
 101 TECH TIPS
For VB Developers For even more tricks and tips go to

 http://www.windx.com

—Peter Gomis, Shelton, Connecticut
WELCOME TO THE SIXTH EDITION

OF THE VBPJ TECHNICAL TIPS

SUPPLEMENT!
These tips and tricks were submitted by professional
developers using Visual Basic 3.0, Visual Basic 4.0,
Visual Basic 5.0, Visual Basic for Applications (VBA),
and Visual Basic Script (VBS). The tips were com-
piled by the editors at Visual Basic Programmer’s
Journal. Special thanks to VBPJ Technical Review
Board members Francesco Balena, Chris Kinsman,
Karl E. Peterson, Phil Weber, and Jonathan Wood. In-
stead of typing the code published here, download
the tips from the free, Registered Level of The Devel-
opment Exchange at http://www.windx.com.

If you’d like to submit a tip to Visual Basic
Programmer’s Journal, please send it to User Tips,
Fawcette Technical Publications, 209 Hamilton Av-
enue, Palo Alto, California, USA, 94301-2500. You can
also fax it to 650-853-0230 or send it electronically to
vbpjedit@fawcette.com or 74774.305@compu-
serve.com. Please include a clear explanation of what
the technique does and why it is useful, and indicate
whether it’s for VBA, VBS, VB3, VB4 16- or 32-bit, or
VB5. Please limit code length to 20 lines. Don’t forget
to include your e-mail and mailing address. If we pub-
lish your tip, we’ll pay you $25 or extend your VBPJ
subscription by one year.

VB4 16/32
Level: Intermediate

USE BOOLEAN VARIABLES FOR CHECK-
BOX VALUES
Visual Basic specifies a Boolean’s default values as zero for False
and -1 for True. You may save and set the value of a check box,
based on the absolute value of a Boolean variable, as these cor-
respond to the intrinsic constants vbUnchecked and vbChecked:

Dim bBool as Boolean

bBool = True

'//If bBool = 0 the checkbox will be
'//unchecked, if it is anything else it will
'//be checked.
Check1.Value = Abs(bBool)

—Jeremy Boschen, Branchburg, New Jersey
http://www.windx.com
VB4 16/32
Level: Intermediate

DISPLAY HORIZONTAL SCROLLBAR
Unlike the Windows 95 common controls, the standard list box
doesn’t have a horizontal scrollbar when list items are too wide
to fit within the list box. Fortunately, it’s not hard to direct a list-
box control to display a horizontal scrollbar.

Add this code to a form’s Load event. It fills a list box with
100 long strings and calls SetHScroll to show a horizontal
scrollbar in the list box:

Private Sub Form_Load()
Dim i As Integer
For i = 1 To 100

List1.AddItem CStr(i) & _
" bottle(s) of beer on the wall."

Next i
SetHScroll Me, List1, List1.List(0)

End Sub

Add this code, which includes the required API declarations
and the SetHScroll routine, to a BAS module. The SetHScroll rou-
tine uses the SendMessage API function to send the
LB_SETHORIZONTALEXTENT message to a list box. The last ar-
gument is an item from the list, preferably one of the longest
items. SetHScroll determines the string’s width in pixels and
passes this value to the list box along with the
LB_SETHORIZONTALEXTENT message. The list box sets its hori-
zontal extent to this value, and if it is wider than the list-box
control, the list box displays a horizontal scrollbar:

#If Win32 Then
Declare Function SendMessage Lib "user32" _

Alias "SendMessageA" (_
ByVal hwnd As Long, ByVal wMsg As Long, _
ByVal wParam As Long, lParam As Long) As Long

#Else
Declare Function SendMessage Lib "user32" _

Alias “SendMessageA” (_
ByVal hwnd As Integer, ByVal wMsg As Integer, _
ByVal wParam As Integer, lParam As Long) As Long

#End If

'Define constant for message to list-box control
Const LB_SETHORIZONTALEXTENT = &H194

Public Sub SetHScroll(Frm As Form, Ctrl As _
Control, strText As String)
Dim nScaleMode As Integer
Dim nTextWidth As Integer

