closes a complete file in just four computer
instructions.

For comparison, look at a typical code listing to read this file.
This is the simplified code listing:

Open Path$ For Binary As #1
For Position = 1 to 31680

Datarray$(Position) = Input(1,#1)
Next Position

Close

This example inputs data with a For…Next loop. Although
the number of programming lines may be relatively small, the
number of computer instructions is large. To input the same file
with a For…Next loop, the For, Next, and Input statements each
need to be executed 31,680 times. That’s a whole heap of in-
structions when compared to executing the Input statement just
once. The speed implication is obvious.

My programming philosophy to output data follows the same
technique—eliminate data loops where possible. This example
shows how this is easily accomplished without a data loop:

Open Path$ For Binary As #1
Put #1,,Workarray$

Close

Path$ is the output location and name of the file. Workarray
is the string that holds the data to save.

In summary, it is important to limit the length of For…Next
and Do loops in any language. Long loops for I/O are real speed
killers.

—Donald L. Parrish, Huntsville, Alabama

VB3, VB4 16/32
Level: Intermediate

IS MAIL RUNNING?
Use this code to quickly determine whether Microsoft Mail is
currently running:

Declare Function GetModuleHandle Lib _
"Kernel" (ByVal lpModuleName As String) As Integer

Function IsMicrosoftMailRunning ()
On Error GoTo IsMicrosoftMailRunning_Err
IsMicrosoftMailRunning = GetModuleHandle("MSMAIL")
IsMicrosoftMailRunning_Err:

If Err Then
'Do whatever you need to here

End If
End Function

You can also use this method to determine if just about any
Supplem

particular program is running. Simply replace the Mail references
with the appropriate name you are looking for.
—Calvin Smith, San Francisco, California

VB4 16/32
Level: Intermediate

USE A PICTURE CONTROL TO
CREATE A BEVELED PANEL
Occasionally, you may want to use on your form a beveled panel
that allows you to designate a background bitmap. Rather than
use a third-party control, you can use the Picture control pro-
vided as a core DLL function (non-OCX) in all versions of Visual
Basic 4.

Place a Picture control on your form, and set the Appearance
property to “1 - 3D” and the BorderStyle property to “1 - Fixed
Single.” This creates the bevel effect. Now set the Picture prop-
erty to the desired image. You may now place controls directly
on the picture control. Remember to set the “Background Style”
property to “0 - Transparent” for all controls where you would
prefer the background image to be displayed.

—Marc Mercuri, Nashua, New Hampshire

VB4 16/32
Level: Intermediate

VB 4.0 ADD-IN ERROR MESSAGES
The ability to write add-ins under VB 4.0 is a significant addition to
the developer’s toolbox. However, writing and distributing add-ins
can be fraught with many a mind-boggling experience. One of these
is dealing with the mysterious message, “ ‘Add-In Name’ could not
be loaded. Remove it from the list of available Add-Ins?”

My experience has shown at least two causes for this error.
The first reason is obvious. As in all good programs, you must
prepare for any and all contingencies. Such preparation is even
more necessary in an add-in. If your add-in encounters an
untrapped error in the Connect event, the error is passed back
to VB and the error message is displayed with no further expla-
nation of what occurred. The obvious correction is to program
for any and all errors.

The second reason for the error is not so obvious. Registra-
tion problems can be particularly hectic for add-ins. The nor-
mal procedure for registering an out-of-process add-in (EXE) is
to execute it, say from the File Manager. The add-in includes code
to register itself with VB (VB.INI entry), and VB itself registers
the add-in (OLE server) in the Reg.Dat file. However, if you later
move the add-in to another directory, and reexecute it, the error
message can occur again because of conflicting entries in the
Reg.Dat file.

I recently discovered REGCLEAN.EXE (32-bit) and
REGCLN16.EXE (16-bit) that ship with VB 4.0 in the Tools\PSS
Directory of the CD. After two years of installing and removing
numerous software packages from my development system, my
Reg.Dat file had become so large that REGEDIT would not run
because of a lack of memory. I ran REGCLN16 on my Windows
3.1, and it found 729 errors in my Reg.Dat file. After I set it to
automatically clean up the file, I could run REGEDIT again and
the problem with “unable to load add-in” disappeared.
ent to Visual Basic Programmer’s Journal FEBRUARY 1997 17

 101 TECH TIPS
For VB Developers

—Stan Mlynek, Burlington, Ontario, Canada
VB3, VB4 16/32
Level: Intermediate

COPYING MENU OBJECTS
BETWEEN FORMS
One problem that occurs frequently is taking the menu struc-
ture from one form and placing it in another. Although my method
of dealing with this dilemma requires a little effort, it does work
well. Because forms are saved as text files (always in VB4, op-
tionally in VB3), you can open up a form in Notepad or any other
text editor. An excerpt may look something like this:

Begin VB.Menu mnuEdit
Caption = "&Edit"
Begin VB.Menu mnuEditItem

Caption = "Cu&t"
Index = 0
Shortcut = ^X

End
Begin VB.Menu mnuEditItem

Caption = "C&opy"
Index = 1
Shortcut = ^C

End
Begin VB.Menu mnuEditItem

Caption = "&Paste"
Index = 2
Shortcut = ^V

End
End

This is a simple Edit menu with cut, copy, and paste options.
You can copy this section, for example, and paste it into another
form you have open in Notepad. Words to the wise: back up the
files first (always be safe), and don’t randomly paste the section
in the recipient form. Make sure it is between other objects de-
fined there. For example, insert the menu where the asterisk is:

Top = -30
Width = 7215

End
* Begin MSComDlg.CommonDialog CMDialog1

Left = 0
Top = 0

—Peter W. DeBetta, Cary, North Carolina

VB3, VB4 16/32
Level: Intermediate

FIND THE NAME OF THE WINDOWS
OR WINDOWS SYSTEM DIRECTORY
You can quickly find the name of the Windows or the Windows
System directory. Just pass “WindowsDirectory” or
“WindowsSystemDirectory” into this function:

Declare Function wu_GetWindows_
Directory Lib "Kernel" Alias _
"GetWindowsDirectory" _
(ByVal lpBuffer As String, _
ByVal nSize As Integer) As Integer

