
INCLUDES WINDOWS PROGRAMMING & VISUAL PROGRAMMING

R

P R O G R A M M E R ’ S J O U R N A L

 www.windx.com
A FAWCETTE TECHNICAL PUBLICATION
AUGUST 1997 VOL. 7, NO. 9

Su pplement to

te
ch

tips

te
ch

tips
Fifth
Edition Featuring

For VB Developers

 101 TECH TIPS
For VB Developers For even more tricks and tips go to

 http://www.windx.com

WELCOME TO THE FIFTH
EDITION OF THE VBPJ
TECHNICAL TIPS SUPPLEMENT!
These tips and tricks were submitted by professional
developers using Visual Basic 3.0, Visual Basic 4.0,
Visual Basic 5.0, Visual Basic for Applications, and
Visual Basic Script. The tips were compiled by the
editors at Visual Basic Programmer’s Journal. Instead
of typing the code published here, download the tips
from the Registered Level of The Development Ex-
change at http://www.windx.com.

If you’d like to submit a tip to Visual Basic
Programmer’s Journal, please send it to User Tips,
Fawcette Technical Publications, 209 Hamilton Av-
enue, Palo Alto, California, USA, 94301-2500. You can
also fax it to 415-853-0230 or send it electronically to
vbpjedit@fawcette.com or 74774.305@compu-
serve.com. Please include a clear explanation of what
the technique does and why it is useful, and indicate
if it’s for VBA, VBS, VB3, VB4 16- or 32-bit, or VB5.
Please try to limit code length to 20 lines. Don’t for-
get to include your e-mail and mailing address. We’ll
pay you $25 if we publish your tip.

VB3, VB4 16/32
Level: Intermediate

COMBO BOX EVENT HANDLING
Two problems can arise when a confused user scrolls up or down
with the mouse and then makes a selection with the Enter key.
First, the down arrow fires two events: Change and Click. Sec-
ond, the Enter key moves focus to the next tab stop, while the
mouse click doesn’t remove focus from the combo box. There-
fore, if you place your action code in the Change event, an up or
down arrow will fire it, which you don’t want. On the contrary, if
you place your action code only in the LostFocus event and the
user clicks on a selection, focus won’t move from the combo
box, and the user is left staring at the selected text in the combo
box, wondering why no action occurred.

This solution filters out Click events generated with arrow
keys and forces the control to lose focus. In the Declarations
section of the form, enter this code:

' Note: Use an Integer flag variable in
' VB3
Dim bNoise as Boolean
' True denotes a Noise Event which is to
' be ignored

Enter this code in the Form_Load event:

bNoise = False
Suppl
Enter this code in the combo box KeyDown event:

Private Sub cbTest_KeyDown(KeyCode As _
Integer, Shift As Integer)
' If the user is browsing with the
' arrows, ignore the Click Events
If KeyCode = vbKeyDown Or KeyCode _

= vbKeyUp Then bNoise = True
End Sub

Enter this code in the combo box Click event:

Private Sub cbTest_Click()
If bNoise Then

' Ignore Noise events
' (up or down arrow)
bNoise = False

Else
' Force loss of focus
SendKeys "{TAB}", True

End If
End Sub

Write code that reacts to a new user selection in the combo
box LostFocus event. Don’t send a Tab keystroke because focus
has already shifted, and the combo box’s behavior is consistent
regardless of how the user selects a new value.

—Les Smith, Concord, North Carolina

VB5
Level: Beginning

COMMENT AND UNCOMMENT
BLOCKS OF CODE
Visual Basic 5.0 lets you comment a block of code in a snap and
uncomment it later. This feature is useful in the debug phase,
when you don’t want to execute a number of statements, but
don’t want to physically delete them either. However, the Com-
ment/Uncomment command pair isn’t present in any menu of
the environment, and you can only reach it by enabling the Edit
toolbar. To do this quickly, right-click on any toolbar in the envi-
ronment and select the Edit command.

—Francesco Balena, Bari, Italy

VB5
Level: Beginning

DON’T CREATE ALIASED
VARIABLES
Never pass a global variable as an argument to a procedure that
also accesses the variable directly. If you’re 100 percent sure
you adhered to this rule within your application, check the As-
sume No Aliasing option in the Advanced Optimizations dialog
that you invoke from the Compile tab of the Project Properties
dialog. If the native code compiler knows no aliased variables
exist, it can freely cache variable values into faster CPU regis-
ters, and store them back to RAM memory only when leaving
the procedure. This improves the execution speed of compiled
programs.

—Francesco Balena, Bari, Italy
ement to Visual Basic Programmer’s Journal AUGUST 1997 1

 101 TECH TIPS
For VB Developers

—Francesco Balena, Bari, Italy
VB5
Level: Beginning

DEFAULT VALUES FOR OPTIONAL
PARAMETERS
If you ever programmed under VB4, you probably took advan-
tage of the powerful Optional parameters. VB5 enhanced them
in several ways: they can be of any type now (not only Variants),
and can appear in Property procedures. Interestingly, you can
now state a default value for them:

Property Get Value (Optional index As Long = 1)
...
End Property

You can do this without an explicit (and slower) IsMissing test:

Property Get Value (Optional index As Long)
If IsMissing(index) Then index = 1
...
End Property

—Francesco Balena, Bari, Italy

VB5
Level: Beginning

CENTER FORMS ON SCREEN
A popular code snippet lets you center any form on the screen,
regardless of the current screen resolution. You now can reach
the same result by simply assigning the value vbStartUpScreen
(=2) to the form’s StartUpPosition new property. You can even
center a form within its parent window by assigning the
vbStartUpOwner (=1) value. You can set this property from the
Property window.

When a form is supposed to be centered within its parent win-
dow, remember to add a second argument to the Show method:

Form2.Show vbModal, Me
—Francesco Balena, Bari, Italy

VB5
Level: Beginning

DON’T AUTO-OPTIMIZE FOR FAST
CODE
If you take a look at VB’s native code optimization options for
the first time, you might be tempted to click on “Optimize for
Fast Code” right away. Strange as it may sound, this does not
always guarantee the best performance. Applications optimized
for performance generally don’t run much faster, but do have a
larger memory footprint. This causes them to load slower, espe-
cially on memory-constrained machines, giving the user the
impression that your app is actually slower than one optimized
for compact code.

For the same reason, consider leaving your applications com-
piled as p-code. Especially for large, UI- and database-intensive ap-
plications, the performance gain of compiling to native code won’t
outweigh the increase in application size. To determine exactly
2 AUGUST 1997 Supplement to Visual Basic Programmer’s Journ

which compilation option is right for you, use the VB Application
Performance Explorer (APE) included on your VB CD.
—Michiel de Bruijn, Rotterdam, The Netherlands

VBA5
Level: Beginning

NOT ALL TEMPLATES ARE
CREATED EQUAL
Unlike templates in other Office 97 products, Word 97 templates
provide a business-application engine that remains separate from
the documents that use that engine. Template-based Excel work-
books and PowerPoint presentations include a copy of that en-
gine. In practice, all Word documents consist of two VBA projects:
the first project is from the underlying template (all Word docu-
ments are based on a template), and the second project belongs
to the Word document itself. On the other hand, Excel work-
books and PowerPoint presentations based on a template have
only one VBA project. Every file contains its own copy of the
project in the original template. Changes made to this copy don’t
affect the underlying template.

In Excel, PowerPoint, and Access, add-ins provide code en-
gines that remain separate from the workbooks and presenta-
tions using those engines. To create an Excel or PowerPoint add-
in, use the Save As command on the File menu and save the file
as a specific type: the “Add-in” type. Each product uses a spe-
cific “Add-in” extension (XLA for Excel, PPA for PowerPoint, and
MDA for Access).

There’s no canonical location for storing add-ins, but to load
add-ins automatically when you launch an Office product, store
them in the XLStart folder or in the StartUp folder. You can load
add-ins manually with the Add-ins command on the Tools menu,
or you can automate the process in code.

To create an Access add-in, use the command “Make MDE
file” available through the Database Utilities command on the
Tools menu.

—Christine Solomon, New York, New York

VB5
Level: Beginning

CUSTOMIZE VB TOOLBARS
Here are a few simple ways you can customize your VB5 IDE:

•␣ Add tabs to the custom control toolbox by right-clicking on the
General button and selecting the Add Tab command. You can also
move tabs around and delete them, as well as move control icons
from one tab to the other by using the drag-and-drop method.
•␣ Create toolbar buttons for any menu command by right-click-
ing on any toolbar and selecting the Customize command. Move
to the Commands tab, select the menu command in the right-
most list box, and drag it onto the toolbar where you want to
move it. Good candidates for this procedure are the Project-Ref-
erences, Project-Properties, and Tools-Add Procedure commands.
•␣ Create a brand new toolbar in the Toolbars tab of the Custom-
ize dialog box. After you define a toolbar, add buttons using the
procedure outlined above. When the Customize dialog box is
active, right-click on any toolbar button to change its image, cre-
ate a group divider, show/hide text, and more.
al

 101 TECH TIPS
For VB Developers For even more tricks and tips go to

 http://www.windx.com

—Francesco Balena, Bari, Italy
VB5
Level: Beginning

HIDE ALL PROJECT WINDOWS
When working with multiple projects, it’s easy to get confused
by the many windows active on the screen at the same time.
However, you can temporarily hide all the windows related to a
given project by simply collapsing the project item in the Project
Explorer window. You can disable this feature in the General tab
of the Tools-Options dialog box.

—Francesco Balena, Bari, Italy

VB5
Level: Intermediate

FRIENDLY ENUMERATED VALUES
If you build an ActiveX control that exposes an enumerated prop-
erty, you should define a Public Enum structure that gathers all
the possible values for that property. Doing this helps the devel-
oper using your control because the enumerated values will be
listed in a combo box in the Property window.

However, at first glance, it seems impossible to achieve the
same behavior as most of VB’s intrinsic controls, which expose
enumerated properties with short descriptions and embedded
spaces. Even if they’re not documented in the language manu-
als, you can create enumerated items that embed spaces by
enclosing their names within square brackets:

Public Enum DrawModeConstants
Blackness = 1
[Not Merge Pen]
[Mask Not Pen]
[Not Copy Pen]
...

End Enum

Then add a DrawModeConstants property to the ActiveX con-
trol. All the enumerated values appear in the Property window of
the VB IDE, without the square brackets and with all the spaces
you included. Use this technique to embed other forbidden char-
acters, such as math or punctuation symbols.

—Francesco Balena, Bari, Italy

VB5
Level: Advanced

PROPERTIES THAT BEHAVE LIKE
TEXT AND CAPTION
If you build an ActiveX control that exposes a Text- or Caption-
like property, even under different names, you should modify
its attributes in the Procedure Attribute dialog box after expand-
ing it by using the Advanced button. This way, the Procedure ID
is set to Text or Caption, respectively.

This causes your property to behave like standard Text or
Caption properties. When the user modifies its value in the Prop-
erty window, the effect of each new character is immediately
reflected on the ActiveX control itself.

—Francesco Balena, Bari, Italy
Supp
VB4 16/32, VB5 (Enterprise Edition)
Level: Intermediate

STANDALONE TYPE LIBRARIES
If you create out-of-process OLE servers, Visual Basic embeds the
companion type library into the EXE file and generates no TLB
file. However, if you own the Enterprise Edition of VB4 or VB5,
you can flag the Remote Server File check box to have Visual Ba-
sic create a standalone type library. In VB5, you can find this op-
tion in the Component tab of the Project-Properties dialog box.

—Francesco Balena, Bari, Italy

VB4 16/32, VB5
Level: Advanced

IMPLEMENTATION OF PUBLIC FORM
AND CLASS VARIABLES
The implementation of Public variables in forms and classes
changed with Visual Basic 5.0. VB4 implements public variables
in forms and class modules as if they’re regular variables, using
pointers to data in memory. In VB5, public variables are more
correctly implemented as a pair of hidden Get/Let property pro-
cedures. This approach slows down these properties when the
program is ported from VB4 to VB5.

More important, if you have a VB4 program that passes such
Public variables to a procedure using the ByRef keyword (or no
keyword at all, which results in the variable being passed by
reference) and that relies on the procedure to modify the value
of this argument, this code won’t work correctly when recompiled
under VB5. In fact, under VB5, they’re passed by value, and the
original property is never affected. For more information on this
issue, see article Q166928 in the Microsoft Knowledge Base.

—Francesco Balena, Bari, Italy

VB5
Level: Intermediate

USE OBJECT BROWSER TO
DISCOVER UNDOCUMENTED
FEATURES
If you right-click on the right-most pane of the Object Browser,
you can issue the Show Hidden Members command. From this
point on, the Object Browser shows all hidden properties and
methods in any library, and you can use it to explore all object
libraries in more detail.