'Scale in pixels for window message
nScaleMode = Frm.ScaleMode
Frm.ScaleMode = 3
'Get the width, in pixels, of the text string
nTextWidth = Frm.TextWidth(strText)
'Send a message to the list box
SendMessage Ctrl.hwnd, _

LB_SETHORIZONTALEXTENT, nTextWidth, 0
'Restore previous scale mode
Frm.ScaleMode = nScaleMode

End Sub
Visual Basic Programmer’s Journal FEBRUARY 1998 1

 101 TECH TIPS
For VB Developers

—Rod Stephens, Boulder, Colorado
VB4 32, VB5, VBA
Level: Intermediate

DETERMINE WHICH OPTION BUTTONS
HAVE BEEN SELECTED
When attempting to determine which option buttons a user has
selected from an array of option buttons, use this code instead
of using an inefficient If-Then construct:

intSelectedItem = Option(0).Value * O - _
Option(1).Value*1 - Option(2).Value * 2

If you have more than a few items, put this code in a loop:

intSelectedItems = 0
For iCount = 0 to N
'N = total number of option boxes minus one

intSelectedItem = - _
Option(iCount).Value * iCount

Next

intSelectedItem is the index of the option button that the user
selected.

—Bruce H. Bitterman, San Antonio, Texas

VB4 16/32, VB5
Level: Beginning

GET THE TRUE MEMBER OF AN OPTION
ARRAY
Setting an element in an array of option buttons to True is easy.
Click on the option button, or use this code:

OptionArray(ThisOne) = True

ThisOne is the Index of the member you want to be selected.
Getting the True member of an option array is not so simple.
Because you need to perform this kind of task in almost any
reasonably complex program, adding this function to your code
library or generic module simplifies the task. You don’t need to
know the array size in advance:

Function OptionTrueIs(OptionArrayName As _
Variant) As Integer
' Returns the index of the True
' member of an option array
Dim Ctl as Control
For Each Ctl in OptionArrayName

If Ctl.Value = True Then
OptionTruels = Ctl.Index
Exit For

End If
Next

End Function

You can use the routine to set a Public variable from a Prop-
erties sheet using this format:

SomePublicVariable = OptionTrueIs(SomeOptionArray())

Or use this code to save a program variable between runs:
2 FEBRUARY 1998 Visual Basic Programmer’s Journal
SaveSetting("MyApp", "OptionSettings", _
"OptionKey", OptionTrueIs(SomeOptionArray())

Load the routine using this code:

SomeOptionArray(GetSetting("MyApp", "", _
"OptionSettings", "OptionKey",0))=True

Or you can load the routine using this code:

SomePublicVariable = GetSetting("MyApp", "", _
"OptionSettings", "OptionKey",0)

Use this code to control a Select Case structure:

Select Case OptionTrueIs(SomeOptionArray())
Case 0:

' This code will execute if element 0
' of SomeOptionArray() is selected.

End Select

Use this code to test a condition:

If OptionTrueIs(SomeOptionArray()) = SomeValue Then
' This code will execute if element
' SomeValue of SomeOptionArray() is
' selected.

End If
—Roger Gilchrist, Ourimbah, New South Wales, Australia

VB4 16/32, VB5
Level: Intermediate

DEBUG ERROR HANDLERS
Visual Basic gives you the option to turn off error trapping in
your projects. This is useful when you suspect that your error
handlers contain errors themselves. To turn off error handling
globally, choose Options from the Tools menu. Select the Gen-
eral tab, and select Break on All Errors. The next time you run
your project in the development environment, Visual Basic will
break whenever an error occurs in your code, whether the error
is trapped or not.

—Jeffrey P. McManus, San Francisco, California

VB3, VB4 16/32, VB5
Level: Beginning

PROTECT DATA WITHIN MODULES
Use Private variables in BAS modules to protect data that the
module’s routines must access, but which should be hidden from
the rest of the application:

Dim hidden_data As Integer

Function GetData() As Integer
GetData = hidden_data * 2

End Function
http://www.windx.com

 101 TECH TIPS
For VB Developers For even more tricks and tips go to

 http://www.windx.com

VB3, VB4 16/32, VB5, VBA
Level: Intermediate

CONVERT A TEXT FILE INTO ACCESS
MDB
It can be troublesome to convert a text file into an Access data-
base. It takes a lot of time to open the file for sequential access
and create new records using the AddNew method. Instead, use
the Text ISAM driver and SQL to do the job for you. First, create
a SCHEMA.INI file for the text file and place it in the same direc-
tory as the text file. Use this code to convert the database:

Dim db As Database, tbl as TableDef
Set db = DBEngine.CreateDatabase(App.Path & _

"\mymdb.mdb", dbLangGeneral, dbVersion_0)
Set tbl = db.CreateTableDef("Temp")
tbl.Connect = "Text;database=c:\vbpj\data"
tbl.SourceTableName = "Customer#txt"
db.TableDefs.Append tbl
db.Execute "Select Temp.* into NewTable from Temp"
db.TableDefs.Delete tbl.Name
db.Close
Set tbl = Nothing
Set db = Nothing

Now, you only need to create indexes. You can use this method
to convert text files in excess of 100,000 records in a few seconds.

—Richard Mageau, Warren, Rhode Island

VB3, VB4 16/32, VB5, VBA
Level: Intermediate

QUICK AND EASY SCHEMA.INI
To create a SCHEMA.INI file for a text file quickly and easily, let
the ODBC setup and drivers do it for you. Go to the Control Panel
and start ODBC. Click on the Add button and select the Text
driver. Click on the Options button and describe how to arrange
the text file. If your text file has a header record, click on the
Guess button, and the ColumnNames will be filled out for you.
On the last screen, choose Cancel to avoid setting up the data
source. Check the directory where the text file resides, and you’ll
find a new SCHEMA.INI file.

—Richard Mageau, Warren, Rhode Island

VB4 16/32, VB5
Level: Intermediate

CONTROL ARRAYS ARE COLLECTIONS
Most VB4 programmers know they can access a form’s control
collection using a For Each loop. Many, however, are not aware
that individual control arrays are actually collections. This
knowledge can be helpful when checking the properties of sev-
eral controls, especially when new controls are loaded at run
time. You might wish to create a form in which all text boxes
must be filled out. Instead of assigning a unique name to each
text box, create a control array with each text box named
txtFields. You can use this name as you use the name of any
collection in a For Each loop:
http://www.windx.com

Dim v
For Each v In txtFields
If v.Text = "" Then

MsgBox "All fields must be " & _
"filled out.", vbExclamation + _
vbOKOnly

Exit Sub
End If

Next

Because txtFields is a collection, you can also determine how
many text boxes are in the array by checking the value of
txtFields.Count.

For more information, see Karl E. Peterson’s Q&A column,
“The Keys to Your Controls” [VBPJ August 1997].

—Daniel Buskirk, The Bronx, New York

VB3, VB4 16/32, VB5, VBA
Level: Beginning

SET A FLAG TO TRUE/FALSE
When you want to set a flag to True or False, depending on the
results of a comparison, you don’t need to use an If statement
like this:

If x > 3 then
Greater = True

Else
Greater = False

End If

Logical operators return a value like any other operator. In-
stead, use this syntax:

Greater = x > 3

This way, you move directly to the result of the comparison
in your flag. It is shorter and faster than the form example.

—Martin Girard, Chicoutimi, Quebec, Canada

VB3, VB4 16/32,VB5, VBA
Level: Intermediate

SUPPORT A FONT THE PRINTER DOESN’T
Often users print from applications that support a font the printer
doesn’t. An error occurs if an application uses a statement such
as Printer.Print SomethingToPrint following a Printer.FontName
= FontName statement, and the printer doesn’t support the
FontName.

You can use this function procedure as a corrective measure
after the error is trapped. This function procedure uses only one
parameter—the font names specified by the application. If the
printer doesn’t support the font, the function procedure returns
a font on the printer most similar to the font in the application:

Function FindFont (SpecifiedFont As String)
'find the font on the printer which is the
'closest to the font name passed to this procedure:
Dim i%, tempfont%
For i% = 1 To Printer.FontCount

tempfont = InStr(Printer.Fonts(i%), SpecifiedFont)
'Get font's position.