Declare Function wu_GetWindowsSystem_
Directory Lib "Kernel" Alias _
18 FEBRUARY 1997 Supplement to Visual Basic Programmer’s Jo

"GetSystemDirectory" _
(ByVal lpBuffer As String, _
ByVal nSize As Integer) As Integer

Function WinDirs$ (strDirNameNeeded$)
On Error GoTo WinDirs_Err
Dim strBuffer$
Dim iSize%
Dim iResult%
iSize = 256
strBuffer$ = Space$(iSize)

Select Case strDirNameNeeded$
Case "WindowsDirectory"

iResult% = wu_GetWindows_
Directory(strBuffer$, iSize)

Case "WindowsSystemDirectory"
iResult% = wu_GetWindows_

SystemDirectory(strBuffer$, iSize)
End Select
WinDirs$ = Left$_

(strBuffer$, iResult%)
WinDirs_Err:

If Err Then
' Do whatever you need to here

End If
End Function

—Calvin Smith, San Francisco, California

VBA, VB4 16/32
Level: Intermediate

SUBSTITUTE THE ARRAY FUNCTION
FOR THE DATA STATEMENT
My first encounter with Visual Basic (VB1) was a letdown be-
cause I had become accustomed to using the original Basic
“DATA” statement for loading numeric values. The statement was
also useful for testing programs that processed sequential data
streams. Unfortunately, both QBasic and Visual Basic didn’t/don’t
support it. I must have researched the manuals for hours before
giving up in frustration.

The VB4 Array function allows an argument list to be assigned
to a variant. The data can be retrieved as if it were being read
sequentially. For anyone who needs to convert old style DATA
statements to VB4, these code snippets may be of use:

'Declarations
Option Base 1
Public MyData As Variant
Public Sub Main()

'Like the old DATA statement
MyData = Array(1.1, 1.2, 1.3, 1.4, 1.5, _

1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9)
'Test the results
Debug.Print MyRead(MyData), MyRead(MyData)

End Sub
Public Function MyRead(ByVal whichVariant)
Static intI As Integer

intI = intI + 1
MyRead = whichVariant(intI)

End Function
urnal

 101 TECH TIPS
For VB Developers For even more tricks and tips go to

 http://www.windx.com

—Meena Swaminathan, received by e-mail
VBA, VB3, VB4 16/32
Level: Beginning

CREATE QUERIES ON THE FLY
Use VB’s string-concatentation operator (&) to incorporate user
input into SQL queries at run time. Assume, for example, that
cboField is a combo box containing a list of fields in a table, and
txtValue is a text box into which the user types a value to search
for. Here’s how to create a dynamic query that includes the user’s
input:

sField = cboField
sValue = txtValue
SQL = "SELECT * FROM Table WHERE " & _

sField & " LIKE '" & sValue & "';"

Note that you must surround the search value with quotes if
you are searching a text field; no quotes are necessary if the
target field contains numeric data.

—Claudia Vega Cachú, Tepic, Nayarit, Mexico

VBA, VB3, VB4 16/32
Level: Beginning

ENTERING SCIENTIFIC FORMULAS
I have developed this technique to use when I program long for-
mulas. First, I declare descriptive variables for the mathemati-
cal elements. I prototype the formula using the digit “1” as a
place holder for the variables. This allows me to review the struc-
ture of the formula and make sure it compiles. I keep a copy of
the formula as an inline comment.

I replace the place holders with the variable by using cut and
paste. This is an example that calculates the volume of a cap of
a sphere:

Public Const PI = 3.141592653589
Dim CapVolume As Single
Dim SphereRadius As Single
Dim CapHeight As Single
'Sample values
SphereRadius = 9.35
CapHeight = 3.33
'Formula as prototype which is left in
'the code for the volume of the cap of a sphere
'CapVolume = PI * 1 * 1 * (3 * 1 - 1) / 3
CapVolume = PI * CapHeight * CapHeight _

* (3 * SphereRadius - CapHeight) / 3
'Reality check
Debug.Print CapVolume

—Stan Mlynek, Burlington, Ontario, Canada

VBA, VB3, VB4 16/32
Level: Beginning

A NEW DATA PROGRAMMING
STYLE
While working on VB projects with associated Jet databases, I
found that I was creating a lot of individual handling functions
for reading, writing, and validating data. It was hard to keep track
of changes made to the table structures and to their associated
Supplem

handling functions.
As a result, I’ve developed new programming style. My read /
write and special functions are all in one routine selected by
case logic based on descriptive strings. The strings are used
only within the programs and are self documenting to some ex-
tent. Data is passed through a Public WorkVariant array:

Public MyDB As Database
Public WorkVariant(10) As Variant
Dim Dummy As Integer
Set MyDB = OpenDatabase("testjet3db")
'Sample calls
Dummy = NameTableIO(“writerecord”)
Dummy = NameTableIO("readrecord")
Public Function NameTableIO_

(ByVal whichAction As String) As Integer
'Assumes navigation to the record has
'been made externally
Dim MyTable As Recordset
Dim ErrorStage As String
On Error GoTo NameTableIOError

NameTableIO = True
ErrorStage = "OpenRecordSet"
Set MyTable = MyDB.OpenRecordset("NameTable")
ErrorStage = "AfterOpen"
Select Case whichAction

Case "readrecord"
WorkVariant(1) = MyTable![FirstName]
WorkVariant(2) = MyTable![Age]

Case "writerecord"
MyTable.Edit

MyTable![FirstName] = WorkVariant(1)
MyTable![Age] = WorkVariant(2)

MyTable.Update
Case "validateage" 'specialized routine

'etc
End Select
NameTableIOErrorExit:

If ErrorStage <> "OpenRecordSet" Then
MyTable.Close

End If
Set MyTable = Nothing

Exit Function
NameTableIOError:

NameTableIO = False
MsgBox Error$ &_

" Error trap in NameTableIO " & _
"at " & ErrorStage & " Action: " & whichAction

Resume NameTableIOErrorExit
End Function

—Stan Mlynek, Burlington, Ontario, Canada

VB3, VB4 16/32
Level: Beginning

SUPPRESS SPACES IN A TEXT BOX
To prevent users from typing spaces in a text box, include this
code in the KeyPress event of the text box:

Private Sub Text1_KeyPress(KeyAscii As Integer)
If KeyAscii = 32 Then

KeyAscii = 0
End If

End Sub
ent to Visual Basic Programmer’s Journal FEBRUARY 1997 19

 101 TECH TIPS
For VB Developers

—Paul Litwin, Seattle, Washington
VBA, VB3, VB4 16/32
Level: Intermediate

BRANDING A JET MDB FILE
This routine allows a hidden table to be appended to the Tables
collection in an MDB file. I use the table name as a brand or
stamp. During development, I change the brand when design
changes are made to the MDB file. Access tables with Msys and
Usys preambles are treated as hidden objects by the Jet data-
base engine. The default setting is hidden. The brand starts with
UsysBRAND.