For instance, the VBA library exposes a hidden class, appro-
priately named “_HiddenModule,” which includes many well-
known VBA functions plus three undocumented ones: ObjPtr,
StrPtr, and VarPtr. ObjPtr returns the address of the private area
of an object instance, StrPtr returns the address of the first char-
acter in a string, and VarPtr returns the address of a variable or
a string descriptor, if you pass it a string variable.
lement to Visual Basic Programmer’s Journal AUGUST 1997 3

 101 TECH TIPS
For VB Developers

—Francesco Balena, Bari, Italy
VB4 16/32
Level: Advanced

THE ADDRESS OF A VARIABLE
VB5 includes a built-in VarPtr function (see tip “Use Object
Browser to Discover Undocumented Features” on page 3), but
this function isn’t available in VB4. The VB4 runtime library does
include this function, but you must declare it first:

#If Win16 Then
Declare Function VarPtr Lib _

"VB40016.DLL" (variable As Any) As Long
#Else
Declare Function VarPtr Lib "VB40032.DLL" (variable As Any) _

As Long
#End If

This function is useful when passing an external API routine
a Type structure, and one of its fields is the address of another
variable or record.

—Francesco Balena, Bari, Italy

VB4 16/32, VB5
Level: Intermediate

CROSS MIDNIGHT BENCHMARKS
Traditionally, VB programmers benchmark their code using the
Timer function. However, if your process might terminate on
the following day, you must take into account that the value
returned by that function is reset at midnight. If you’re satis-
fied with one-second precision, you can simplify your code
using the Now function:

Dim startTime As Date
StartTime = Now
' the code to be benchmarked
' ...
Print "elapsedSeconds = " & Format$ _

((Now – startTime) * 86400, "#####")

You need the Format$ function to round the result to the near-
est Integer.

—Francesco Balena, Bari, Italy

VB5
Level: Intermediate

APP.PATH MIGHT RETURN UNC
PATH SPECIFICATIONS
Unlike VB4, VB5’s App.Path property might return a UNC path,
such as “\\server\programs\...”, depending on how the program
started and if it’s interpreted in the VB IDE or compiled as a
standalone EXE. This change likely affects all applications that
use App.Path to set the current directory when the program starts:

ChDrive App.Path
ChDir App.Path

In fact, because ChDrive cannot handle UNC paths, the code
might raise a fatal runtime error and should be protected using
4 AUGUST 1997 Supplement to Visual Basic Programmer’s Journ

an On Error Resume Next statement. This fix, however, doesn’t
protect you under every possible condition. The best approach
is to give the end user the capability to set the application direc-
tory at run time, then save the entered value in the registry or in
an INI file. For more information on this problem and its possible
solutions, see article Q167167 in the Microsoft Knowledge Base.

—Francesco Balena, Bari, Italy

VB4 16/32, VB5
Level: Advanced

MORE VERSATILE ARRAY
PARAMETERS
You can write a single procedure that accepts any type of array
as an argument by using a variant parameter. Within the proce-
dure, address the array using the usual syntax:

' return the number of items
Function ItemCount(anArray As Variant) As Long
ItemCount = UBound(anArray) – LBound(anArray) + 1
' the first element is anArray(LBound(anArray))
End Function

You can even pass a matrix with any number of dimensions;
in order to understand how many dimensions, you must iterate
on the UBound or LBound functions until an error occurs:

Function ItemCount(anArray As Variant) As Long
Dim items As Long, i As Integer
On Error Resume Next
items = UBound(anArray) – LBound(anArray) + 1
For i = 2 to 999

items = items * (UBound(anArray, _
i) – LBound(anArray, i) + 1)

If Err Then Exit For
Next
ItemCount = items
End Function

—Francesco Balena, Bari, Italy

VB4 16/32, VB5
Level: Intermediate

COMPACT YOUR CODE USING IIF
AND SWITCH

You can often replace an If...Then...Else block with a more com-
pact IIf function:

' returns the max of two values
maxValue = IIf(first >= second, first, second)

Switch is a rarely used function, yet it can prove rather use-
ful as a substitute for a lengthy If...ElseIf block:

' is "x" negative, positive or null?
Print Switch(x < 0, "negative", x > 0, _

"positive", True, "Null")

Note the last test is True, because the three conditions are
mutually exclusive and exhaustive.
al

 101 TECH TIPS
For VB Developers For even more tricks and tips go to

 http://www.windx.com

VB5
Level: Advanced

COMBINE DEFAULT WITH OTHER
ATTRIBUTES
When building an ActiveX control, you can set a default prop-
erty or method using the Procedure Attributes dialog box, after
clicking on the Advanced button. However, if your default prop-
erty also happens to require another special attribute—as is the
case with Caption and Text properties—you’re in trouble be-
cause the Procedure ID combo box only permits one selection.

Suppose your ActiveX control exposes a Caption property
you want to behave as a regular property. For example, all keys
typed in the Property window are immediately reflected in the
control itself. In order to achieve this behavior, assign the Cap-
tion attribute to this property in the Procedure ID combo box
(see tip “Properties That Behave Like Text and Caption” on page
3). If you also want to make it the default property, you must
resort to a trick: declare another, hidden property that delegates
to your Caption property, and set this new property as the de-
fault member of the ActiveX control. The name of this property
is not important because the user never sees it:

Property Get DefaultProp() As String
DefaultProp = Caption

End Property

Property Let DefaultProp(newValue As String)
Caption = newValue

End Property
—Francesco Balena, Bari, Italy

VB3, VB4 16/32, VB5
Level: Beginning

SPEED UP YOUR CODE USING
CHOOSE
You can often use Choose to replace an array and build tables of
results evaluated at compile-time instead of run time. For in-
stance, if you need to evaluate the factorial of a number in the
range 1 to 10, try this function:

Function Factorial(number As Integer) As Long
Factorial = Choose(number, 1, 2, 6, 24, 120, 720, 5040, _

40320, 362880, 3628800)
End Function

—Francesco Balena, Bari, Italy

VB5
Level: Intermediate

GOSUBS ARE SLOW IN COMPILED
PROGRAMS
Because GoSubs make for less structured programming, many
programmers avoid them. If you compile your VB5 applications
to native code, you have one more reason to stay away from
them because, curiously enough, GoSubs calls happen to be about
five times slower than calls to a regular procedure or function.
Supp

—Francesco Balena, Bari, Italy
VB5
Level: Intermediate

“ARRAY” IS NOT A VALID
VARIABLE NAME ANYMORE
If you’ve often used the “array” name for variables, you must
revise your code when porting your applications to Visual Basic
5.0. This name has become a reserved keyword and cannot be
used for variables. You can easily revise your code with the Re-
place command in the VB5 IDE—remember to check the “Find
whole words only” option.

—Francesco Balena, Bari, Italy

VB4 16/32, VB5 Enterprise Edition
Level: Advanced

RUN AUTOMATION MANAGER AS A
HIDDEN TASK
If you use OLE Remote Automation, you must start the Automa-
tion Manager on the server computer before any OLE remote
communication occurs. By default, this application is visible,
but you can hide it so it doesn’t appear on the taskbar. To achieve
this, change the shortcut to the Automation Manager so it in-
cludes the /Hidden switch:

C:\Windows\System\AutMgr32.Exe /Hidden

Alternatively, you can change the value of a key in the regis-
try. For more information, see article Q138067 in the Microsoft
Knowledge Base.

—Francesco Balena, Bari, Italy

VB4 16/32, VB5
Level: Advanced

PROBLEMS WITH POPUP MENUS
If you use popup menus in your applications, you should be aware
of a bug present in VB4 16/32 and VB5. If you have two forms and
the first one shows the second form modally from within a popup
menu, the second form can’t show any popup menu.

To fix this bug, use a timer on the first form. Instead of show-
ing the second form from within the popup menu’s Click event,
activate the timer so it shows the second modal form after some
milliseconds. For more information on this bug and its
workaround, see article Q167839 in the Microsoft Knowledge Base.

—Francesco Balena, Bari, Italy
lement to Visual Basic Programmer’s Journal AUGUST 1997 5

 101 TECH TIPS
For VB Developers
VB5
Level: Advanced

CONSTITUENT CONTROLS ARE
PRIVATE TO USERCONTROL
MODULES
You cannot directly access constituent controls on a UserControl
component from another module of the same project. Constitu-
ent controls behave differently from controls on forms, which
you can access from any other module using the familiar
“Form1.Text1” syntax. If you need to work around this limita-
tion, have each UserControl component expose its controls us-
ing a Friend property.

For instance, if the UserControl1 module needs to expose one
of its constituent controls, add this property procedure:

Friend Property Get TextControl() As TextBox

Set TextControl = Text1

End Property

When you wish to modify the Text property of the control of
a particular instance of UserControl1 in the BAS module, write
something like this:

Sub ClearText(uc As UserControl1)

uc.TextControl.Text = ""

End Sub
—Marco Losavio, Gioia del Colle, Italy

VB4 16/32, VB5
Level: Intermediate

USE A COLLECTION TO FILTER
OUT DUPLICATE VALUES
This code illustrates how to use a Collection to automatically
generate a unique set of values from a set of data containing
duplicates. In this example, scan a string array and sort all unique
items using a list-box control:

Sub Remove_Duplicates(arr() As String)
Dim i As Long
Dim RawData As String
Dim DataValues As New Collection

On Error Resume Next
' Specifically to ignore run-time
' error 457 - Duplicate key
For i = LBound(arr) To UBound(arr)

RawData = arr(i)
DataValues.Add RawData, RawData
' If Run-time error 457 occurs,
' Duplicate key is ignored

Next
On Error GoTo 0

' Store in List Box
' (with Sorted property set to True)
lstSortedData.Clear
For Each DataValue In DataValues
6 AUGUST 1997 Supplement to Visual Basic Programmer’s Journ

lstSortedData.AddItem DataValue
Next
End Sub

—J.G. Hussey, Fareham, Hampshire, England

VB3
Level: Intermediate

CREATE “REMOTELY
CONTROLLABLE” FORMS
Sometimes I need to control a VB form while focus is on another
one. For example, I want form B to be resized when I press the
“OK” button on form A. In every form that must be “remote con-
trollable,” I include an invisible text box, such as TextCommand,
with the Change procedure containing code like this:

Sub TextCommand_Change ()
Dim msg as string
msg = Trim$(Me.TextCommand.Text)
If Len(msg) = 0 Then Exit Sub

Select Case msg
Case "COMMAND_RESIZE"

Call MyFormResize
Case "COMMAND_REPAINT"

Call MyFormPaint
...

End Select
Me.TextCommand = ""

End Sub

You can remotely control this form by sending the appropri-
ate value to its TextCommand field:

Sub Command1_Click ()
formB.TextCommand = "COMMAND_RESIZE"
DoEvents

End Sub

Use this code to send messages from an MDI form to its child:

Dim f As Form
Set f = Me.ActiveForm
f.TextCommand = "COMMAND_RESIZE"

If you program under VB4 or VB5, you might wish to use Pub-
lic form properties and methods instead.

—Alex Klikouchin, Toronto, Ontario, Canada

VB4 16/32, VB5
Level: Intermediate

SAVE FORM POSITION AND SIZE
USING SAVESETTING
SaveSetting and GetSetting make writing application settings a
breeze. These two utility functions retrieve and store the cur-
rent forms position:

Public Sub FormPosition_Get(F As Form)
' Retrieve Form F’s position from an
' ini/reg file and position it accordingly
Dim buf As String
Dim l As Integer, t As Integer
al

Dim h As Integer, w As Integer

 101 TECH TIPS
For VB Developers For even more tricks and tips go to

 http://www.windx.com

Dim pos As Integer

buf = GetSetting(app.EXEName, _
"FormPosition", F.Tag, "")

If buf = "" Then
' defaults to centering the form
F.Move (Screen.Width - F.Width) \ _

2, (Screen.Height - F.Height) \ 2
Else

' extract l,t,w,h and move the form
pos = InStr(buf, ",")
l = CInt(Left(buf, pos - 1))
buf = Mid(buf, pos + 1)
pos = InStr(buf, ",")
t = CInt(Left(buf, pos - 1))
buf = Mid(buf, pos + 1)
pos = InStr(buf, ",")
w = CInt(Left(buf, pos - 1))
h = CInt(Mid(buf, pos + 1))
F.Move l, t, w, h

End If
End Sub

Public Sub FormPosition_Put(F As Form)
' Write form F’s top,left,height and
' width properties to the reg/ini file
' for the application
Dim buf As String
buf = F.left & "," & F.top & "," & _

F.Width & "," & F.Height
SaveSetting app.EXEName,_

"FormPosition", F.Tag, buf
End Sub

You should place these routines in a module and call them
from the forms’ Load and Unload events. You must place the
name of the form in its Tag property for these utilities to work:

Sub Form_Load()
FormPosition_Get Me

End Sub
Sub Form_Unload()

FormPosition_Put Me
End Sub

—Rob Parsons, Dee Why Beach, Australia

VB4 16/32, VB5
Level: Beginning

PUT VB INTRINSIC CONSTANTS TO
GOOD USE
I’ve seen several tips using numeric values instead of the corre-
sponding Visual Basic constants. Always use the Visual Basic
predefined constants. For example, you can set up a message
box using numeric constants:

rc = MsgBox(msg, 4 + 32 + 256, "Confirm Delete")

But isn’t this easier to read?

rc = MsgBox(msg, vbYesNo + vbQuestion _
+ vbDefaultButton2, _
"Confirm Delete")

Use these constants for the value of a check box:
Supp
VbUnchecked =0
VbChecked =1
VbGrayed =2