If tempfont <> 0 Then
Exit For
Visual Basic Programmer’s Journal FEBRUARY 1998 3

 101 TECH TIPS
For VB Developers
End If
Next
If tempfont <> 0 Then

FindFont = Printer.Fonts(i%)
Else

'take an action if no similar fonts are
'found on this printer

End If
End Function

In your error handler, use this function in conjunction with
the FontName property of the Printer object. After you take this
corrective measure, resume the execution of your program:

Printer.FontName = FindFont(SpecifiedFont)
Resume Next

—Brian Hunter, Brooklyn, New York

VB4 32, VB5, VBA
Level: Intermediate

CENTER FORMS WITH TASKBAR VISIBLE
Just about every VB developer uses the Move (Screen.Width -
Width) \ 2, (Screen.Height - Height) \ 2 method to center the
forms on screen. However, when the user has the Windows 95
or NT 4.0 taskbar visible, your form centers on screen but doesn’t
take into account the position of the taskbar itself. The
CenterForm32 routine centers a form in available screen area,
taking into account the taskbar. Add this code to the Declara-
tions section of a module, and put the code CenterForm32 Me
on the Form_Load event of the forms you want to center:

Option Explicit
Private Const SPI_GETWORKAREA = 48
Private Declare Function _

SystemParametersInfo& Lib "User32" _
Alias "SystemParametersInfoA" (_
ByVal uAction As Long, _
ByVal uParam As Long, lpvParam As Any, _
ByVal fuWinIni As Long)

Private Type RECT
Left As Long
Top As Long
Right As Long
Bottom As Long

End Type

Public Function CenterForm32 (frm As Form)
Dim ScreenWidth&, ScreenHeight&, _

ScreenLeft&, ScreenTop&
Dim DesktopArea As RECT
Call SystemParametersInfo (_

SPI_GETWORKAREA, 0, DesktopArea, 0)
ScreenHeight = (DesktopArea.Bottom - _

DesktopArea.Top) * Screen.TwipsPerPixelY
ScreenWidth = (DesktopArea.Right - _

DesktopArea.Left) * Screen.TwipsPerPixelX
ScreenLeft = DesktopArea.Left * Screen.TwipsPerPixelX
ScreenTop = DesktopArea.Top * Screen.TwipsPerPixelY
frm.Move (ScreenWidth - frm.Width) _

\ 2 + ScreenLeft, (ScreenHeight - _
frm.Height) \ 2 + ScreenTop

End Function
—Miguel Santos, Aveiro, Portugal
4 FEBRUARY 1998 Visual Basic Programmer’s Journal
VB3, VB4 16/32
Level: Intermediate

DISPLAY TOOLTIPS
You can easily duplicate the tooltips that appear when you float
the mouse over a button in Microsoft’s products. This code dis-
plays the tooltip in the lower right-hand corner of the control
(normally a button):

' xTip: string to display as the tip
' xCtrl: control you want the tip to show for.
' xTipControl: control being used to display
' the tip (an SSPanel)
Public Sub ShowTip(xTip As String, xCtrl As _

Control, xTipControl As Control)
xTipControl.Left = xCtrl.Left + xCtrl.Width
xTipControl.Top = xCtrl.Top + xCtrl.Height
xTipControl.Caption = xTip
xTipControl.Visible = True

End Sub

This code hides the tooltip:

' xTipControl : control which is being used to
' display the tip.
Public Sub HideTip(xTipControl As Control)

xTipControl.Visible = False
End Sub

Place the ShowTip function in the MouseMove event of the
control(s) for which you want to display a tip. Place the HideTip
function in the other control(s) for which you don’t want to dis-
play a tip:

Sub Command1_MouseMove (Button As Integer, _
Shift As Integer, X As Single, Y As Single)
ShowTip "Command1", Command1, SSPanel1

End Sub

Sub Command2_MouseMove (Button As Integer, _
Shift As Integer, X As Single, Y As Single)
ShowTip "Command2", Command2, SSPanel1

End Sub

Sub Form_MouseMove (Button As Integer, _
Shift As Integer, X As Single, Y As Single)

'No tooltip for form
HideTip Text1

End Sub
—Andy McInturff, Erwin, Tennessee

VB5
Level: Intermediate

USE SUBSCRIPTS AND SUPERSCRIPTS
You can use subscripts and superscripts in a RichTextBox con-
trol. To prevent the control from truncating text that is raised or
lowered too far, reduce the characters’ size accordingly:

Private Sub Form_Load()
RichTextBox1.Font.Name = "Times New Roman"
RichTextBox1.Font.Size = 10
RichTextBox1.Text = “H2SO4”
http://www.windx.com

' Move the numbers down 2 points.