I prefer using the table name to using a record in a predefined
table because it is more difficult for a casual user to delete a
table than it is to delete a record from a table:

Public MyDB As Database
Public Const BrandString = "UsysBRAND"
Dim Dummy As Integer
Dim outputVariant
Set MyDB = OpenDatabase("testjet3db")
'Some test calls
Dummy = MDBrand("clearbrands")
Dummy = MDBrand("stamp", "TheTestProject")
If MDBrand("read", outputVariant) Then

Debug.Print outputVariant
End If
If MDBrand("validate", "TheTestProject") Then

Debug.Print "ProjectTest"
End If
Public Function MDBrand(ByVal whichAction As String, _

Optional aString) As Integer
Dim MyTableDef As TableDef, _

MyField As Field
Dim TempString As String
Dim i%

On Error GoTo MDBrandError
'Default
MDBrand = False
Select Case whichAction

Case "clearbrands"
For i% = MyDB.TableDefs.Count - 1 To 0 Step -1

If Mid$(LTrim$(MyDB._
TableDefs(i%).Name), _
1, Len(BrandString)) _
= BrandString Then
MyDB.TableDefs.Delete _

MyDB.TableDefs(i%).Name
DoEvents
DBEngine.Idle
DoEvents
MDBrand = True

End If
Next i%

Case "read"
For i% = MyDB.TableDefs._

Count - 1 To 0 Step -1
If Mid$(LTrim$(MyDB._

TableDefs(i%).Name), _
1, Len(BrandString)) _
= BrandString Then
MDBrand = True
aString = Mid$(LTrim$(MyDB.TableDefs_

(i%).Name), Len(BrandString) + 1)
End If

Next i%
Case "stamp"
20 FEBRUARY 1997 Supplement to Visual Basic Programmer’s Jou

TempString = BrandString & aString & CStr(Now)
If Len(TempString) > 40 Then
TempString = Mid$(TempString, 1, 40)

End If
Set MyTableDef = MyDB.CreateTableDef_

(TempString)
Set MyField = MyTableDef._

CreateField("MyDate", dbDate)
MyTableDef.Fields.Append MyField
MyDB.TableDefs.Append MyTableDef
Set MyField = Nothing
Set MyTableDef = Nothing
MDBrand = True

Case "validate"
For i% = MyDB.TableDefs.Count - 1 To 0 Step -1

If Mid$(LTrim$(MyDB.TableDefs(i%)._
Name), 1, Len(BrandString)) = _
BrandString Then
If InStr(MyDB.TableDefs(i%)._

Name, aString) Then
MDBrand = True

End If
End If

Next i%
End Select

MDBrandErrorExit:
Exit Function

MDBrandError:
MDBrand = False
Resume MDBrandErrorExit

End Function
—Stan Mlynek, Burlington, Ontario, Canada

VB3, VB4 16/32
Level: Beginning

EXTRACT A FRAME’S VALUE
I sure wish that the VB frames containing option buttons be-
haved more like Access’ option groups. In Access, if you have an
option group containing several option buttons or toggle but-
ton controls, the option group’s value property becomes the
selected button’s option value. Therefore, to check which but-
ton was selected, you need to check only the value of the option
group itself, not the value of the individual controls.

In VB, however, the equivalent of the option group, the VB
frame control, doesn’t get a value. Instead, you are forced to
check the value of each button to detect which one is currently
selected. This process is bound to be slow and seems silly to
me. For a simple workaround, create your option buttons as a
control array. Attach code to the Click event of the option but-
ton array that sets the Tag property of the frame control to the
Index of the control array.

For example, if your frame is named fraGender and your op-
tion button control array is named optGender, the control array’s
Event procedure would look like this:

Private Sub optGender_Click_(Index As Integer)
fraGender.Tag = Index

End Sub

Then, when you need to determine which value was selected,
simply query the Tag property of the frame like this:

intGender = fraGender.Tag
rnal

 101 TECH TIPS
For VB Developers For even more tricks and tips go to

 http://www.windx.com

—Eric Bernatchez, Montreal, Quebec, Canada
VB4 32
Level: Intermediate

OVERLAY TRANSPARENCY FIX
The Overlay method (ImageList control) doesn’t keep the trans-
parent areas when using icons. If you execute this statement,
you get ListImage #1 overlaid with ListImage #2, but the trans-
parent areas are gone:

set Picture1.Picture = ImageList1.Overlay(1,2)

Here is my solution:

Set Picture1.Picture = _
ImageList1.ListImages(1).Picture

Picture1.Scalemode = 3 'pixels
Picture1.PaintPicture ImageList1._

ListImages(2).Picture, 0, 0
—Alberto Perandones, Aarhus, Denmark

VBA, VB4 16/32
Level: Intermediate

REMOVE COLLECTION ITEMS
FASTER
You may have noticed that VB adds items to a collection much
faster than it removes them. For example, on my machine, add-
ing 20,000 random integers to a collection takes about four sec-
onds, but removing them in a loop takes over 54 seconds:

For I = colTest.Count To 1 Step -1
colTest.Remove I

Next

Because of the way VB indexes collections, it can remove items
much more rapidly from the beginning of a collection than it can
from the end. This code executes in only 1.5 seconds:

' Remove item 1, instead of item I
' (can loop in either direction)
For I = 1 To colTest.Count

colTest.Remove 1
Next

And, of course, if you’re clearing an entire collection, it’s even
faster to simply set it to Nothing:

' Runs in 0.35 seconds
Set colTest = Nothing

—Phil Weber, Tigard, Oregon

VB3
Level: Beginning

FAKING PUBLIC FORM METHODS
Frequently, I need to pass an array to a procedure outside of the
form where the array is declared. Declaring the array as global
is not always the best solution, but if I can make the procedure
that passes the array public, I can call that procedure from out-
side the form. The way to do this is to add a Label control to the
Supplem

form, and add a handler to the Label1_Change event. You can
also add a parser to parse out the function call to accept param-
eters:

Dim CommandArray_()
'This parses the function into its parameters
ParseCommand Label1.Caption, CommandArray_()
'CommandArray_(0) is the function name
'CommandArray_(1...n) are the parameters
Select Case CommandArray_(0)

Case "Add2Array"
Add2Array Internal_(), CommandArray_(1)

Case "DeleteFromArray"
DeleteArray Internal_(), _

CommandArray_(1), CommandArray_(2)
...