Also, use the string constants instead of the corresponding
chr$(ASCII value):

vbTab instead of Chr$(9)
vbCr instead of Chr$(13)
vbLf instead of Chr$(10)
vbCrLf instead of Chr$(13)+Chr$(10)

—Pedro Prospero Luis, Odivelas, Portugal

VB3, VB4 16/32, VB5
Level: Intermediate

TEST FOR “FILE EXIST” THE
RIGHT WAY
Dir$ raises a runtime error if you supply it an invalid drive. For
example, Dir$ (“d:\win\himems.sys”) crashes if drive d: doesn’t
exist. To check if a file exists, add an error handler:

Function FileExist(filename As String) _
As Boolean
On Error Resume Next
FileExist = Dir$(filename) <> “”
If Err.Number <> 0 Then FileExist _

= False
On Error GoTo 0

End Function
—Pedro Prospero Luis, Odivelas, Portugal

VB4 16/32, VB5
Level: Intermediate

PROCEDURES THAT ACT ON A
GROUP OF CONTROLS
You can use the almost-forgotten ability of Visual Basic to have
a function or sub with an undetermined number of arguments
that do something to a set of controls. For example, you can
enable/disable many controls with one sub call:

EnableAll True, Text1, Text2, _
Command1, Command2

This procedure iterates on all the controls passed as argu-
ments:

Sub EnableAll(Enabled As Boolean, _
ParamArray objs() As Variant)

Dim obj As Variant
For Each obj In objs

obj.Enabled = Enabled
Next obj

End Sub
—Pedro Prospero Luis, Odivelas, Portugal
lement to Visual Basic Programmer’s Journal AUGUST 1997 7

 101 TECH TIPS
For VB Developers
VB3, VB4 16/32, VB5
Level: Intermediate

BETTER SCROLLING IMAGES
I enjoyed Joel Paula’s “Scrollable Viewport for a Picture” tip [“101
Tech Tips for VB Developers,” Supplement to the February 1997
issue of VBPJ, page 12], and I’d like to add some improvements
to it. First, make the scrollbar’s Scroll event update the picture
position so it moves while you drag the scroll box. Second, de-
clare these form-level variables:

Dim StartX As Long, StartY As Long
Dim Moving As Boolean

Finally, declare these three events for PicPicture:

Private Sub PicPicture_MouseDown_
(Button As Integer, Shift As _
Integer, x As Single, y As Single)

StartX = x
StartY = y
Moving = True

End Sub

Private Sub PicPicture_MouseMove_
(Button As Integer, Shift As _
Integer, x As Single, y As Single)

If Moving Then
PicPicture.Move _

PicPicture.Left + x - _
StartX, PicPicture.Top + _
y – StartY

End If
End Sub

Private Sub PicPicture_MouseUp_
(Button As Integer, Shift As _
Integer, x As Single, y As Single)

Moving = False
End Sub

Now you can scroll the image with your mouse. Don’t forget
to test for the borders of the image.

—Pedro Prospero Luis, Odivelas, Portugal

VB3, VB4 16/32, VB5
Level: Intermediate

ENCRYPTED PASSWORDS
These two small, simple, and effective functions easily encrypt/
decrypt a text password. The functions take two parameters: a
number in the range of 1 to 10 used to alternatively shift up or
down the ASCII character by that amount, and the actual Pass-
word string.

The EncryptPassword function loops though each character
of the DecryptedPassword, checks if its position is odd or even,
and shifts the character up or down according to the Number
parameter. This makes the encrypted string unreadable. The
encrypted password is then scrambled once again using the XOR
operator, which makes it even more unreadable.

I chose a limit of Number to be 10, so I don’t have to check
for invalid ASCII values. The DecryptPassword Function reverses
the encryption process by first applying the XOR operator and
8 AUGUST 1997 Supplement to Visual Basic Programmer’s Journ

then shifting:
Function EncryptPassword(Number As _
Byte, DecryptedPassword As String)

Dim Password As String, Counter As Byte
Dim Temp As Integer

Counter = 1
Do Until Counter = _

Len(DecryptedPassword) + 1
Temp = Asc(Mid(DecryptedPassword, _

Counter, 1))
If Counter Mod 2 = 0 Then

'see if even
Temp = Temp - Number

Else
Temp = Temp + Number

End If
Temp = Temp Xor (10 - Number)
Password = Password & Chr$(Temp)
Counter = Counter + 1

Loop
EncryptPassword = Password
End Function

Function DecryptPassword(Number As _
Byte, EncryptedPassword As String)

Dim Password As String, Counter As Byte
Dim Temp As Integer

Counter = 1
Do Until Counter = _

Len(EncryptedPassword) + 1
Temp = Asc(Mid(EncryptedPassword, _

Counter, 1)) Xor (10 - Number)
If Counter Mod 2 = 0 Then

'see if even
Temp = Temp + Number

Else
Temp = Temp - Number

End If
Password = Password & Chr$(Temp)
Counter = Counter + 1

Loop
DecryptPassword = Password
End Function

—Jeff Bogusz, received by e-mail

VB4 16/32, VB5
Level: Intermediate

FIXING A PROPER CASE TIP
If you use the left arrow key to go back to the beginning of a
word and then enter a letter, you get two uppercase letters. Use
this code, which takes advantage of the built-in VB4/VB5
StrConv() function, to automatically capitalize words upon en-
tering:

Private Sub Text1_Change()
If Text1.Tag = "" Then

Text1.Tag = Text1.SelStart
Text1.Text = StrConv(Text1.Text, vbProperCase)
Text1.SelStart = Text1.Tag
Text1.Tag = ""

End If
End Sub

—Tim McBride, Redmond, Washington
al

 101 TECH TIPS
For VB Developers For even more tricks and tips go to

 http://www.windx.com

VB4 32, VB5
Level: Intermediate

TRAPPING A DOUBLE CLICK FOR A
TOOLBAR BUTTON
VB4 supports the built-in Win95 Toolbar control, which allows
users to add Buttons to the toolbar. The button has a ButtonClick
event, but if you want to trap a double-click, there is no
ButtonDoubleClick event. To work around this problem, declare
two form-level variables:

Private mbSingleClicked As Boolean
Private mbDoubleClicked As Boolean

In the Toolbars ButtonClick event, add this code:

Private Sub Toolbar1_ButtonClick_
(ByVal Button As Button)

Dim t As Single
t = Timer
If mbSingleClicked = True Then

mbDoubleClicked = True
MsgBox "Double Clicked"

Else
mbSingleClicked = True
' allow the user to click the next
' time if he wants to double click
Do While Timer - t < 1 And mbSingleClicked = True

DoEvents
Loop
' if the user has selected a double
' click end the sub.
If mbDoubleClicked = True Then

mbSingleClicked = False
mbDoubleClicked = False
Exit Sub

End If
End If
If mbDoubleClicked = False Then

MsgBox "Single Clicked"
End If

'you can do the processings here, e.g
'If mbDoubleClicked Then
'———— code
'ElseIf mbSingleClicked Then
'———— code
'End If

'when exiting from the sub please
'reintialize the variables, otherwise we
'will end up with the single clicks only
If mbDoubleClicked = False Then

mbSingleClicked = False
mbDoubleClicked = False

End If
End Sub

—Sushrut Nawathe, Pune, India
Supp
VB3, VB4 16/32, VB5
Level: Intermediate

USED BYTES IN A DIRECTORY
This function returns the number of bytes used on the direc-
tory:

Function DirUsedBytes(ByVal dirName As _
String) As Long

Dim FileName As String
Dim FileSize As Currency

' add a backslash if not there
If Right$(dirName, 1) <> "\" Then

dirName = dirName & "\"
Endif
FileSize = 0
FileName = Dir$(dirName & "*.*")

Do While FileName <> ""
FileSize = FileSize + _

FileLen(dirName & FileName)
FileName = Dir$

Loop
DirUsedBytes = FileSize

End Function

You can call the function passing the name of a directory:

MsgBox DirUsedBytes("C:\Windows")
—Isaias Martinez, Equifisa, Venezuela

VB4 32, VB5
Level: Advanced

GET USEFUL DISK INFORMATION
This function returns the hard disk free bytes, total bytes, per-
centage of free bytes, and used space. Before calling the func-
tion, set the first field of the DISKSPACEINFO structure
(“RootPath”) to the drive letter:

Dim dsi As DISKSPACEINFO
dsi.RootPath = "C:\"
GetDiskSpace dsi

The function returns all its results in the other field of the
record:

' *** Declaratiosn Section ******
Declare Function GetDiskFreeSpace Lib _

"kernel32" Alias _
"GetDiskFreeSpaceA" _
(ByVal lpRootPathName As String, _
lpSectorsPerCluster As Long, _
lpBytesPerSector As Long, _
lpNumberOfFreeClusters As Long, _
lpTotalNumberOfClusters As Long) _
As Long

Type DISKSPACEINFO
RootPath As String * 3
FreeBytes As Long
TotalBytes As Long
lement to Visual Basic Programmer’s Journal AUGUST 1997 9

FreePcnt As Single

 101 TECH TIPS
For VB Developers
UsedPcnt As Single
End Type

' ****** Code Module ******
Function GetDiskSpace(CurDisk As _

DISKSPACEINFO)
Dim X As Long
Dim SxC As Long, BxS As Long
Dim NOFC As Long, TNOC As Long

X& = GetDiskFreeSpace_
(CurDisk.RootPath, SxC, BxS, _
NOFC, TNOC)

GetDiskSpace = X&

If X& Then
CurDisk.FreeBytes = BxS * _

SxC * NOFC
CurDisk.TotalBytes = BxS * _

SxC * TNOC
CurDisk.FreePcnt = ((CurDisk._

TotalBytes CurDisk._
FreeBytes) / CurDisk._
TotalBytes) * 100

CurDisk.UsedPcnt = _
(CurDisk.FreeBytes / _
CurDisk.TotalBytes) * 100

Else
CurDisk.FreeBytes = 0
CurDisk.TotalBytes = 0
CurDisk.FreePcnt = 0
CurDisk.UsedPcnt = 0

End If
End Function

As is, this routine works with drives with a capacity of 2GB
or less; for larger disks, you should use Single variables instead.

—Isaias Martinez, Equifisa, Venezuela

VB4 32, VB5
Level: Advanced

SIMULATE PRESSED CONTROL KEY
FOR MULTIPLE SELECTIONS IN LIST
BOX
When selecting items in a normal list box with the MultiSelect
property set to 1 - Simple or 2 - Extended, the user needs to
press the Control key while clicking on the items in order to
continuously select multiple items without also deselecting the
items currently selected. This method lets the user select mul-
tiple items continuously without pressing the Control key. Place
this code in a module:

Declare Function GetKeyboardState Lib _
"user32" (pbKeyState As Byte) _
As Long

Declare Function SetKeyboardState Lib _
"user32" (lppbKeyState As Byte) _
As Long

Public Const VK_CONTROL = &H11
Public KeyState(256) As Byte

Place this code in the MouseDown event procedure in a list
box (List1) with MultiSelect property set as either Simple or
10 AUGUST 1997 Supplement to Visual Basic Programmer’s Jour
Extended:

' Sets the control key state to
' "pressed"
GetKeyboardState KeyState(0)
KeyState(VK_CONTROL) = _

KeyState(VK_CONTROL) Or &H80
SetKeyboardState KeyState(0)

Place this code in any procedure where the pressed Control
key is to be released, such as the List1_LostFocus event proce-
dure:

' release the control key state from
' "pressed"
GetKeyboardState KeyState(0)
KeyState(VK_CONTROL) = _

KeyState(VK_CONTROL) And &H7F
SetKeyboardState KeyState(0)

—Shangzhi Ren, Omaha, Nebraska

VB3, VB4 16/32, VB5
Level: Intermediate

GET ALL MATCHING FILES IN A
DIRECTORY STRUCTURE
Because this code doesn’t use an API, you can easily port it be-
tween 16- and 32- bit applications. The DirWalk procedure lets
you search an entire directory structure starting at whatever
you specify as the argument:

ReDim sArray(0) As String
Call DirWalk("OLE*.DLL", "C:\", sArray)

The procedure accepts wildcards in the first argument, which
is the search pattern for file names. You can even specify mul-
tiple search patterns using the semicolon as a separator, as in
“OLE*.DLL; *.TLB.” The second argument is the location of where
to start, and the third argument is an array of strings.

The procedure recursively goes to the deepest level in the
directory structure and gets all the matching file names with full
path in the array sArray. This array is ReDimed from the func-
tion and has as many members as matches found.