 101 TECH TIPS
For VB Developers For even more tricks and tips go to

 http://www.windx.com

—Derek Robinson, Pretoria, South Africa
MakeSubscript RichTextBox1, 1, 1, -2
MakeSubscript RichTextBox1, 4, 1, -2

End Sub

Private Sub OffsetRichText(box As _
RichTextBox, start As Integer, _
length As Integer, offset As Integer)

box.SelStart = start
box.SelLength = length
box.SelFontSize = box.Font.Size + offset
box.SelCharOffset = -ScaleY(offset, _

vbPoints, vbTwips)
box.SelStart = 0
box.SelLength = 0

End Sub
—Rod Stephens, Boulder, Colorado

VB4 32
Level: Advanced

PLAY WAV SOUNDS FROM
RESOURCE FILES
Everyone loves a good sound bite. You can use the PlaySound()
function in the Windows Multimedia DLL (WINMM.DLL) to play
a wave (WAV) file that is stored as a resource. Although you can
do this using the sndPlaySound function, sndPlaySound requires
you to find, load, lock, unlock, and free the resource. PlaySound
achieves all of this with a single line of code.

Add this line of code to your resource file (RC) designating a
name for the sound and its location:

MySound WAVE c:\music\vanhalen.wav

The name MySound is a placeholder for a name you supply to
refer to this WAV resource in code.

Compile the resource file using the resource compiler
(RC.EXE) to create a RES file. Include this file in your VB project.
Use this code to play the sound:

Private Declare Function PlaySound Lib _
"winmm.dll" Alias "PlaySoundA" (_
ByVal lpszName As String, _
ByVal hModule As Long, _
ByVal dwFlags As Long) As Long

Private Const SND_ASYNC& = &H1
' Play asynchronously
Private Const SND_NODEFAULT& = &H2
' Silence if sound not found
Private Const SND_RESOURCE& = &H40004
' Name is resource name or atom

Dim hInst As Long
' Handle to Application Instance
Dim sSoundName As String
' String to hold sound resource name
Dim lFlags As Long
' PlaySound() flags
Dim lRet As Long
' Return value

Private Sub Command1_Click()
hInst = App.hInstance
sSoundName = "MySound"
lFlags = SND_RESOURCE + SND_ASYNC + _
http://www.windx.com
SND_NODEFAULT
lRet = PlaySound(sSoundName, hInst, lFlags)

End Sub

Note that you must compile this application and run the re-
sulting EXE directly for this code to work because it relies on
the application instance handle. While in the VB development
environment, App.Instance returns an instance handle to the
running VB32.EXE process, not the application under develop-
ment. For a complete description of PlaySound(), refer to the
Multimedia section of the Win32 SDK.

—Steve Davis, Gaithersburg, Maryland

VB3, VB4 16/32, VB5
Level: Intermediate

A BETTER WAY TO SWAP TWO
INTEGER VARIABLES
The algorithm shown in the tip, “Swap Values Using Only Two
Variables” [“101 Tech Tips for VB Developers, Supplement to
the February 1997 issue of VBPJ, page 25], crashes not only if
(a+b) >= 32K, but if (a+b) < -32K also. I usually use this algorithm
instead:

a = a Xor b: b = a Xor b: a = a Xor b.

This works for almost any programming language.
—Alex Bootman, Foster City, California

VB4 32, VB5
Level: Intermediate

WRITE LESS CPU-BOUND ANIMATIONS
When doing animation, such as scrolling a label or using picture
boxes, I first used the method described by Eric Bernatchez
(“Smoother Control Animation,” “101 Tech Tips for VB Develop-
ers,” Supplement to the February 1997 issue of VBPJ, page 21).
However, I found that while in the Do Loop, the CPU usage is 100
percent! Windows NT, Windows 95, and Win32 have an API call
named SLEEP. This call suspends the called application for the
supplied amount of milliseconds. When you change the code,
the CPU usage on a Pentium 100 drops to 10 percent:

Declare Sub Sleep Lib "kernel32" (_
ByVal dwMilliseconds As Long)

Public Sub Scrolling()
Label1.Left = Me.Width
Do

Sleep 100
Label1.Left = Label1.Left - 60
DoEvents

Loop Until Label1.Left <= -(Label1.Width + 15)
End Sub

The only problem with this method is that your app won’t re-
spond to user input while it sleeps, so don’t let it sleep too long.
Visual Basic Programmer’s Journal FEBRUARY 1998 5

 101 TECH TIPS
For VB Developers
VB4 16/32, VB5, VBA
Level: Intermediate

EXPORT DATA TO ISAM DATABASES
Use this code to get data out to different formats without requir-
ing a complete copy of the DBMS on the user machine. Create a
new project with a command button, and copy this code into
the button’s Click event:

Dim db As Database
Set db = Workspaces(0).OpenDatabase _

(App.Path & "\biblio.mdb")

' commented out syntax line followed by
' working example
' db.Execute "SELECT tbl.fields INTO
' [dbms type; DATABASE=path].[unqualified
' file name] FROM [table or tables]"

db.Execute "Select * into [dBASE III;
DATABASE=" & "C:\My Documents].
[testa] FROM [authors]

By using the brackets and the dot operator, you get a
completely proper output in the ISAM database type of your
choice. Also, if you choose Text as the database type, the state-
ment creates a SCHEMA.INI for you automatically, or adds a new
section for your new data file to a SCHEMA.INI already in the
path folder.

You can do any kind of export the client wants without using
a DBMS on the machine. This makes your life easier when you
notice that some users running Word 97 have problems mail-
merging with text files you originally created with Write# and
Print# methods.

—Robert Smith, San Francisco, California

VB3, VB4 16/32, VB5
Level: Intermediate

RANDOM VALUES WITHOUT DUPLICATES
This code produces a “random” sequence of integers between speci-
fied Lower and Upper values without duplication. On the first call
to the Shuffle routine with new values for Upper and Lower, Shuffle
performs an efficient prime factorization, computes the constants
for a linear sequence generator, and uses Randomize to generate a
seed value. Each subsequent call with the same value of Upper and
Lower uses this generator to return the next “random” number in
the sequence. The sequence does not repeat until all possible val-
ues have been returned. This code fills the array with 20 random
numbers between 1 and 100, without duplication:

For I = 1 To 20
num(I)=Shuffle(1,100)

next I

Here is the Shuffle routine:

Static Function Shuffle (Lower As Integer, _
Upper As Integer) As Integer

Static PrimeFactor(10) As Integer
Static a As Integer, c As Integer, b As Integer
Static s As Integer, n As Integer
Dim i As Integer, j As Integer, k As Integer
Dim m As Integer
6 FEBRUARY 1998 Visual Basic Programmer’s Journal
If (n <> Upper - Lower + 1) Then
n = Upper - Lower + 1
i = 0
n1 = n
k = 2
Do While k <= n1

If (n1 Mod k = 0) Then
If (i = 0 Or PrimeFactor(i) <> k) Then

i = i + 1
PrimeFactor(i) = k

End If
n1 = n1 / k

Else
k = k + 1

End If
Loop

b = 1
For j = 1 To I

b = b * PrimeFactor(j)
Next j
If n Mod 4 = 0 Then b = b * 2
a = b + 1
c = Int(n * .66)
t = True
Do While t

t = False
For j = 1 To I

If ((c Mod PrimeFactor(j) = 0) Or _
(c Mod a = 0)) Then t = True

Next j
If t Then c = c - 1

Loop
Randomize
s = Rnd(n)

End If

s = (a * s + c) Mod n
Shuffle = s + Lower

End Function
—John W. Starner, El Paso, Texas

VB4 16/32, VB5
Level: Intermediate

COMMENT MULTIPLE LINES
VB provides only single-line comment functions: “REM” and “'“.
If you’re looking for another way to comment out a block of code,
use conditional compilation in VB4 instead. Define “COMMENT
= 0” in the Conditional Compilation Arguments field on the Ad-
vanced tab in the Options dialog of the Tools menu:

Public Sub TestingSub()
Print "This subroutine is used to"
Print "demonstrate block"
Print "commenting in VB."