End Select

When I need to add a row to my array from outside my proce-
dure (from an MDI parent, let’s say) I set it to this, and away it
goes:

Form1.Label1.Caption = "Add2Array 1"
—Douglas Tarr, Berkeley, California

VB3, VB4 16/32
Level: Beginning

SMOOTHER CONTROL ANIMATION
If you ever tried making a Label scroll from the right side to the
left side of the screen, you know how bad the result is. A tradi-
tional approach of doing so would be:

Public Sub Scrolling()
Label1.Left = Screen.Width
Do
Label1.Left = Label1.Left - 15

' 15 is the equivalent of 1 pixel
DoEvents
Loop Until Label1.Left <= -(Label1.Width + 15)

End Sub

VB makes too many redraws in a small period of time, so you
can hardly read the text of the Label. The solution is to slightly
increase the duration of each appearance of the Label so the
human eye has enough time to see it. To obtain the same scroll-
ing speed, you must increase the steps of the Label from 15 to
30, or even 60. Here’s how to do it:

Public Sub Scrolling()
Label1.Left = Me.Width
Do
Label1.Left = Label1.Left - 60

temp = Timer
Do

DoEvents
Loop Until Timer - temp > 0.1

Loop Until Label1.Left <= -(Label1.Width + 15)
End Sub

Doing so also makes the animation independent of the CPU’s
speed.
ent to Visual Basic Programmer’s Journal FEBRUARY 1997 21

 101 TECH TIPS
For VB Developers
VB3, VB4 16/32
Level: Intermediate

TRACK THE LAST FORM
I had to develop an application that worked in a similar way to
an Internet browser, allowing the user to go back to the previ-
ous form. Although I could put the name of the last form into a
global variable, the problem came in trying to show the form
whose name was held in the variable, and the user would only
be able to go back one form.

I got around this by setting the Tag property equal to the
name of the form, and by defining this variable to pass the form
name between displayed forms:

Global from_form_tag As String

In each of the forms to include this functionality, define these
form-level variables to store the name of the form that this form
was shown from:

Dim from_form_this As String

When you need to show a form from which you want to be
able to return, include this code:

Sub btn_nextform_Click ()
from_form_tag = Me.Tag
frm_nextform.Show
End Sub

The code sets the Global variable to the name of the calling
form. Then, in the new form you are showing, include this code:

Sub Form_Activate ()
If from_form_tag <> "" Then

from_form_this = from_form_tag
End If
from_form_tag = ""
End Sub

This sets the form-level variable to the name of the previous
form, which it retains until the form is unloaded, allowing a chain
of forms to go back to. Finally, in order to return back to the
previous form that was shown, include this code:

Sub btnback_Click ()
Dim i As Integer
Dim from_form As Form
For i = 0 To forms.Count - 1

If forms(i).Tag = from_form_this Then
Set from_form = forms(i)
from_form.Show
Exit For

End If
Next 'i
End Sub

This segment of code goes through each loaded form, com-
paring the Tag value of that form to the value held in the form-
level variable. When it finds the form, it sets a form variable to
the found form and then shows it.
22 FEBRUARY 1997 Supplement to Visual Basic Programmer’s Jo

—Campbell Maffett, Ascot Vale, Victoria, Australia
VB3, VB4 16/32
Level: Beginning

EXTRACT DELIMITED STRINGS
I find this function quite useful:

Function field _
(ByVal Source As String, _
ByVal delim As String, _
pos As Integer) As String

'This function accepts three parameters:
'Source - a source string with
'delimiters such as commas:
'first,second,third
'delim - the character used as a
'delimiter in the string: ,
'pos - the ordinal position of the item
'to fetch: 3
'
'The function returns a null string
'if the delimited position specified by
'pos is empty, or the delimited position
'does not exist because the string is
'too short (reference 7th position when
'5 comma delimiters=6 fields).
'
'Examples:
'dayList$ = "Sun,Mon,Tue,Wed,Thu,,Sat"
'
'dayName$ = Field(dayList$,",",3)
'would return "Tue"
'dayName$ = Field(dayList$,",",8)
'would return ""
'dayName$ = Field(dayList$,",",0)
'would return "Sun"
'dayName$ = Field(dayList$,",",6)
'would return ""
'
'Useful for reading sub-items from INI
'strings or manipulating a delimited
'database.
'Ex: Read the INI line device from the
'WIN.INI windows section. Use field()
'to retreive the printer port to use.
'port$ = field(iniline$,",",3)
'
'WIN.INI:
'[Windows]
'device=HP LaserJet IID,HPPCL,LPT3:
'———————————————————

Source = Source & delim
If pos = 0 Then pos = 1

For s% = 1 To pos - 1
delpos% = InStr(Source, delim)
Source = Mid$(Source, delpos% + 1, _

Len(Source))
Next s%

delpos% = InStr(Source, delim)
If delpos% = 0 Then delpos% = _

Len(Source) + 1
field = Left$(Source, delpos% - 1)

End Function
urnal

—Joe Neubauer, received by e-mail

 101 TECH TIPS
For VB Developers For even more tricks and tips go to

 http://www.windx.com

—Ion Saliu, Cashtown, Pennsylvania
VB3, VB4 16/32
Level: Intermediate

CLOSE MDI CHILD WINDOWS
In an MDI application, use this code to add a menu option that
will close all MDI child windows. First, create the menu entry
Close &All under the Windows menu. Then add the this code in
the Click event:

Sub mnuCloseAll_Click ()
Dim i As Integer
For i = Forms.Count - 1 To 0 Step -1

' Don’t test main MDI form for
' MDIChild property!
If Not Forms(i) Is MDIMain Then

If Forms(i).MDIChild Then
Unload Forms(i)

End If
End If

Next i
End Sub

—Abdul Semerkant, Flushing, New York

VB3, VB4 16/32
Level: Intermediate

GET ALL DIRECTORIES ON A DRIVE
This little routine retrieves the names of all directories on a drive
into a list box using just a Drive ListBox and a DirListBox. The
Drive ListBox is for convenience only, and the routine can be
written to accept a passed drive letter. If the DirListBox is hid-
den, processing will be faster:

'Get all the directory names on a disk
'Useful when you want to search a disk for files
'Expand this code with a FileListBox to
'get all file names
Dim iLevel As Integer, iMaxSize As Integer
Dim i As Integer, j As IntegerReDim _

iDirCount(22) As Integer
'Maximum 22 levels of directories

ReDim sdirs(22, 1) As String
'drive1 is a drive control using which
'user selects the drive
'dir1 is the directory control
iLevel = 1
iDirCount(iLevel) = 1
iMaxSize = 1
sdirs(iLevel, iDirCount(iLevel)) = _

Left$(drive1.Drive, 2) & "\"
Do
'iterate till no more sub-directories exist
iLevel = iLevel + 1
iDirCount(iLevel) = 0
For j = 1 To iDirCount(iLevel - 1)

dir1.Path = sdirs(iLevel - 1, j)
dir1.Refresh
If iMaxSize < (iDirCount(iLevel) + dir1.ListCount) Then

ReDim Preserve sdirs(22, _
iMaxSize + dir1.ListCount + 1) As String

iMaxSize = dir1.ListCount + iDirCount(iLevel) + 1
End If
For i = 0 To dir1.ListCount - 1

iDirCount(iLevel) = _
iDirCount(iLevel) + 1 'count
Supplem

'of sub-dirs
sdirs(iLevel, iDirCount_
(iLevel)) = dir1.List(i)

Next i
Next j
'Load all the directory names in a list box List1
list1.Clear
If iDirCount(iLevel) = 0 Then
'When no more sub-directories exist

For i = 1 To iLevel
For j = 1 To iDirCount(i)

list1.AddItem sdirs(i, j)
Next j

Next i
Exit Do

End If
Loop

—Kumar Prabodh, received by e-mail

VB4 32
Level: Beginning

REPLACE TEXT IN A RICH TEXT
BOX
The RichTextBox in VB4/32 is a real gem. Among other great
features, it allows files of any size, breaking the annoying 64K
limitation of 16-bit operating systems. The new control also has
a useful method: Find. As its name implies, it is used to find
strings in text files directly. There is no need to use the tedious
workaround of coding with the InStr function. Unfortunately, the
Find method is missing its natural pair, Replace. Therefore, you
must write Replace code to complement the Find method.

The main difficulty in writing Replace procedures is the length
of both the FindString and ReplaceWithString. Obviously, there
are three cases: =, >, and <. If the two strings are of equal length,
no special care is needed. But in the other two cases, which
occur frequently, you must do some extra work with the
FindString (the OldString in my code). You need to add to it ex-
tra spaces if it is shorter than the ReplaceWithString. This way,
you won’t cut off characters from the next word in the file.

If the FindString is longer than the ReplaceWithString, you
must eliminate the trailing characters. This way, the
ReplaceWithString does not have trailing spaces:

If Len(NewString) > Len(FindString) Then
' NewDummyString is a temporary
' string with extra spaces (" ")
NewDummyString = DummyString + _

String(Len(NewString) - Len(findstring), " ")
Mid(NewDummyString, 1, Len(NewString)) = NewString
TempString = NewDummyString

ElseIf Len(NewString) < Len(FindString) Then
NewDummyString = DummyString + _

String(Len(FindString) - Len(NewString), " ")
Mid(NewDummyString, 1, Len(FindString)) = NewString
TempString = Left(NewDummyString, Len(NewString))

Else
' the strings are of equal length
TempString = NewString

End If

rtfBox.SelStart = Pos
rtfBox.SelLength = Len(FindString)
rtfBox.SelText = TempString
ent to Visual Basic Programmer’s Journal FEBRUARY 1997 23

 101 TECH TIPS
For VB Developers
VB3, VB4 16/32
Level: Beginning

AN INBETWEEN FUNCTION
This function returns True if the first number in the argument is
in between the next two arguments. Use this function to detect
collisions, and for many other useful numeric functions:

Function InBetween_
(ByVal Num As Variant, ByVal X As Variant, _
ByVal Y As Variant) As Boolean
InBetween = False
If IsNumeric(Num) And IsNumeric(X) _

And IsNumeric(Y) Then
If X < Y Then

If Num > X And Num < Y Then
InBetween = True

End If
ElseIf Y < X Then

If Num > Y And Num < X Then
InBetween = True

End If
End If

End If
End Function

For example:

X = IsBetween(1, 5, 3) 'X returns True
X = IsBetween(2, 12, 6) 'X returns False

—Tony Keck, Brookville, Indiana

VB3, VB4 16/32
Level: Intermediate

STACK ’EM UP
A status panel on an MDI form is an ideal way to keep your user
informed about what the system is currently doing. Often, you
may have several nested processes that may write to that sta-
tus panel as each one executes.