To use DirWalk, put two extra controls, FileListBox and
DirListBox, on the form. This procedure assumes it’s on a form
on which there are two controls: FileListBox with name File1,
and DirListBox with name Dir1. Keep the controls invisible to
improve the speed of the search. Putting these additional con-
trols on a form doesn’t cause any overhead because they’re part
of a basic library of controls for VB:

Sub DirWalk(ByVal sPattern As String, _
ByVal CurrDir As String, sFound() _
As String)

Dim i As Integer
Dim sCurrPath As String
Dim sFile As String
Dim ii As Integer
Dim iFiles As Integer
Dim iLen As Integer

If Right$(CurrDir, 1) <> "\" Then
Dir1.Path = CurrDir & "\"
nal

Else

 101 TECH TIPS
For VB Developers For even more tricks and tips go to

 http://www.windx.com

Dir1.Path = CurrDir
End If
For i = 0 To Dir1.ListCount

If Dir1.List(i) <> "" Then
DoEvents
Call DirWalk(sPattern, _

Dir1.List(i), sFound())
Else

If Right$(Dir1.Path, 1) = "\" _
Then
sCurrPath = Left(Dir1.Path, _

Len(Dir1.Path) - 1)
Else

sCurrPath = Dir1.Path
End If
File1.Path = sCurrPath
File1.Pattern = sPattern
If File1.ListCount > 0 Then

'matching files found in the
'directory
For ii = 0 To File1._

ListCount - 1
ReDim Preserve _

sFound(UBound(sFound) _
+ 1)

sFound(UBound(sFound) - _
1) = sCurrPath & _
"\" & File1.List(ii)

Next ii
End If
iLen = Len(Dir1.Path)
Do While Mid(Dir1.Path, iLen, _

1) <> "\"
iLen = iLen - 1

Loop
Dir1.Path = Mid(Dir1.Path, 1, _

iLen)
End If

Next i
End Sub

—Atul Ganatra, Omaha, Nebraska

VB4 32, VB5
Level: Advanced

CURRENT COMPUTER NAME ON
WINDOWS 95/NT
You often want to know the name of the current computer run-
ning Win95 or Windows NT in your VB program. Use this simple
wrapper function of a kernel32.dll API function to do the job:

Private Declare Function GetComputerNameA Lib "kernel32"_
(ByVal lpBuffer As String, nSize _
As Long) As Long

Public Function GetMachineName() As String
Dim sBuffer As String * 255
If GetComputerNameA(sBuffer, 255&) _

<> 0 Then
GetMachineName = Left$(sBuffer, _

InStr(sBuffer, vbNullChar) - 1)
Else

GetMachineName = "(Not Known)"
End If

End Function
Suppl

—Jeff Hong Yan, Elmhurst, New York
VB3, VB4 16/32, VB5
Level: Intermediate

SHOW FONTS AS YOU
SELECT THEM
To let a user change a font name, load all the fonts into a combo
box:

Private Sub Form_Load()
' Determine the number of screen
' fonts.
For I = 0 To Screen.FontCount - 1

' Put each font into list box.
cboFont.AddItem Screen.Fonts(I)

Next I
End Sub

Make this more useful by letting your users see what the font
looks like immediately after selecting it without having to “test”
it by typing something:

Private Sub cboFont_Click()
'Set the FontName of the combo box
'to the font that was selected.
cboFont.FontName = cboFont.Text

End Sub
—Brian Lang, St. Cloud, Minnesota

VB4 16/32, VB5
Level: Intermediate

NEW SHORTCUTS FOR THE
VB ENVIRONMENT
In VB5, pressing Ctrl-F3 when the cursor is over a word auto-
matically searches to the next occurrence of that word, bypass-
ing the search dialog. You need to be past the first character of
the word for it to work properly.

Another shortcut is that VB4/5 Ctrl-Tab cycles through all
your open windows in the IDE often quicker than going to the
Window menu.

—Tim Jones, Castlemaine, Victoria, Australia

VB3, VB4 16/32, VB5
Level: Intermediate

SWAP TWO INTEGER VARIABLES
Use this algorithm to swap two integer variables:

a = a Xor b
b = a Xor b
a = a Xor b

—Alex Bootman, Foster City, California
ement to Visual Basic Programmer’s Journal AUGUST 1997 11

 101 TECH TIPS
For VB Developers
VB4 32, VB5
Level: Intermediate

TRAP RIGHT-CLICKS ON
TREEVIEW’S NODES
The TreeView control gives your apps a good Windows 95 look
and feel. However, the VB manual doesn’t explain how to trap
the right mouse button in a node. The Treeview_MouseDown
event occurs before the NodeClick event. In order to display
context menus over a node, use this code and define the Key for
each node with a letter followed by a number:

+ Root (R01) 'the letter gives
|— Child 1 (C01) 'the indication to
|—+ Child 2 (C02) 'the context menu
| |— Child 2.1 (H01)
| |— Child 2.2 (H02)

Dim bRightMouseDown as Boolean

Private Sub Form_Load()
bRightMouseDown = False

End Sub

Private Sub treeview1_MouseDown_
(Button As Integer, Shift As _
Integer, X As Single, Y As Single)
If Button And vbRightButton Then

bRightMouseDown = True
Else

bRightMouseDown = False
End If

End Sub

Private Sub treeview1_MouseUp_
(Button As Integer, Shift As _
Integer, X As Single, Y As Single)

bRightMouseDown = False
End Sub

Private Sub treeview1_NodeClick_
(ByVal Node As Node)
Select Case Left(Node.Key, 1)

Case "R"
If Not bRightMouseDown Then

'do the normal node click,
'so you must here the code
'for the node code click

Else
'select the node
treeview1.Nodes(Node.Key).Selected _

= True
'show the popup menu
PopupMenu mnuContext1

End If

Case "C"
If Not bRightMouseDown Then

'do the normal node click,
'so you must here the code
'for the node code click

Else
'select the node
treeview1.Nodes(Node.Key).Selected _

= True
'show the popup menu
12 AUGUST 1997 Supplement to Visual Basic Programmer’s Jour

PopupMenu mnuContext2
End If

' and so on with all other nodes
'

End Select
End Sub

—Victor Raposo, Coimbra, Portugal

VB3, VB4 16/32, VB5
Level: Intermediate

RUN VB USING THE
SENDTO MENU
Adding a “Shortcut to VB.exe” and “Shortcut to VB32.exe” to
your “Send To” menu lets you right-click on any VBP project and
open it with your choice of VB4 16/32 or VB5.

Go to your VB directory, right-click on VB32.exe, and choose
“Create shortcut.” When the shortcut file is created, move it into
the C:\Windows\Sendto directory—it will be there next time you
use it. You might want to add one for WordPad, Word, Excel, or
any program that takes an input parameter.

—Warren K. Egger, Houston, Texas

VB4 32, VB5
Level: Intermediate

GETTING USERID ON WINDOWS 95
AND NT
When you want to get the user ID of the current user on the
machine running Windows 95 or Windows NT, use this simple
wrapper function of an API function to do the job:

Option Explicit

Private Declare Function WNetGetUserA _
Lib "mpr" (ByVal lpName As String, _
ByVal lpUserName As String, _
lpnLength As Long) As Long

Function GetUser() As String
Dim sUserNameBuff As String * 255
sUserNameBuff = Space(255)
Call WNetGetUserA(vbNullString, _

sUserNameBuff, 255&)
GetUser = Left$(sUserNameBuff, _

InStr(sUserNameBuff, _
vbNullChar) - 1)

End Function
—Jeff Hong Yan, Elmhurst, New York

VB4 32, VB5
Level: Advanced

SHOW AN HOURGLASS WHEN
PROCESSING DATA
Have you ever forgotten to add code to set the MousePointer
back to its default at the end of a procedure or function? This
technique simplifies showing and resetting the MousePointer
without adding code to the end of a procedure or function.

When you create an object from a class, the Initialize event is
nal

 101 TECH TIPS
For VB Developers For even more tricks and tips go to

 http://www.windx.com

—Alex Bootman, Foster City, California
generated. Any code in the event procedure for that event then
executes. This is the first code to execute for the object, before
you set any properties or invoke any methods. When the vari-
able goes out of scope, all references to the object are released,
the Terminate event is generated for the object, and any code in
the Terminate event procedure for that object is executed:

Declare Sub Sleep Lib "kernel32" _
(ByVal dwMilliseconds As Long)

' this is an example of a procedure that
' uses the CHourGlass class
Private Sub ProcessData()

Dim MyHourGlass As CHourGlass
Set MyHourGlass = New CHourGlass
'Add processing code here
Sleep 5000 ‘This simulates the
'processing of data
'Resume processing code here

End Sub

'Create a CHourGlass class with the
'following code:
Private Sub Class_Initialize()

'Show HourGlass
Screen.MousePointer = vbHourglass

End Sub

Private Sub Class_Terminate()
'Restore MousePointer
Screen.MousePointer = vbDefault

End Sub
—Kurt D. Crockett, Denver, Colorado

VB4 16/32, VB5
Level: Beginning

EVALUATING ELAPSED MINUTES
You might need to keep track of the total minutes between one
date or time and another. To get the total minutes, use a line like
this:

lTotalMinutes = Minutes(Now) - _
Minutes(datStartTime)

This function returns the number of minutes since 01/01/1900:

Public Function Minutes(d As Date) _
As Long
'Minutes since 1900
Dim lPreviousDays As Long
Dim lTotalMinutes As Long

lPreviousDays = d - #1/1/1900#
lTotalMinutes = _

(lPreviousDays * 24) * 60
lTotalMinutes = lTotalMinutes + _

Hour(d) * 60
lTotalMinutes = lTotalMinutes + _

Minute(d)

Minutes = lTotalMinutes
End Function

—Orville P. Chomer, Berwyn, Illinois
Supp
VB3, VB4 16/32, VB5
Level: Beginning

PLEASE STOP PRINTING!
Sometimes I want to print data from a recordset to a report, read-
ing and printing each record. However, it’s hard to interrupt that
process before it sends all recordsets to the printer queue. Use
a Cancel button associated to a flag. Besides the button that
starts the printing, create another one named Cancel. You can
also set its Cancel property to True, so the user can stop print-
ing by pressing the Esc key. Add a variable in a module:

Dim CancelNow As Integer

Put this code in the Click event of the Cancel button:

Sub cCancel_Click ()
CancelNow = -1
DoEvents

End Sub

You might even do without the button and simply intercept
the Escape key. In this case, set the form’s KeyPreview property
to True and insert this code:

Sub Form_KeyPress (KeyAscii As Integer)
'if user presses ESC
If KeyAscii = (27) Then

CancelNow = -1
DoEvents

End If
End sub

Finally, add a test for the flag inside the printing loop:

'... some code...
'printing a database recordset
Do While Not MyRecordSet.EOF

Printer.Print MyRecordSet!SomeRecord
MyRecordSet.MoveNext
DoEvents
'stop if Cancel button was clicked
If CancelNow then Exit Do

Loop
Printer.EndDoc
'... more code...

—Carlos Cardoso, Salvador, Bahia, Brazil

VB3, VB4 16/32, VB5
Level: Intermediate

EVALUATE POLYNOMIALS FASTER
The well-known Horner schema lets you calculate polynomial
expressions efficiently. To calculate A*x^N + B*x^(N-1) + ... +
Y*x + Z (^ means power), simply write this expression as
(...((A*x + B)*x + C)*x + ... +Y)*x + Z.
lement to Visual Basic Programmer’s Journal AUGUST 1997 13

 101 TECH TIPS
For VB Developers
VB5
Level: Intermediate

PROBLEMS WITH ACTIVEX
CONTROLS PASTED FROM
CLIPBOARD
In VB5, the event is not called when an instance of your
UserControl is copied into the clipboard and pasted again, cre-
ating a new one. This affects user controls that depend on the
UserControl_Resize event to define the control’s appearance.
To check this behavior, start VB5, create a new ActiveX Control
project, and add a text box in the middle of your UserControl
area. Add this code to the UserControl Resize Event:

Private Sub UserControl_Resize()
Text1.Move 0, 0, Width, Height

End Sub

Close your UserControl and add a Standard EXE project. Cre-
ate an instance of your new UserControl. You should get a text
box filling all your UserControl area. Now copy the UserControl
to the clipboard and choose Paste. Note the new instance of
your control doesn’t resize the text box as it should. To work
around this problem, add this code to the UserControl
ReadProperties event:

Sub UserControl_ReadProperties_
(PropBag As PropertyBag)
Call UserControl_Resize

End Sub
—Miguel Santos, Aveiro Codex, Portugal

VB4 32, VB5
Level: Advanced

FORMAT OR COPY DISKETTES
USING THE WINDOWS API
The Win32 API includes a pair of functions that let you format
and copy diskettes from your programs:

Private Declare Function SHFormatDrive _
Lib "shell32" (ByVal hwnd As Long, _
ByVal Drive As Long, _
ByVal fmtID As Long, _
ByVal options As Long) As Long

Private Declare Function GetDriveType _
Lib "kernel32" _
Alias "GetDriveTypeA" _
(ByVal nDrive As String) As Long

Add two command buttons to your form, named
cmdDiskCopy and cmdFormatDrive, and place this code into
their Click events:

Private Sub cmdDiskCopy_Click()
' DiskCopyRunDll takes two
' parameters- From and To
Dim DriveLetter$, DriveNumber&, _

DriveType&
Dim RetVal&, RetFromMsg&
DriveLetter = UCase(Drive1.Drive)
14 AUGUST 1997 Supplement to Visual Basic Programmer’s Jour

DriveNumber = (Asc(DriveLetter) - 65)
DriveType = GetDriveType_
(DriveLetter)

If DriveType = 2 Then 'Floppies, _
etc
RetVal = Shell_

("rundll32.exe " & _
"diskcopy.dll," _
& "DiskCopyRunDll " & _
DriveNumber & "," & _
DriveNumber, 1)