#If COMMENT then
Print "This line will not be printed."
Print "Since this is commented out."
Print "VB ignores these lines during compilation."

#End If
End Sub

This trick also works with VB5, but you might find the Com-
ment Block command on the Edit toolbar much handier.

—Frewin Chan, Scarborough, Ontario, Canada
http://www.windx.com

 101 TECH TIPS
For VB Developers For even more tricks and tips go to

 http://www.windx.com

VB4 32, VB5
Level: Advanced

CHANGE DISPLAY SETTINGS ON THE FLY
When writing a game for Windows 95, set the display resolution
to 640-by-480, set the color palette to True Color when it runs,
and restore it to its initial mode when it ends. Use this function
to implement it:

'— Declares
Private Declare Function lstrcpy _

Lib "kernel32" Alias "lstrcpyA" _
(lpString1 As Any, lpString2 As Any) _
As Long

Const CCHDEVICENAME = 32
Const CCHFORMNAME = 32
Private Type DEVMODE

dmDeviceName As String * CCHDEVICENAME
dmSpecVersion As Integer
dmDriverVersion As Integer
dmSize As Integer
dmDriverExtra As Integer
dmFields As Long
dmOrientation As Integer
dmPaperSize As Integer
dmPaperLength As Integer
dmPaperWidth As Integer
dmScale As Integer
dmCopies As Integer
dmDefaultSource As Integer
dmPrintQuality As Integer
dmColor As Integer
dmDuplex As Integer
dmYResolution As Integer
dmTTOption As Integer
dmCollate As Integer
dmFormName As String * CCHFORMNAME
dmUnusedPadding As Integer
dmBitsPerPel As Integer
dmPelsWidth As Long
dmPelsHeight As Long
dmDisplayFlags As Long
dmDisplayFrequency As Long

End Type
Private Declare Function _

ChangeDisplaySettings Lib _
"User32" Alias "ChangeDisplaySettingsA" (_
ByVal lpDevMode As Long, _
ByVal dwflags As Long) As Long

'— code
' Here is the function that sets the display
' mode. Width is the width of screen, Height
' is the height of screen, Color is the number
' of bits per pixel. Set the Color value to -1
' if you only want to change the screen
' resolution.
Public Function SetDisplayMode(Width As _

Integer,Height As Integer, Color As _
Integer) As Long

Const DM_PELSWIDTH = &H80000
Const DM_PELSHEIGHT = &H100000
Const DM_BITSPERPEL = &H40000
Dim NewDevMode As DEVMODE
Dim pDevmode As Long
With NewDevMode

.dmSize = 122
If Color = -1 Then

.dmFields = DM_PELSWIDTH Or DM_PELSHEIGHT
http://www.windx.com
Else
.dmFields = DM_PELSWIDTH Or _

DM_PELSHEIGHT Or DM_BITSPERPEL
End If
.dmPelsWidth = Width
.dmPelsHeight = Height

If Color <> -1 Then
.dmBitsPerPel = Color

End If
End With
pDevmode = lstrcpy(NewDevMode, NewDevMode)
SetDisplayMode = ChangeDisplaySettings(pDevmode, 0)
End Function

You can change the display mode easily with this function.
For example, write this code that changes the resolution to 640-
by-480 and the color palette to 24-bit True Color:

i = SetDisplayMode(640, 480, 24)

If the function is successful, it returns zero.
—Huang Xiongbai, Shanghai, China

VB5
Level: Intermediate

CREATE A NEW PROJECT TEMPLATE
Upon initialization, the VB5 IDE presents you with a list of project
types, such as Standard EXE or ActiveX EXE. You can also create
new project types yourself by creating templates and saving them
to the Projects folder in your Templates directory. To find the
Templates directory on your system, look in Options under the
Tools menu, then select the Environment tab. The Templates
directory is listed at the bottom of the dialog. After you create a
template, its icon appears with the predefined project types
whenever you start VB or use the FileNew command.

What is a template anyway? It’s simply a project you save to
the Projects folder. It includes all forms, controls, classes, code,
and other elements in the project. It serves as a foundation for a
new project and can have as much or as little prebuilt content as
you need.