Maintaining an accurate status through these nested pro-
cesses can be messy, if not impossible. This code allows you to
maintain a “stack” of statuses to allow for this type of nesting:

Global StatusPanelStack(1 To 10) As String
Global StatusPanelSize As Integer
Sub PushStatusPanel ()

StatusPanelSize = StatusPanelSize + 1
If StatusPanelSize > UBound(StatusPanelStack) Then

Redim Preserve StatusPanelStack_
(1 To UBound(StatusPanelStack) + 10) As String

End If
StatusPanelStack(StatusPanelSize) _

= MDIMain.pnlMain.Caption
End Sub
Sub UpdateStatusPanel (StatusText As String)

PushStatusPanel
MDIMain.pnlMain.Caption = Trim$(StatusText)

End Sub
Sub PopStatusPanel ()

StatusPanelSize = StatusPanelSize - 1
If StatusPanelSize = 0 Then

MDIMain.pnlMain.Caption = "Ready"
Else
24 FEBRUARY 1997 Supplement to Visual Basic Programmer’s Jo

MDIMain.pnlMain.Caption = _
StatusPanelStack(StatusPanelSize)
End If
End Sub

—Jeff Trader, Liberty, Missouri

VB3, VB4 16/32
Level: Intermediate

“DETERMINING IF AN OBJECT HAS
BEEN SET,” REVISITED
I have a way to determine if an object has been set that is sim-
pler and faster than the method offered in the tip, “Determining
If an Object Has Been Set” [“101 Hot Tech Tips for VB Develop-
ers,” Supplement to the August 1996 issue of VBPJ, page 23]:

myObj Is Nothing
'where myObj is the object to test
'whether it has been set or not

'example:
if myObj is Nothing then

MsgBox ("myObj is not set")
else

MsgBox ("myObj is set")
end if

—Ari Singh, Columbus, Ohio

VB3, VB4 16/32
Level: Advanced

SET UP ODBC DATA SOURCE
DURING INSTALLATION
Use this code to set up an ODBC data source during the installa-
tion procedure. If you create the setup program yourself, you
can put this code in the setup1 A.frm. If you have ODBC installed
on your computer, it provides a silent ODBC data-source setup:

'Declare in your VB module
Declare Function SQLConfigDataSource Lib "ODBCINST.DLL" _

(ByVal hWnd As Integer, ByVal)
fRequest As Integer, ByVal lpszDriver As String, _

ByVal lpsAttrib$) As Integer
'and then specify you data source info:
Dim iRet as Integer
Dim lpszAttributes As String
lpszAttributes ="DSN=Data source name" & Chr$(0)
lpszAttributes =lpszAttributes & _

"Description=New system on SQL6" & Chr$(0)
lpszAttributes =lpszAttributes & _

"Server=yourserver" & Chr$(0)
'91for TCP/IP
lpszAttributes =lpszAttributes & _

"Address=162.66.125.65,7024" & Chr$(0))
lpszAttributes =lpszAttributes & _

"UseProcForPrepare=Yes" & Chr$(0)
lpszAttributes =lpszAttributes & _

"Database=your database name" & Chr$(0)
lpszAttributes =lpszAttributes & _

"Language=us_english" & Chr$(0)
lpszAttributes =lpszAttributes & "OEMTOANSI=No" & Chr$(0)
'network library
lpszAttributes =lpszAttributes & _

"Network=wdbnovtc" & Chr$(0) & Chr$(0)
iRet =SQLConfigDataSource(0, 1, "SQL _
urnal

 101 TECH TIPS
For VB Developers For even more tricks and tips go to

 http://www.windx.com

Server", lpszAttributes)
'if you already have data source with
'the same name, display confirmation
'message; otherwise, setup ODBC
If iRet <> 1 Then

iRet =SQLConfigDataSource(setup1.hWnd, 1, _
"SQL Server", lpszAttributes)
If iRet <> 1 Then MsgBox _

"Error during setup of the " & _
"Data Source. Install data " & _
"source manually"

End If

Remember that some of the attributes depend on the way
your SQL Server is set up. For example, if you exclusively use
“Named Pipes,” the address parameter will not be included.

—Eugene Dvorkin
Weehawken, New Jersey

VB3, VB4 16/32
Level: Beginning

FILTER USER KEYBOARD INPUT
This code removes the need for the Masked Edit control in most
situations. It works with VB3 and VB4, although you need only
the MouseDown and MouseUp events in Win95 to deal with built-
in context menus. However, the user will not be able to paste
legitimate numbers.

Add this code as appropriate to your text box and users will
be able to put in only numbers. You can modify it to work with
any specific set of characters:

Option Explicit
Dim tText As String
Private Sub Text1_KeyPress(KeyAscii As Integer)

Dim tKeyAscii As Integer
'Define some stuff
tKeyAscii = 0
If KeyAscii >= Asc(0) And KeyAscii <= Asc(9) Then _

tKeyAscii = KeyAscii
'Make sure it’s a digit

If KeyAscii = 8 Then tKeyAscii = 8
'or the backspace key
KeyAscii = tKeyAscii
'Give them our filtered key.

End Sub
Private Sub Text1_MouseDown_

(Button As Integer, Shift As _
Integer, X As = Single, Y As Single)
' Relies on form-level variable to
' prevent changes via clipboard
tText = Text1.Text

End Sub
Private Sub Text1_MouseUp_

(Button As Integer, Shift As _
Integer, X As = Single, Y As Single)
'Ignore their changes!
Text1.Text = tText

End Sub
Supplem

—Holland Rhodes, Martinez, California
VB4 16/32
Level: Beginning

ITERATING CONTROLS
COLLECTION TO SET PROPERTIES
There are many cases when a VB form has quite a few text-box
controls—any data entry form, for example—and you want to
clear the text of these text boxes frequently. For instance, every
time you enter new data, you have to clear all text boxes to al-
low the user to enter new data. Thanks to the VB4 Controls Col-
lection, you can do this in only one shot and save yourself a lot
of time trying to figure out the names of those text boxes and
setting values to an empty string for each of the text boxes. This
subroutine does it all in only two lines of code. You only need to
pass the Form name as the parameter to this subroutine (that
is, Call gClearForm(Me)):

Public Sub gClearForm(FName As Form)
Dim MyControl As Control
For Each oMyControl In FName.Controls

If TypeOf MyControl Is TextBox Then
MyControl.Text = ""

End If
Next MyControl

End Sub

You can also use this tip to do many other things, such as mak-
ing all command buttons disabled, making List Indexes of all
combo boxes -1, and so on. You only need to modify the If condi-
tion and property of that control.