Else ' Just in case
RetFromMsg = MsgBox_

("Only floppies can be " & _
"copied", 64, _
"DiskCopy Example")

End If
End Sub

Private Sub cmdFormatDrive_Click()
Dim DriveLetter$, DriveNumber&, _

DriveType&
Dim RetVal&, RetFromMsg%

DriveLetter = UCase(Drive1.Drive)
DriveNumber = (Asc(DriveLetter) - _

65)
' Change letter to Number: A=0
DriveType = GetDriveType_

(DriveLetter)
If DriveType = 2 Then _

'Floppies, etc
RetVal = SHFormatDrive(Me.hwnd, _

DriveNumber, 0&, 0&)
Else

RetFromMsg = MsgBox_
("This drive is NOT a " & _
"removeable drive! " & _
"Format this drive?", _
276, "SHFormatDrive Example")

If RetFromMsg = 6 Then
' UnComment to do it...
'RetVal = SHFormatDrive_

(Me.hwnd, _
' DriveNumber, 0&, 0&)

End If
End If

End Sub

Add one DriveListBox control named Drive1:

Private Sub Drive1_Change()
Dim DriveLetter$, DriveNumber&, _

DriveType&
DriveLetter = UCase(Drive1.Drive)
DriveNumber = (Asc(DriveLetter) - _

65)
DriveType = GetDriveType_

(DriveLetter)
If DriveType <> 2 Then _

'Floppies, etc
cmdDiskCopy.Enabled = False

Else
cmdDiskCopy.Enabled = True

End If
End Sub

Be careful: this function can even format the hard disk.
—Duncan Diep, Etobicoke, Ontario, Canada
nal

 101 TECH TIPS
For VB Developers For even more tricks and tips go to

 http://www.windx.com

VB4 16/32, VB5
Level: Intermediate

CONSISTENT VERSION NUMBERS
For consistency’s sake, use this routine wherever your version
numbers appear in code:

Public Function GetMyVersion() As String
' Turn version info into something
' like "1.02.0001"
Static strMyVer As String
If strMyVer = "" Then

‘ Only call once for performance
strMyVer = Trim$(Str$_

(App.Major)) & "." & _
Format$(App.Minor, "##00") _
& "." Format$(App.Revision, _
"000")

End If
GetMyVersion = strMyVer

End Function
—Kevin Sandal, Everett, Washington

VB3, VB4 16/32, VB5
Level: Beginning

RIGHT-ALIGN CONTROLS ON
FORMS
When creating resizable forms, I like to place command buttons
in either the upper-right or lower-right corners. For example, on
data entry forms, I place record navigation buttons on the lower-
left portion of the form along with an Add New Record button,
Delete Record button, and a Find Record button. In the lower-
right corner, I place buttons for print previewing reports and
closing the form.

Create this subroutine in a module or general declarations sec-
tion of a form. With Offset, you can vary the distance from the right
edge of the form, so you can right-justify more than one button:

Sub ButtonRight(X As Control, _
Frm As Form, Offset as Integer)

X.Left = Frm.ScaleWidth - _
X.Width - Offset

End Sub

Place two command buttons on the form. In the Form_Resize
event, add this or similar code:

Private Sub Form_Resize()
ButtonRight Command1, Me, 0
ButtonRight Command2, Me, Command1.Width

End Sub
—James D. Kahl, St. Louis Park, Minnesota

VB5
Level: Intermediate

HOW OLD ARE YOU?
This function returns the difference between two dates on Years,
Months, and Days:
Supple

Function GetAge(dtDOB As Date, _
Optional dtDateTo As Date = 0) _
As String

'is dtDateto passed ?
If dtDateTo = 0 Then

dtDateTo = Date
End If
GetAge = Format$(dtDateTo - _

dtDOB, "yy - mm - dd")
End Function

—Emmanuel Soheyli, Downey, California

VB3, VB4 16/32, VB5
Level: Intermediate

VAL DOESN’T WORK ON
FORMATTED NUMBERS
Beware of the Val() function. It doesn’t correctly recognize for-
matted numbers. Use CInt(), CDbl(), and so on instead:

FormattedString = Format(1250, _
"General")
' = "1,250.00"

Debug.Print Val(FormattedString)
' prints 1 !

Debug.Print cDbl(FormattedString)
' prints 1250

—Peter Gabor, Tel Aviv, Israel

VB3, VB4 16/32, VB5
Level: Intermediate

A SMART ID GENERATOR
I wrote a unique error-proof number generator that greatly sim-
plifies the checking of clients’ account numbers or other IDs used
by your application. I use it in conjunction with the CheckForValid
functions. For example, the CheckForValid returns True for num-
ber “203931.” The CheckFor Valid returns False for number
“209331.”

Function CheckForValid(Num As Long) _
As Boolean

' Check for valid number
Result = Num Mod 13
If Result <> 0 Then

CheckForValid = False
' if false then the number is wrong

Else
CheckForValid = True
'if true the number is OK

End If
End Function

Function Generate(Num As Long) As Long
'Generates the successor of a valid
'number
If CheckForValid(Num) Then

Generate = Num + 13
'if valid Generate

Else
Generate = -1
' Otherwise return -1

End If
End Function
ment to Visual Basic Programmer’s Journal AUGUST 1997 15

—Carlos Santos, Agualva, Portugal

 101 TECH TIPS
For VB Developers
VB4 16/32, VB5
Level: Intermediate

KEEP TRACK OF THE LAST FORM
In your MDI application, you might have many child forms and
need a form to go back to the form that called it. In each child
form, declare this variable:

Public Callingform As Form

Before calling a form, set CallingForm to the form that is call-
ing it so that the form being called can remember which form
called it. Use this call to call a form:

ShowForm frmNextForm, Me

frmNextForm is the form that you’re calling, and ShowForm is
this Global Procedure (declared in a BAS file):

Sub ShowForm(frmFormToShow As Form, frmFrom As Form)
frmFrom.Hide
frmFormToShow.Show
Set frmFormToShow.Callingform = frmFrom

End Sub

To close a form and go back to the form that called it, use
this call:

ExitForm Callingform, Me

ExitForm is this global procedure:

Sub ExitForm(Callingform As Form, ThisForm As Form)
Unload ThisForm
Callingform.Show

End Sub

Use this procedure for all child forms except when you need
to make the call from the main MDI form. In this case, use this
call:

ShowChild frmChild

frmChild is the MDIChild form you’re calling, and ShowChild
is defined in the MDI form:

Private Sub ShowChild(frm As Form)
frm.Show
Set frm.Callingform = frmMain

End Sub

It’s a good idea to call procedures to do these tasks because
you might want to put extra processing in these procedures.
Note: you should have error-handing routines as well in the pro-
cedures.
16 AUGUST 1997 Supplement to Visual Basic Programmer’s Jour

—Sergio Walter Ruz, Allawah, New South Wales, Australia
VB4 32, VB5
Level: Advanced

RESIZE THE DROP-DOWN LIST
AREA OF COMBO BOXES
VB doesn’t provide a ListRows property, so if you need to dis-
play more than eight default items in a combo box drop-down
list, use this procedure to increase the size of the combo box
window:

Option Explicit

Type POINTAPI
x As Long
y As Long

End Type

Type RECT
Left As Long
Top As Long
Right As Long
Bottom As Long

End Type

Declare Function MoveWindow Lib _
"user32" (ByVal hwnd As Long, _
ByVal x As Long, ByVal y As Long, _
ByVal nWidth As Long, _
ByVal nHeight As Long, _
ByVal bRepaint As Long) As Long

Declare Function GetWindowRect Lib _
"user32" (ByVal hwnd As Long, _
lpRect As RECT) As Long

Declare Function ScreenToClient Lib _
"user32" (ByVal hwnd As Long, _
lpPoint As POINTAPI) As Long

Public Sub Size_Combo(rForm As Form, _
rCbo As ComboBox)
Dim pt As POINTAPI
Dim rec As RECT
Dim iItemWidth As Integer
Dim iItemHeight As Integer
Dim iOldScaleMode As Integer

'Change the Scale Mode on the form
'to Pixels
iOldScaleMode = rForm.ScaleMode
rForm.ScaleMode = 3
iItemWidth = rCbo.Width

'Set the new height of the combo box
iItemHeight = rForm.ScaleHeight - _

rCbo.Top - 5
rForm.ScaleMode = iOldScaleMode

'Get the coordinates relative to the
'screen
Call GetWindowRect(rCbo.hwnd, rec)
pt.x = rec.Left
pt.y = rec.Top

'then the coordinates relative to
'the form.
Call ScreenToClient(rForm.hwnd, pt)

'Resize the combo box
nal

 101 TECH TIPS
For VB Developers For even more tricks and tips go to

 http://www.windx.com

Call MoveWindow(rCbo.hwnd, pt.x, _
pt.y, iItemWidth, iItemHeight, 1)

End Sub
—Keith Meulemans, Green Bay, Wisconsin

VB4 32, VB5
Level: Advanced

SHOW FREE MEMORY UNDER
WIN32
If you want to show your users the available memory on the
machine, and you’re moving from 16 bits to 32 bits, you’ll find
the API function GetFreeSystemResources has been dropped.
You can still do it in VB4/32 and VB5, though. You need to de-
clare the API function and this type in a module:

Declare Sub GlobalMemoryStatus Lib _
"kernel32" (lpBuffer As MEMORYSTATUS)

Type MEMORYSTATUS
dwLength As Long
dwMemoryLoad As Long
dwTotalPhys As Long
dwAvailPhys As Long
dwTotalPageFile As Long
dwAvailPageFile As Long
dwTotalVirtual As Long
dwAvailVirtual As Long

End Type

Fill the dwlength field with the MEMORYSTATUS type size.
Long variables take four bytes, so the total size is 4*8=32 bytes:

Dim ms As MEMORYSTATUS

ms.dwLength = Len(ms)
GlobalMemoryStatus ms
MsgBox "Total physical memory:" & _

ms.dwTotalPhys & vbCr _
& "Available physical memory:" & _
ms.dwAvailPhys & vbCr & _
"Memory load:" & ms.dwMemoryLoad

You could also create a class to encapsulate this.
—Luis Ferreira, Oeiras, Portugal

VB3, VB4 16/32, VB5
Level: Intermediate

A REMAINDER YOU CAN’T MISS
I often have several programming irons in the fire at one time.
Jumping back and forth from project to project, I sometimes lose
track of where I left off within each program. To solve this prob-
lem, simply type a phrase without the comment character ('):

Left off here 5-5-97, 12:00.

The next time you bring up the project, use the “Start With
Full Compile” <Ctrl-F5> option. As long as this is the first error
within the project, the line will be highlighted and my memory
refreshed.
Supple

—Mike Saeger, Spokane, Washington
VB4 16/32, VB5
Level: Intermediate

CREATE AN ARRAY ON THE FLY
WITH THE ARRAY FUNCTION
The GetRows method retrieves multiple rows of a Recordset (JET)
or rdoResultset (RDO) into an array. I often use this feature to trans-
fer data between an OLE Server and client applications. This method
uses a Variant type variable as a parameter to store the returned
data. It is internally a two-dimensional array and it is treated like
one on the client side, but in declaration of the custom method on
the OLE server, it looks so much tidier as a variant.

I’ve tried to pass some additional information such as field
names, types, and so on. Usual means of transportation such as
collections and regular arrays are either too slow or destroy the
symmetry in the declaration. Fortunately, the Array function
returns a variant containing an array:

Dim A As Variant
A = Array(10,2)

—Dejan Sunderic, Etobicoke, Ontario, Canada

VB4 16/32, VB5
Level: Intermediate

FIND THE SELECTED CONTROL IN
AN ARRAY OF OPTION BUTTONS
Use this code to find the index of the currently selected control
in an array of option buttons:

Function WhichOption(Options As Object) As Integer
' This function returns the index of the
' Option Button whose value is true.

Dim i
' In case Options is not a valid object
On Error GoTo WhichOptErr
' Default to failed
WhichOption = -1
' check each OptionButton in the array. Note this
' fails if indices are not consecutive
For i = Options.lbound To Options.ubound

If Options(i) Then
' when the one set to true is found,
' Remember it
WhichOption = i
' and stop looking
Exit For

End If
Next

WhichOptErr:

End Function

Call the function with code like this, assuming that
iCurOptIndex is an integer and Option1 is the name of an array
of OptionButton controls:

iCurOptIndex = WhichOption(Option1)

Note the function parameter is an object. This function works
only if the parameter is an object or a variant.

—Terry Conkright, Colbert, Washington
ment to Visual Basic Programmer’s Journal AUGUST 1997 17

 101 TECH TIPS
For VB Developers
VB4 16/32, VB5
Level: Intermediate

PACKING CHECK-BOX VALUES
INTO A SINGLE INTEGER
Use this code to find the binary representation of the currently
checked check boxes:

Function WhichCheck(ctrl As Object) As _
Integer

' This function returns the binary value
' of an array of controls where the
' value is 2 raised to the index of each
' checked control
' ie element 0 : 2 ^ 0 returns 1
'elements 0 and 2 : 2^0 + 2^2 returns 5

Dim i
Dim iHolder
' in case ctrl is not a valid object
'default to failure return =0 on
'fail
On Error GoTo WhichCheckErr

' find the binary representation of
' an array of check box controls
For i = ctrl.LBound To ctrl.UBound

If ctrl(i) = 1 Then
' if it is checked add in its
' binary value
iHolder = iHolder Or 2 ^ i

End If
Next

WhichCheckErr:
WhichCheck = iHolder

End Function

Call the function with code like this:

iCurChecked = WhichCheck(Check1)

Check1 is an array of check boxes, and iCurChecked is an
integer. Here’s the “dual” routine that sets the state of all the
check boxes in a control array given an Integer that holds their
binary representation:

Sub SetChecked(ctrl As Object, _
iCurCheck%)

' This sub sets the binary value of an
' array of controls where iCurChecked is
' 2 raised to the index of each checked
' control

Dim i
' in case ctrl is not a valid object
On Error GoTo SetCheckErr

' use the binary representation to
' set individual check box controls
For i = ctrl.LBound To ctrl.UBound

If iCurCheck And (2 ^ i) Then
' if it is checked add in its
' binary value
ctrl(i).Value = 1

Else
ctrl(i).Value = 0

End If
18 AUGUST 1997 Supplement to Visual Basic Programmer’s Jour
Next
SetCheckErr:

End Sub

Call the sub with code like this:

Call SetChecked(Check1, iDesired)

Check1 is an array of checkboxes, and iDesired is a binary
representation of the desired settings.

—Terry Conkright, Colbert, Washington

VB4 16/32, VB5
Level: Intermediate

CONDITIONALLY COMPILE
YOUR CODE
Most developers know about VB4’s Conditional Compilation fea-
ture, where you can declare Windows APIs for 16-bit and 32-bit
operating systems:

#If Win#32 then
'If running in 32-bit OS
Declare SomeApi....

#Else
'If running in 16-bit OS
Declare SomeApi

#End IF

This same feature applies not only to Windows API state-
ments, but also to your own functions:

#If Win32 Then
Dim lRc&
lRc& = ReturnSomeNumber(35000)

#Else
Dim lRc%
lRc% = ReturnSomeNumber(30000)

#End If

#If Win32 Then
Private Function ReturnSomeNumber_

(lVar&) As Long
ReturnSomeNumber = 399999

#Else
Private Function ReturnSomeNumber_

(lVar%) As Integer
ReturnSomeNumber = 30000

#End If

End Function
—Carl Denton, Marietta, Georgia

VB4, VB5
Level: Intermediate

REDUCE FLICKERING DURING
FORM LOADING
When loading a form, reduce the “flicker” and “flash” of the GUI
by using these Windows API functions:
nal

 101 TECH TIPS
For VB Developers For even more tricks and tips go to

 http://www.windx.com

'Declarations Section
#If Win32 Then

Declare Function LockWindowUpdate _
Lib "user32" _
(ByVal hwndLock As Long) As Long

#Else
Declare Function LockWindowUpdate _

Lib "User" _
(ByVal hwndLock As Integer) _
As Integer

#End If

Public Sub LoadSomeForm()

' When loading a form lock the
' window update to stop the
' distracting flashing.

'stop the updating of the GUI
LockWindowUpdate frmTest.hWnd
'Show the form
frmTest.Show
' Load and populate form code here

'Always,Always Undo the update lock
LockWindowUpdate 0

End Sub
—Carl Denton, Marietta, Georgia

VB4 16/32, VB5
Level: Advanced

HIDE THE RECORD SELECTOR IN A
DATA-BOUND GRID
To stop the selection bar on a data-bound grid from moving when
navigating through records in the bound RDC or the rows on the
grid, use the API call LockWindowUpdate(gridname.hwnd) be-
fore navigating the record pointer, and LockWindowUpdate(0)
after the navigation:

'Declarations Section
#If Win32 Then

Declare Function LockWindowUpdate _
Lib "user32" _
(ByVal hwndLock As Long) As Long

#Else
Declare Function LockWindowUpdate _

Lib "User" _
(ByVal hwndLock As Integer) _
As Integer

#End If

Private Sub cmdHideSelector_Click()
LockWindowUpdate DBGrid1.hWnd

End Sub

Private Sub cmdShowSelector_Click()
LockWindowUpdate 0

End Sub
—Colin Myles, Stratford-upon-Avon, Warwickshire, England
Supp
VB4 16/32
Level: Intermediate

USE POPUP MENUS IN WINDOWS
WITHOUT TITLE BAR
When you set the ControlBox property to False and BorderStyle
as a fixed window, you can get a window without the title bar. If
you add a menu to the window for use as a popup menu, the
title bar appears again. You can place the menu on another form
to avoid this problem:

Private Sub Command1_Click()
Dim frm As New frmMenu
Load frm
frm.PopupMenu frm.mnutest
'select specific code
Unload frm

End Sub

This behavior has been fixed in VB5.
—Hou Yantang, Xi’an, China

VB3, VB4 16/32, VB5
Level: Intermediate

COMPARE DIFFERENT INSTANCES
OF THE SAME COMPONENT
When you get a cool sample of a VB component and you simply
can’t re-create all of its characteristics in your app, don’t go nuts.
Most of the time, you can detect the differences between the
component in the sample and the component in your app by
using Windows Notepad or some other editor. Simply open both
of them and compare the properties corresponding to the com-
ponents you’re having problems with. In VB3, both forms must
be in text format for the editor to see them. This isn’t an issue
with VB4 and VB5, which always save forms as ASCII files.

—Freud Jone Oliveira, Asa Norte, Brazil

VB3, VB4 16/32, VB5
Level: Intermediate

GET DATE AND TIME DELIMITERS
WITHOUT API FUNCTIONS
Use these easy algorithms to obtain the current Date, Time, and
Decimal delimiters used by Windows without resorting to Lo-
cale Settings or API calls:

DateDelimiter = Mid$(Format(Date, _
"General Date"), 3, 1)

TimeDelimiter = Mid$(Format(0.5, _
"Long Time"), 3, 1)

DecimalDelimiter = Mid$(Format(1.1, _
"General Number"), 2, 1)

—Rob Parsons, Dee Why Beach, Australia
lement to Visual Basic Programmer’s Journal AUGUST 1997 19

 101 TECH TIPS
For VB Developers

—Andrew Ladner, Delray Beach, Florida
VB4 16/32, VB5
Level: Intermediate

PREVENT ERRORS WHEN USING
GETSETTING
Using Visual Basic’s GetSetting function might cause an error,
particularly in certain situations when using it under 16-bit op-
erating systems with INI files. If there’s no specific entry in the
INI file, you might get an error message such as “Invalid proce-
dure call.” You can use this routine, which wraps an error han-
dler around the built-in function:

Public Function GetRegSetting(AppName _
As Variant, Section As Variant, _
Key As Variant, Optional Default _
As Variant) As Variant

' the default value is not assumed to be
' an Object type otherwise you should
' use Set statement
Dim tmpValue As Variant

' set default value
' if no value was passed, this gives an
' empty variant
If Not IsMissing(Default) Then _

tmpValue = Default

' this is for trapping possible errors
On Error Resume Next

' let’s use VB’s function
tmpValue = GetSetting(AppName, _

Section, Key, tmpValue)

' after possible errors the call
' continues here with the preset default
' value
GetRegSetting = tmpValue

End Function
—Jussi Mattila, Helsinki, Finland

VB3, VB4 16/32, VB5
Level: Beginning

DUPLICATE LINES OF CODE
WITHOUT SYNTAX ERRORS
Many times when I code similar syntax with slight modifications
on each line, I like to make a template of the core syntax, quickly
paste a copy of it however many times I need it, and then go
back and edit each line. Many times, however, the core syntax
generates an error by the VB editor. You can get around this
problem by commenting the core syntax line out before you paste
the template. Once you finish editing the templates, simply go
back and remove the comment delimiter. This is especially easy
under VB5, which has a Block Uncomment command. For ex-
ample, say you’re reading a recordset to populate a collection:

While Not mRS.EOF
oObject.FName = mRS!FName
20 AUGUST 1997 Supplement to Visual Basic Programmer’s Jour

oObject.LName = mRS!LName
oObject.Phone = mRS!Phone
.
.
cCollection.Add oObject, oObject.FName

Wend

If your object has 20 or 30 properties, it would be quicker to
code this core syntax:

' oObject. = mRS!

Copy it, paste it 20 or 30 times, go back and type the prop-
erty and field names in, and remove the comment delimiter. The
comment delimiter lets you go back and edit each line in what-
ever order you like and not have to worry about generating a
syntax error.

—Trey Moore, San Antonio, Texas

VB4 32
Level: Intermediate

A SHORTCUT TO LOAD THE LAST
PROJECT INTO VB
Most of the time, I wish to start VB and resume the last project I
was working on, but I don’t like to litter my desktop with pro-
gram icons for works in progress. As a solution install this pro-
gram in compiled form on your desktop. You can probably adapt
it to other versions of VB as well as to other programs that store
this information in an INI file:

Option Explicit

Declare Function GetPrivateProfile_
String Lib "kernel32" _
Alias "GetPrivateProfileStringA" _

(ByVal lpApplicationName As _
String, ByVal lpKeyName As Any, _
ByVal lpDefault As String, _
ByVal lpReturnedString As _
String, ByVal nSize As Long, _
ByVal lpFileName As String) _
As Long

Public Sub Main()
Dim temp As String, rVal$, tmp _

As Long
rVal$ = String$(256, 0)
tmp = GetPrivateProfileString_

("Visual Basic", _
"vb32location", "", rVal$, _
ByVal Len(rVal$) - 1, _
"c:\windows\vb.ini")

temp = Left$(rVal$, tmp)
rVal$ = String$(256, 0)
tmp = GetPrivateProfileString_

("Visual Basic", "RecentFile1", _
"", rVal$, ByVal Len(rVal$) _
- 1, "c:\windows\vb.ini")

temp = temp & " """ & Left$(rVal$, _
tmp) & """"

Shell temp, 1
End

End Sub
nal

 101 TECH TIPS
For VB Developers For even more tricks and tips go to

 http://www.windx.com

•␣ Label1(0), Label1(1)—Labels set behind the command1.
VB4 32, VB5
Level: Intermediate

LISTVIEW CONTROLS DON’T
ACCEPT NUMERIC KEYS
In a collection object, such as the ListItems collection from the
ListView control, or simply a generic VB collection object, you
can specify a key to uniquely identify the item. Documentation
states the key can be any String expression. What if the key needs
to be a numerical string? In a ListView control, you might not set
a numeric key. Even if you try to set a key equal to Str$(<Numeric
Variable>), you’ll receive an error message. When displaying the
results of a recordset with a ListView, the key would be the per-
fect place to hold the primary key for the row, if applicable. Be-
cause ListView doesn’t have an ItemData property, the key is
the only place to hold it. The solution is simple: append the string
“key” to your Numeric Key, and use the Val function to retrieve
its value:

Set itemX = lvPeople.ListItems.Add_
(, , strName)

'Set the Key
itemX.Key = Str$(rstPeople!PersonID) & "key"

Use this code to retrieve the key:

lKey = Val(lvPeople.ListItems(nIndex).Key))
—Steve Danielson, Raleigh, North Carolina

VB4 16/32, VB5
Level: Beginning

SHOWING “&” CHARACTERS
IN LABELS
If you want to show the character “&” instead of having it work
as a marker for the access key, set the property “UseMnemonic”
to False. This property is useful, for instance, when using Label
controls to show data from a database. You can also get literal
“&” characters by using double ampersands in the Caption prop-
erty to display a single “&.”

—S. Edwin Gnanaraj, Madras, India

VB3, VB4 16/32, VB5
Level: Beginning

CREATE TEMPORARY FILES
I’m developing a database program that deals with many auxil-
iary files at the same time. Everyone coding database programs
must create some temporary files to produce an output from
SQL or a temporary database to manipulate those records effi-
ciently. I decided to create a FileAux function that returns one
temporary file name. If I need to create more than one file into
the same process, I simply store those names into variables di-
mensioned before:

Function FileAux(Ext As String) _
As String
Dim i As Long, X As String
If InStr(Ext, ".") = 0 Then
Supple

Ext = "." + Ext
End If

'Look for the previous files in the
'HardDisk
i = 0
Do

X = "Aux" + Format$(i, "0000") _
+ Ext

If FileExists(X) Then
i = i + 1

Else
Exit Do

End If
Loop
FileAux = X

End Function

This function uses the "FileExists" function:

Function FileExist(filename As String) _
As Boolean
FileExist = Dir$(filename) <> ""

End Function

Here’s an example of its usage:

Sub Test()
Dim File1 As String, File2 As _

String, File3 As String
Dim DB1 As database, DB2 As DataBase
Dim FileNum As Integer
File1 = FileAux("MDB")
Set DB1 = CreateDataBase(File1)
File2 = FileAux("MDB")
Set DB2 = CreateDataBase(File2)
File3 = FileAux("TXT")
FileNum = FreeFile
Open File3 For OutPut As FileNum
'Your code
' ...
Close FileNum

End Sub

File1, File2, and File3 should be “Aux0001.MDB,”
“Aux0002.MDB,” and “Aux0001.TXT,” respectively.