—Adesh Jain, Newington, Virginia

VBA, VB3, VB4 16/32
Level: Intermediate

SWAP VALUES USING ONLY TWO
VARIABLES
This code swaps values using two variables only:

Sub Form_Load ()
SwapThis Rnd(4) * 100, Rnd (5) * 100

End Sub

This routine swaps the values of A and B. There is no need to
use a third variable:

Private Sub SwapThis (A As Integer, B As Integer)
'before the swap
MsgBox "A = " & Str(A) & " B = " & Str(B)
A = A + B
B = A - B
A = A - B
'After the swap
MsgBox "A = " & Str(A) & " B = " Str(B)

End Sub

Note that this code crashes with an overflow error if (A+B) >
32K.
ent to Visual Basic Programmer’s Journal FEBRUARY 1997 25

—Edwin M. de Guzman, Houston, Texas

 101 TECH TIPS
For VB Developers
VB3, VB4 16/32
Level: Beginning

REPLICATE MENUS
Press the Menu Design icon in VB. Make the menu follow these steps:

caption: Menu 1
name: mnuMain1
index: 0

Press the icon with the right arrow to create the menu popup.
Add this code:

caption: Item 1
name: mnuItem1
idex: 1
caption: Item 2
name: mnuItem1
index: 2
caption: Item 3
name: mnuItem1
idex: 3

Repeat the second step, changing the Menu title from “Menu
1” to “Menu 2.” When you see the menu in your form, save it. Call
Notepad or Write to see how VB saves the form. Copy these lines:

Begin Menu mnuMain1
Caption = "&Menu 1"
Index = 0
Begin Menu mnuItem1

Caption = "Item 1"
Index = 1

End
Begin Menu mnuItem1

Caption = "Item 2"
Index = 2

End
Begin Menu mnuItem1

Caption = "Item 3"
Index = 3

End
End
Begin Menu mnuMain2

Caption = "M&enu 2"
Index = 0
Begin Menu mnuItem2

Caption = "Item 1"
Index = 1

End
Begin Menu mnuItem2

Caption = "Item 2"
Index = 2

End
Begin Menu mnuItem2

Caption = "Item 3"
Index = 3

End
End

Open the other file and paste it. Save the new file with an-
other name, such as “mnuHead.”

Each time you need to make a menu, you simply go to
“mnuHead,” copy these lines, open the form, and paste it. Re-
member to save the form in text mode. If I need five, I only copy
and paste five. Remember to insert the “End” of “Begin Menu
26 FEBRUARY 1997 Supplement to Visual Basic Programmer’s Jou

mnuMain1.” Rename each of the items before you save the form.
These easy steps will save you a lot of work.
—Gonzalo Medina Galup, Miami, Florida

VB4 16/32
Level: Intermediate

COLOR STATUS INDICATOR
Have you ever wanted to create a status bar that gave color indi-
cation in addition to the percentage? Let’s say you desire this
effect:

>=0 and <50 Green
>=50 and <75 Yellow
>=75 and <=100 Red

Place a Sheridan 3D Panel on your form, change the name to
pn3Status, clear the Caption property, and set the FloodType
property to 1 (Left to Right). Then place this code on your form:

Private Sub SetStatus(value%)
If value < 0 Or value > 100 Then Exit Sub
pn3Status.FloodPercent = value
pn3Status.FloodColor = _

RGB(-255 * (value >= 50), _
-255 * (value < 75), 0)

End Sub

This not only updates the percentage, but it changes the
FloodColor accordingly. You can also put this into a Property
procedure and make it public so that the status can be set from
elsewhere in the project.

To test this function, place this in a command button Click
event:

For i = 1 To 100
SetStatus (i)

Next
—Peter W. DeBetta, Morrisville, North Carolina

VB4 16/32
Level: Intermediate

CALL PROPERTY PROCEDURES
WITH MULTIPLE PARAMETERS
Property procedures, which are new in VB 4.0, have a distinct calling
convention. You can send any number of arguments to property pro-
cedures with only one restriction: the Property procedure Get should
have one argument less than the Property procedure Let.

Property procedures don’t support Named arguments, and
they cannot be called as normal procedures with multiple pa-
rameters. The only way to call these procedures is to have n-1
parameters on the left side and the nth argument on the right
side of the assignment:

Property Let Test (arg1 As String, _
arg2 As String, arg3 As Integer)

End Property
'calling the above property Test:
Test(arg1,arg2) = arg3

The last argument should be on the right side of the assignment.
rnal

—K. Ramesh, Kottur, Madras, India

 101 TECH TIPS
For VB Developers For even more tricks and tips go to

 http://www.windx.com

http://www.vb-bootcamp.com
VBS
Level: Intermediate

DYNAMIC WEB PAGES WITH
VBSCRIPT
Although most Visual Basic developers are accustomed to plac-
ing code only inside a sub or function, VBScript actually lets
you write code that can be executed without a function call. Code
written outside of a function is executed immediately when a
Web page is displayed.

This technique, known as “immediate execution,” is extremely
useful for creating simple dynamic Web pages. This VBScript
code shows a new “Tip of the Month” automatically when the
Web page is loaded. Simply place the code directly in a Web
page where you want the tips to appear:

<SCRIPT LANGUAGE="VBS">
<!—

Dim strTip
Select Case Month(Now)

Case 1
strTip="Tip 1"

Case 2
strTip="Tip 2"

Case 3
strTip="Tip 3"

Case 4
strTip="Tip 4"

Case 5
strTip="Tip 5"

Case 6
strTip="Tip 6"

Case 7
strTip="Tip 7"

Case 8
strTip="Tip 8"

Case 9
strTip="Tip 9"

Case 10
strTip="Tip 10"

Case 11
strTip="Tip 11"

Case 12
strTip="Tip 12"

End Select
Document.Write "<CENTER><H3>" & _

strTip & "</H3></CENTER>
—>
</SCRIPT>

—Scot P. Hillier, New Technology Solutions Inc.
http://www.vb-bootcamp.com

VB3, VB4 16
Level: Intermediate

MONITOR DLL USAGE
Many times, you want to monitor the usage of a DLL. You need
to know how many instances of the DLL are loaded and used.
This is especially useful during DLL development. During de-
bugging, you must always make sure that no previous instance
is loaded and that you are debugging the correct instance:

Declare Function GetModuleUsage Lib "Kernel" _
Supplem

(ByVal hModule As Integer) As Integer
Declare Function GetModuleHandle Lib "Kernel" _
(ByVal lpModuleName As String) As Integer

Sub Form_Load ()
Dim Handle As Integer
Dim Counter As Integer
Handle = GetModuleHandle("CommDlg.dll") ' Get the handle of

'the DLL you want to monitor
Counter = GetModuleUsage(Handle)
' Get the number of usage.
Debug.Print Str(Counter)
' Print on the debug window
End Sub

—Ramy Habashy, Agouza, Giza, Egypt

VBA, VB3, VB4 16/32
Level: Beginning

CUT-AND-PASTE TRICK FOR POWER
PROGRAMMERS
As a power programmer, I cut and paste incessantly. I end up
with my right hand on the mouse clicking and highlighting, and
my left hand on the keyboard playing the Ctrl, X, C, and V keys.
My eyes are glued to the screen, and I can’t afford to look at my
left hand.