—Luis Orlindo Tedeschi, Piracicaba, Brazil

VB3, VB4 16/32, VB5
Level: Beginning

MOUSE EVENTS DON’T FIRE IF
ENABLE IS FALSE
MouseMove events don’t occur when the control’s Enabled prop-
erty is set to False. My method tackles this problem and is use-
ful when you want to display the Tooltips or Notes on the status
bar, whether the control is enabled or disabled.

If the Enabled property is set to False, the control placed
behind the control’s MouseMove event will be fired when you
move the cursor on the control. Duplicate code you write in the
Command1_MoseMove in the Label1_MouseMove. Now it works
even though your Command1 button is disabled. Place these
controls on Form1:

•␣ Command1(0), Command1(1)—Command1 is the control array.
ment to Visual Basic Programmer’s Journal AUGUST 1997 21

 101 TECH TIPS
For VB Developers
•␣ SSPanel1—Acts as status bar.

Add this code:

Private Sub Form_Load()
Dim i As Integer
For i = 0 To 1

Label1(i).Left = Command1(i).Left
Label1(i).Top = Command1(i).Top
Label1(i).Width = Command1(i).Width
Label1(i).Height = _

Command1(i).Height
Next i
Command1(0).enabled = false
Command1(0).Tag = "Button to Add"
Command1(1).Tag = "Button to Modify"
Command1(0).Caption = "&Add"
Command1(1).Caption = "&Modify"

End Sub

Private Sub Label1_MouseMove(Index As _
Integer, Button As Integer, Shift _
As Integer, X As Single, Y As _
Single)
SSPanel1.Caption = _

Command1(Index).Tag
End Sub

Private Sub Command1_MouseMove(Index _
As Integer, Button As Integer, _
Shift As Integer, X As Single, Y _
As Single)
SSPanel1.Caption = _

Command!(Index).tag
End Sub

—S. Edwin Gnanaraj, Madras, India

VB4 16/32, VB5
Level: Intermediate

DISABLE THE DEFAULT POPUP
MENU ON TEXT BOXES
Some controls in VB4 and VB5, such as the TextBox control, have
a default context menu that appears when you right-click on the
control. If you want to pop up your own context menu, no prop-
erty or method of those controls exists to disable the default
behavior.

To solve this problem, place code in the Mouse_Down event,
which disables the target control. Pop up your context menu,
and then re-enable the control. Here’s the method in
PopContextMenu:

Sub PopContextMenu(argoControl As _
Control, argoMenu As Control)

argoControl.Enabled = False
PopupMenu argoMenu
argoControl.Enabled = True

End Sub

Call it in the MouseDown event of a text box named Text1 for
a menu called MyMenu:

Private Sub Text1_MouseDown(Button As _
Integer, Shift As Integer, X As _
22 AUGUST 1997 Supplement to Visual Basic Programmer’s Jour
Single, Y As Single)
If Button = vbRightButton Then

PopContextMenu Text1, MyMenu
End If

End Sub
—William Jordan, Acworth, Georgia

VB3, VB4 16/32, VB5
Level: Intermediate

A TASKBAR-COMPLIANT VERSION
OF CENTERFORM
To center a form, you only need one API call, no UDTs, and two
constants. This solution is based on the fact that
GetSystemMetrics reflects real estate taken up by the taskbar
and the Microsoft Office shortcut bar:

Public Const SM_CXFULLSCREEN = 16
Public Const SM_CYFULLSCREEN = 17

#If Win32 then
Declare Function GetSystemMetrics _

Lib "user32" _
(ByVal nIndex As Long) As Long

#Else
Declare Function GetSystemMetrics _

Lib "User" _
(ByVal nIndex As Integer) _
As Integer

#End If

Public Sub CenterForm(frm As Form)
frm.Left = Screen.TwipsPerPixelX * _

GetSystemMetrics_
(SM_CXFULLSCREEN) / 2 _
- frm.Width / 2

frm.Top = Screen.TwipsPerPixelY * _
GetSystemMetrics_
(SM_CYFULLSCREEN) / 2 _
- frm.Height / 2

End Sub
—Dave Michel, Minneapolis, Minnesota

VB3, VB4 16/32, VB5
Level: Beginning

A STRING CLEANER
At times it’s useful to have a function that cleans a string of un-
wanted characters. This small function accepts the string you
want to clean and the characters you want to get rid of:

Function StringCleaner(s As String, _
Search As String) As String

Dim i As Integer, res As String
res = s
Do While InStr(res, Search)

i = InStr(res, Search)
res = Left(res, i - 1) & _

Mid(res, i + 1)
Loop
StringCleaner = res

End Function
—Roop Datta, Palatine, Illinois
nal

 101 TECH TIPS
For VB Developers For even more tricks and tips go to

 http://www.windx.com

VB4 16/32, VB5
Level: Beginning

TEST OBJECTS USING TYPENAME
You can determine the class of an object using the TypeName
function instead of the If TypeOf statement. Use the TypeOf state-
ment to determine the type of object:

If TypeOf myObject is myType then
... do something

End If

You can do the same with this code:

if TypeName(myObject) = "myType" Then
....do something

End If

The advantage is that you don’t have to include in your project
all the classes (or OCXs) that you manage. This is a good ap-
proach when writing general-purpose routines, and moreover,
you can use TypeName in compound tests and Select Case
blocks.

—Andrea Adami, Lugagnano, Italy

VB4 16/32, VB5
Level: Intermediate

APPEND A STRING TO A TEXT BOX
Use this code to cause a TextBox control to automatically scroll
down as you concatenate new text:

'Select the end of the text
MyTextBox.SelStart = Len(MyTextBox.Text)
'Put the new text there
MyTextBox.SelText = NewText$

—William D. Marquis, Apple Valley, California

VB3, VB4 16/32, VB5
Level: Beginning

DOUBLE CHECK VAL ARGUMENTS
When using the Val function, VB has a quirk that causes a type
mismatch error. For example, Val(“25%”) correctly returns 25,
whereas Val(“2.5%”) misinterprets the string and returns a type
mismatch error. This happens only when there is a decimal point
and a “%”or “&” character in the string. To work around this,
remove these characters before passing the string to the Val func-
tion.

—Frank Barbato and Krystyna Zyzdryn,
North Palm Beach, Florida
Supp
VB4 32, VB5
Level: Advanced

INTERNET SHORTCUTS
VB5 App Wizard can create a Web Browser form, but it works
only with Microsoft Internet Explorer and you must distribute
SHDOCVW.DLL. If you use Windows’ ShellExecute function to
execute an Internet Shortcut file, Windows executes the default
browser and goes to the specified URL. This method works with
both the Microsoft and Netscape browsers if they’re properly
registered in the Windows Registry, and you don’t have to dis-
tribute any DLL:

Private Declare Function ShellExecute _
Lib "shell32.dll" Alias _
"ShellExecuteA" _
(ByVal hwnd As Long, _
ByVal lpOperation As String, _
ByVal lpFile As String, _
ByVal lpParameters As String, _
ByVal lpDirectory As String, _
ByVal nShowCmd As Long) As Long

Private Const SW_SHOWNORMAL = 1

' frm : ShellExecute needs a Window
' handle. You can use the handle of your
' main window
' sUrl : This is the name and path of a
' .url file (Internet shortcut file)
' that points to your page, for example
' c:\MyWebPage.url Use Internet Explorer
' to create the shortcut file

Public Sub GoToMyWebPage(frm as Form, _
sUrl as string)
Dim lRet as Long
lRet = ShellExecute(frm.hwnd, _

"open", sUrl, vbNull, _
vbNullString, SW_SHOWNORMAL)

If lRet <= 32 Then
' there was an error. Some of the
'errors that can be returned by
' ShellExecute are:

' ERROR_FILE_NOT_FOUND = 2&
' ERROR_PATH_NOT_FOUND = 3&
' ERROR_BAD_FORMAT = 11&
' SE_ERR_NOASSOC = 31
' SE_ERR_OOM = 8

Else
' your browser is running!

End If
End Sub

—José Rodríguez Alvira, San Juan, Puerto Rico
lement to Visual Basic Programmer’s Journal AUGUST 1997 23

 101 TECH TIPS
For VB Developers
VB3, VB4 16/32, VB5
Level: Intermediate

A FORM-LEVEL DATACHANGED
PROPERTY
Ever wished you could use the Save parameter outside of a Vali-
date event? Have you noticed that if a bound control is changed
and you set DataChanged back to False, Save is still True on
Validate? Solve both problems by adding a public function:

Public Function FormChanged(frm As Form)
On Error Resume Next
Dim i As Integer, dChanged As _

Boolean
FormChanged = False
For i = 0 To frm.Controls.Count - 1

'for controls with no DataChanged
'property
dChanged = frm.Controls(i)_

.DataChanged
If Err <> 0 Then

'almost certainly is
' OjectDoesntSupportThisPropertyOrMethod

Err = 0
Else

If dChanged = True Then
FormChanged = True
Exit Function

End If
End If

Next
End Function

Use this function any time by simply writing If
FormChanged(Me) Then, or however you wish, and you can use
it in the Validate routine with Save = FormChanged(Me).

—Matthew Brown, Cambridge, Illinois

VB4 32, VB5
Level: Intermediate

OPEN HELP FILE CONTENTS
Most programmers want their applications to look like commer-
cial software, so they want to add their own Help files. How do
you open the contents of a Windows Help file in your applica-
tion? Simply paste in this code, which uses Win32 API function:

' -- Declares
Const HELP_CONTENTS = &H3&
' Display contents
Declare Function WinHelp Lib "user32" Alias "WinHelpA" _

(ByVal hwnd As Long, _
ByVal lpHelpFile As String, _
ByVal wCommand As Long, _
ByVal dwData As Long) As Long

' -- Code
Sub OpenHelpFile(HelpFileName As String)

' HelpFileName is the path of the
' help file.
WinHelp hwnd, HelpFileName, _

HELP_CONTENTS, 0
End Sub
24 AUGUST 1997 Supplement to Visual Basic Programmer’s Jou

—Huang Xiongbai, Shanghai, China
VB3, VB4 16/32, VB5
Level: Beginning

ENFORCE DESIGN-TIME SIZE
FOR MDI FORMS
Because MDI forms don’t have a border property, the user can
drag the borders and distort the size of the MDI form. If the user
tries to resize the form, I want the form to revert to its design-
time size. To accomplish this, use this procedure for the
MDIForm_Resize() event:

Private Sub MDIForm_Resize()
' Stop resizing of MDI forms by
' dragging borders and reposition
' the MDI form. Only do this if the
' MDI form is displayed as a Normal Window
If WindowState = 0 Then

' Your MDI form's design height
Me.Height = 6900
' Your MDI form's design width
Me.Width = 10128
' Your MDI form's design left
' position
Me.Left = 1020
' Your MDI form's design top
' position
Me.Top = 1176
' You may also use a Move method
' to change all properties in one
' single command

End If
End Sub

—Joseph J. Janus, New Castle, Pennsylvania

VB3, VB4 16/32, VB5
Level: Beginning

FAST DATABASE LOOKUPS
Visual Basic doesn’t have a procedure like the DLookUp func-
tion that Access has. You can use this procedure in VB to re-
ceive the Name of an object by ID:

Public Function MyDLookUp(Column As _
String, TableName As String, _
Condition As String) As Variant

Dim Rec As Recordset
On Error GoTo MyDlookUp_Err

' gCurBase is a global variable that
' holds the database that is currently
' opened
Set Rec = gCurBase.OpenRecordset_

("Select * From " & TableName)
Rec.FindFirst Condition
If Not Rec.NoMatch Then

' return the requested field if
' matching
MyDLookUp = Rec(Column)
Exit Function

End If

' return –1 if there is no match, or any
' other error
MyDlookUp_Err:
rnal

 101 TECH TIPS
For VB Developers For even more tricks and tips go to

 http://www.windx.com

MyDLookUp = -1
End Function

—Valery Belfor, Jerusalem, Israel

VB3, VB4 16/32, VB5
Level: Intermediate

CHEAP FOCUS TRACKING
The Lost_Focus and Got_Focus events are the most-used events
for implementing validation and text highlighting. Wouldn’t it
be nice to respond instantly to these events and to do it from a
single routine for all controls without the aid of a subclassing
control?

Here’s the answer. Place a timer control on your form, set its
Interval property to 100 and set Enabled = True. Name the con-
trol tmrFocusTracking. Code its Timer event like this:

Private Sub tmrFocusTracking_Timer()
Dim strControlName As String
Dim strActive As String
strControlName = _

Me.ActiveControl.Name

Do
strActive = Me.ActiveControl.Name
If strControlName <> strActive _

Then
Print strControlName & _

" - Lost Focus", _
strActive & " – Got Focus"

strControlName = strActive
End If
DoEvents

Loop
End Sub

To implement universal highlighting, replace the Print state-
ment with this code:

Me.Controls(strActive).SelStart = 0
Me.Controls(strActive).SelLength = _

Len(Me.Controls(strActive))

To implement validation, replace the Print statement with a call
to a validation routine. Use strActive in a Select Case structure. At
the moment where the Print statement would occur, strActive is
equal to the control that just got focus, and strControlName holds
the name of the control that just lost focus.