Invariably, I make mistakes. The most common mistake I make
is using Ctrl-X (delete) instead of Ctrl-C (copy). Luckily, Windows
has the Undo function. But these mistakes still break my con-
centration and throw me off.

To reduce these finger errors, I now “home” my left forefin-
ger to the C key. I’ve placed a piece of tape on it to give it a
different feel. I use the forefinger for C and V and the middle
finger for Z and X. I’m considering hot-gluing a metal nut to the C
key!

—Stan Mlynek, Burlington, Ontario, Canada

VBS
Level: Intermediate

USING COLLECTIONS IN VBSCRIPT
Just like Visual Basic, VBScript provides collections that allow
easy access to the controls in a form. In VBScript, the controls
collection is called the Elements Array. However, it behaves in a
manner similar to the controls collection in VB. This code snip-
pet shows how you can use a VBScript routine to easily change
controls in the collection. In this case, you are simply clearing
all the text boxes in a form:

<SCRIPT LANGUAGE="VBS">
<!—

Sub Clear
For i=0 To Document.Forms(1).Elements.Count-1

Document.Forms(1).Elements(i).Value=""
Next

End Sub
—>
</SCRIPT>

—Scot P. Hillier, New Technology Solutions Inc.
ent to Visual Basic Programmer’s Journal FEBRUARY 1997 27

 101 TECH TIPS
For VB Developers

—Marcia Silva, San Diego, California
VBS
Level: Intermediate

SIMULATING CONTROL ARRAYS IN
VBSCRIPT
VBScript does not inherently support the concept of control
arrays. This decent workaround, however, cuts a lot of excess
coding. Use the Event attribute for any intrinsic HTML control
to call a common routine. For example, this code passes an in-
dex to a common routine for an array of five intrinsic HTML but-
ton controls:

<SCRIPT LANGAUGE="VBS">
<!—

Sub cmdArray_Click(intIndex)
MsgBox "You pushed the " & intIndex " button!"

End Sub
—>
</SCRIPT>

<BODY>
<FORM>
<INPUT TYPE="BUTTON" ONCLICK="cmdArray_Click(0)">
<INPUT TYPE="BUTTON" ONCLICK="cmdArray_Click(1)">
<INPUT TYPE="BUTTON" ONCLICK="cmdArray_Click(2)">
<INPUT TYPE="BUTTON" ONCLICK="cmdArray_Click(3)">
<INPUT TYPE="BUTTON" ONCLICK="cmdArray_Click(4)">
</FORM>
</BODY>

—Scot P. Hillier, New Technology Solutions Inc.
http://www.vb-bootcamp.com

VB3, VB4 16/32
Level: Beginning

USE DOEVENTS TO SIMULATE
MULTITHREADING
It’s possible for VB apps to perform multiple tasks simultaneously
if you put each task inside a DoEvents loop. Consider this code:

Do While bProcessing
Me.Print Int(Rnd * 10)
DoEvents

Loop

As long as the form-level variable bProcessing is True, this
loop generates and prints random numbers. The DoEvents at
the bottom of the loop yields control to other processes, and to
other code within the same app, allowing it to perform other
activities simultaneously.

—Ion Saliu, Cashtown, Pennsylvania

VB3, VB4 16/32
Level: Beginning

USE A LIST BOX TO NAVIGATE A
RECORD SET
Here’s how to use a list box to find the first matching record in a
record set. First, fill the list box with the unique values in a spe-
28 FEBRUARY 1997 Supplement to Visual Basic Programmer’s Jo

cific field:
Dim rs As Recordset
Dim SQL As String
SQL = "SELECT DISTINCT Field " & FROM Table;"
Set rs = db.OpenRecordset(SQL, dbOpenSnapshot)
If rs.RecordCount Then

Do Until rs.EOF
lstBox.AddItem rs!Field
rs.MoveNext

Loop
End If

Then add this code to the list box’s Click event:

Private Sub lstBox_Click()
Dim sFind As String
Dim sCriteria As String
' Get selected item
sFind = Trim$(lstBox.Text)
If Len(sFind) Then

' Show first matching record in
' bound controls on form
sCriteria = "[Field]='" & sFind & "'"
datCtl.Recordset.FindFirst sCriteria

End If
End Sub

—Claudia Vega Cachú, Tepic, Nayarit, Mexico

VB3, VB4 16
Level: Intermediate

API SELECTS ITEMS IN
COMBO BOX
One day I found myself having a lot of trouble with a combo box.
I was getting error messages when I tried to save the ID in the
list index from that particular combo to the record set. I would
get errors like “Invalid Use of Array” in the line “rs!id =
cbo1.ItemData(cbo1.ListIndex).” Sometimes, I would not even
get the value of the list index after using the “If cbo1.ListIndex =
1 Then” before my save event would work.

Now, I use the Windows API SendMessage. In the General Dec-
larations section of the form, declare:

Private Declare Function SendMessage _
Lib "User" (ByVal hWnd As Integer, _
ByVal wMsg as Integer, _
ByVal wParam As Integer, _
Iparam As Any) As Long

Private Const CB_SelectString = &H14D

Within the calling routine, declare:

Dim X As Integer
Dim returnvalue As Integer

Place these two lines in your save procedure:

returnvalue = SendMessage(cbo1.hWnd, _
CB_SelectString, X, cbo1.Text)

rs!id = cbo1.ItemData(cbo1.ListIndex)
urnal