Don’t place this routine in anything but a timer; otherwise,
your program hangs once the routine is called. Even the timer
here never makes it to a second interval. For a given control,
don’t write validation code both in the Got_Focus/Lost_Focus
events, and in code called by this routine. Doing so might cause
unpredictable results.
Suppl

—John S. Frias, Santa Maria, California
VB3, VB4 16/32, VB5
Level: Beginning

A FORM THAT WON’T CLOSE
If you set a form’s ControlBox property to False, the Minimize
and Maximize buttons also become invisible. Suppose you want
to provide functionality to the user to maximize and minimize
the form, but not to close the form using the control box. Simply
add this code to the Query_Unload event:

' uncomment next line in VB3
' Const vbFormControlMenu = 0
Private Sub Form_QueryUnload(Cancel As _

Integer, UnloadMode As Integer)
If UnloadMode = vbFormControl_

Menu Then
Cancel = True

End If
End Sub

—A.G.K. Kishore, New Delhi, India

VB3, VB4 16/32, VB5
Level: Beginning

CHANGE A PROPERTY IN A GROUP
OF CONTROLS
You can easily make a group of controls visible or invisible. At
design time, select all controls you want to make visible or in-
visible during the execution. Press F4, and assign the Tag prop-
erty a name for the group, such as “Group1.” When you wish to
make that group visible, run this code:

For ind = 0 To Formname.Controls.Count _
- 1
If Formname.Controls(ind).Tag = _

"Group1" Then
Formname.Controls(ind).Visible _

= True
End If

Next
—Rogerio Zambon, Porto Alegre, Brazil

VB3, VB4 16/32, VB5
Level: Intermediate

ROUND AND FORMAT THE
EASY WAY
Do you sometimes need to format rounded numbers to a spe-
cific number of digits? You can accomplish this in one step:

n = 12.345
Format(n, "0.00\0")
'returns "12.350"
Format(n, "0.\0\0")
'returns "12.00"
Format(0.55, "#.0\0") 'returns ".60"

—Peter Gabor, Tel Aviv, Israel
ement to Visual Basic Programmer’s Journal AUGUST 1997 25

 101 TECH TIPS
For VB Developers
VB4 16/32, VB5
Level: Intermediate

QUICK JUMPS TO THE
DECLARATION SECTION
I often want to get to the General code section of a form quickly,
either to hack module-level variables or to grab the procedure
pull-down to find that function whose name I forgot. Double-click-
ing on the form gives you Form procedures. Clicking on “View
Code” from the menu or project box does the same unless no
form is open.

To solve this, put an oval Shape control with an obnoxious
color on all your forms and make it invisible. Of course, nothing
is invisible in design mode, and because shapes have no event
procedures, double-clicking on it takes you to the General/Dec-
larations page every time.

Note that under VB4 and VB5, you might enforce Full Module
View, in which case you can jump to the declaration section sim-
ply by pressing Ctrl-Home.

—Randal J. King, Downers Grove, Illinois

VB3, VB4 16/32, VB5
Level: Intermediate

BE AWARE, IT’S NOT C!
VB developers that program with C language might be confused
by a feature in the language. Consider this code:

Dim x As Integer
Dim y As Integer
Dim z As Integer

x = 10
y = 20
z = 0

'Assume function max returns the maximum
'of the two
if (z = max(x, y)) > 0 then

Msgbox CStr(z)
Else

Msgbox "How Come?"
End if

In the code, you would expect the message box to display 20,
as it would do in C. VB, however, compares “z” with the RHS
(right-hand side) even before the assignment, irrespective of the
brackets. Be careful.

—Baskar S. Ganapathy, Walnut Creek, California

VB4 16/32, VB5
Level: Advanced

PORTING VB-SPECIFIC OBJECTS
TO ACCESS 8.0
Code portability is extremely important, especially now that VBA
is available in so many products. Some problems might occur if
you want to use VB4 or VB5 code in Access 8 without making
any changes. If the code you are porting references some VB-
26 AUGUST 1997 Supplement to Visual Basic Programmer’s Jour

specific object, object method, or property, Access complains
when you compile the imported code. For instance, the “App”
object exists in VB but not in Access. Therefore, this statement
won’t compile under Access:

Msgbox App.Title

To get around this problem, create a class in Access 8 to “re-
place” the VB4 object, method, or property not available in Ac-
cess. In this case, create a clsVBShadow class in Access:

Option Compare Database
Option Explicit

Private strTitle As String
Private strEXEName As String
Private strMin As String

Private Sub Class_Initialize()
strTitle = "Microsoft Access"
' Or whatever you want to return.
strEXEName = "?"
strMin = "?"

End Sub

Public Property Get Title() As String
Title = strTitle

End Property

Public Property Get EXEName() As String
EXEName = strEXEName

End Property

' complete with more properties...

In any module in your Access 8 application, declare this glo-
bal object:

Public App As New clsVBShadow

At this point, any code you import from VB4 that accesses
the App object still works unchanged, and you can replace each
method or property of that object with what you want.

—Warren Roscoe, Cape Town, South Africa

VB3, VB4 16/32, VB5
Level: Intermediate

STRING SURPRISE
I was developing a CGI application that read a database and
pieced together the fields into a string for representation as an
HTML form. The surprise came when I found how slow it was—
20 seconds was unacceptable for the task. I first suspected the
database access and thought there was no way to improve it;
however, upon investigating further, it turned out to be the loop
that concatenated the fields into the string. A simple change took
the run time of the routine down to about one second. In this
simplified example, instead of writing this code:

For i = 1 To 10000
strHTML = strHTML & strField & vbTab

Next i

Break it down into something like this:

For i = 1 To 100
nal

strTemp = ""

 101 TECH TIPS
For VB Developers For even more tricks and tips go to

 http://www.windx.com

—Andy McInturff, Erwin, Tennessee
For j = 1 to 100
strTemp = strTemp & strField _

& vbTab
Next j
strHTML = strHTML & strTemp

Next i

Admittedly, the number of concatenations is high, but the
difference is astounding. In the 16-bit world, the second example
is about 20 times faster than the first on my machine. However,
in VB 32-bit, my Pentium 133 with 32 MB of RAM takes 48 sec-
onds for the first case and less than one second for the second
case. I hesitate to suggest a precise speed improvement because
of the complexity of Windows 95 and different hardware, but if
you must concatenate large numbers of strings, this could be-
come a make-it-or-break-it problem.

—Nick Snowdon, Delta, British Columbia, Canada

VB3, VB4 16/32, VB5
Level: Intermediate

USE BACKQUOTES INSTEAD OF
APOSTROPHES
Often when using Transact-SQL, I want to capture comments from
a user in a text box and send them to the database. However, if
the user types an apostrophe in the text box, a runtime error is
generated when the update is processed because SQL Server
thinks the apostrophe is being used to mark the end of a string.

To get around this problem, intercept the user’s keystrokes
in the KeyPress event and exchange the apostrophe with an “up-
side-down” quote mark (ASCII(145)) like this:

Private Sub Text1_Keypress(KeyAscii as Integer)
If KeyAscii = 39 Then

KeyAscii = 145
End If

End Sub

Alternatively, you might decide to substitute all occurrences
of single quotes into backquotes immediately before sending
them to SQL Server.

—Mike McMillan, North Little Rock, Arkansas

VB4 16/32, VB5
Level: Intermediate

SPREAD UPGRADES OVER THE
NETWORK
I design VB applications for approximately 300 employees in a
networked environment. It’s difficult to keep those PCs up to
date with the most current version of an app, so I use VB’s auto-
incrementing version-numbering feature to have the app test if
a newer version is available when it launches.

Set the app to auto-increment when it’s compiled. Store the
setup/upgrade files on a networked drive (be sure to use the
UNC path rather than drive letters), and include an
uncompressed INI file that lists the newest version available.
Then embed this code into the Form_Load event:

Open IniFile$ For Input As #1
Line Input #1, sUpgradeVersion$
Supp
Close #1

If sUpgradeVersion > (Format(App.Major, "00") & "." & _
Format(App.Minor, "00") & "." & _
Format(App.Revision, “0000”)) Then

' shell out to networked upgrade
' installation

End
End If

If the version in the networked INI file is greater than that
stored within the running app, the app launches the upgrade
program off the network and exits, so all files can be upgraded.
This works especially well when you’re in the early stages of a
rollout and need to distribute multiple small incremental patches
over a number of days.

—Rodney Samodral, Indianapolis, Indiana

VB4 16/32, VB5
Level: Intermediate

A WORKAROUND FOR BOUND
IMAGELIST CONTROLS
When an image list is referenced by another object such as a
toolbar, you can only add images to the image list. VB doesn’t
allow deletes or changes to the size of the images in the image
list while the reference exists. Typically, the solution is to re-
move the references, edit the image list, and then reset the ref-
erences again. However, this can become cumbersome when you
might have 10 to 15 toolbar buttons referencing the image list.

To avoid the reference problem, simply select the object refer-
encing the image list and “cut” it from your form. Then you can
freely edit the image list because VB doesn’t think it’s referenced
by any control. Once you finish editing the image list, simply
“paste” the other control back on your form. All references will
be restored, including the reference to the changed image list.

—Steve Dulzer, Madision Heights, Michigan

VB3, VB4 16/32, VB5
Level: Intermediate

CLOSE YOUR WINDOWS THE
WINDOWS 95 WAY
Place this code in the declaration section of a module:

Public Sub Win95Shrivel(xForm As Form)
' Sets the form's window status to
' minimized
xForm.WindowState = 1

End Sub

Call it from the Unload procedure within a form:

Private Sub Form_Unload(Cancel As Integer)
Win95Shrivel Me

End Sub

Each time a form is unloaded, the form appears to fade to the
task bar and then disappears. This tip also works on a Windows
3.1x machine as well.
lement to Visual Basic Programmer’s Journal AUGUST 1997 27

 101 TECH TIPS
For VB Developers
VB3, VB4 16/32, VB5
Level: Intermediate

PREPARE A STRING FOR OUTPUT
If you want to show the contents of a string variable or a data-
base field using a Label control, you should be aware that any
embedded “&” character in the string is interpreted as a place-
holder for the hotkey associated to the label. You can use this
routine to avoid this unpleasant behavior by simply doubling
each ampersand character:

Function AddAmpersand (InText As String)
Dim NewText As String, i As Integer
Do

i = InStr(InText, "&")
If i > 0 Then

NewText = NewText + _
Left$(InText, i) + "&"

End If
InText = Right$(InText, _

Len(InText) - i)
Loop Until i = 0
AddAmpersand = NewText + InText

End Function

Here’s an example of its usage:

Label1.caption = AddAmpersand(InputText)

With VB4 and VB5, it’s simpler to resort to the UseMnemonic
property:

Label1.UseMnemonic = False
Label1.caption = InputText

—S.T. Wright, Albuquerque, New Mexico

VB4 16/32, VB5
Level: Intermediate

PROTECT YOUR WAV FILES
If you design programs that use sound files, use the Resource
Compiler on the Visual Basic CD-ROM to compile your sounds
into a RES file. This way, no one can take the WAV files included
with your program. For more information on how to use Resource
Files, consult the Resource.Txt file in the Resource subdirectory
in the Tools directory on the CD-ROM.
28 AUGUST 1997 Supplement to Visual Basic Programmer’s Jour

—Joshua Stein, Wauconda, Illinois
VB3, VB4 16/32, VB5
Level: Intermediate

USING THE DIR$ FUNCTION
To quickly and easily determine the existence of a directory in
Visual Basic, create this function:

Function IsValidPath(strPath As _
String) As Boolean
IsValidPath = Dir(strPath, _

vbDirectory) <> ""
End Function

You can also modify the function and determine whether a
file exists in VB. Simply change the “vbDirectory” constant to
“vbNormal.”

Learning and exploring all the Dir functions leads to many
benefits:

•␣ Navigate through all contents of a directory tree without us-
ing slow form controls or tricky APIs.
•␣ Search for a file using wild cards (as in DOS).
•␣ Detect all file attributes.
•␣ Support long file names (32-bit only).

—John S. Frias, Santa Maria, California

VB3, VB4 16/32, VB5
Level: Beginning

BOOLEAN-BASED TOGGLES CAN
BE MORE EFFICIENT
Many conditional statements constructed with If...Then could
more efficiently use Boolean-based toggles. For example, instead
of using this code for menu checking:

If mnuEditModeStatus.Checked = True _
Then mnuEditModeStatus.Checked = False

Else
mnuEditModeStatus.Checked = True

End If

You can easily replace it with this code:

mnueditModeStatus.Checked = _
Not mnuEditModeStatus.Checked

You can shorten many similar constructs by using logic. In
fact, the “IF condition = true THEN...” is the same as “IF condi-
tion THEN... .” Use a Boolean function or solution to replace many
user variables, freeing up resources. Many times, the ability to
check True/False situations exists within the scope of the VB
environment, eliminating the need to generate lines of condi-
tional statements. Try it on your If/Then and Select code—you
might be pleasantly surprised at the resulting code reduction.

—Randall Arnold, Coppell, Texas
nal