—Ron Schwarz, Mt. Pleasant, Michigan

VB3, VB4 16/32, VB5
Level: Beginning

SELECT TEXT-BOX CONTENTS ON
ENTRY AUTOMATICALLY
Many commercial apps select the contents of the text box auto-
matically whenever it gets focus. You can do the same in your
apps with a few VB statements. Invoke the SelStart and SelLength
functions within a TextBox control’s GotFocus event:

Private Sub Text1_GotFocus()
Text1.SelStart = 0
Text1.SelLength = Len(Text1)

End Sub

Or place the code in a public Sub procedure and call it from
any text box in your project:
Visual Basic Programmer’s Journal FEBRUARY 1998 7

8

 101 TECH TIPS
For VB Developers
Private Sub Text2_GotFocus()
PreSel Text2

End Sub
Public Sub PreSel(txt As Control)

If TypeOf txt Is TextBox Then
txt.SelStart = 0
txt.SelLength = Len(txt)

End If
End Sub

Because you can call the PreSel procedure from anywhere, you
should limit the procedure to acting on TextBox controls to pre-
vent errors. The TypeOf function tests if you’ve passed the proce-
dure a TextBox control, and if not, it skips over the selection code.

—Ron Schwarz, Mt. Pleasant, Michigan

VB3, VB4 16/32, VB5
Level: Intermediate

CLOSE FORMS UNIFORMLY
To close forms uniformly, treat the system menu’s Close com-
mand and your File menu’s Exit command in the same manner.
In your Exit command, simply unload the form. Let the form’s
QueryUnload event handler see if it is safe to exit. If not, cancel
the Exit by setting Cancel to True:

Private Sub mnuFileExit_Click()
Unload Me

End Sub
Private Sub Form_QueryUnload(Cancel _

As Integer, UnloadMode As Integer)
Cancel = (MsgBox("Are you sure you " & _

"want to exit?", vbYesNo) = vbNo)
End Sub

—Rod Stephens, Boulder, Colorado

VB3, VB4 16/32, VB5
Level: Beginning

RIGHT-JUSTIFY OR LEFT-JUSTIFY TEXT
Use the Format$ function to produce right- or left-justified text:

Format$(123, "@@@@@@") gives " 123"
Format$(123, "!@@@@@@") gives "123 "

—Rod Stephens, Boulder, Colorado

VB4 16/32, VB5
Level: Beginning

LEARN CONTROL ARRAY BOUNDS
You can use a control array’s UBound and LBound properties to
determine how many controls are loaded. This code fills a string
with the captions in the Label1 control array:

For i = Label1.LBound To Label1.UBound
txt = txt & Label1(i).Caption & ", "

Next i
—Rod Stephens, Boulder, Colorado
 FEBRUARY 1998 Visual Basic Programmer’s Journal
VB3, VB4 16/32, VB5
Level: Beginning

PERFORM ONE-TIME INITIALIZATION
You can use static variables to perform one-time initialization:

Private Sub GetValue()
Static initialized As Boolean

If Not initialized Then
' Perform one-time initialization.

:
initialized = True

End If
' Do other stuff.

:
End Sub

—Rod Stephens, Boulder, Colorado

VB4 16/32, VB5
Level: Intermediate

CREATE GLOBAL PROPERTIES
You can create property procedures in a BAS module. The rest
of your program treats the “property” like any other variable,
but the property procedures can perform error checking and
one-time initialization.

—Rod Stephens, Boulder, Colorado

VB4 16/32, VB5
Level: Intermediate

USE EXPLICIT OBJECT TYPES FOR
SPEED
It is much faster to use explicit object data types instead of ge-
neric ones. In this test that simply sets an object’s public vari-
able, the generic object takes more than 150 times longer than
the specific object:

Private Sub Command1_Click()
Dim specific As MyClass
Dim generic As Object
Dim start_time As Single
Dim stop_time As Single
Dim i As Long

Set specific = New MyClass
Set generic = New MyClass
start_time = Timer
For i = 1 To 100000

specific.value = i
Next i
stop_time = Timer
MsgBox Format$(stop_time - start_time)
start_time = Timer
For i = 1 To 100000

generic.value = i
Next i
stop_time = Timer
MsgBox Format$(stop_time - start_time)

End Sub
http://www.windx.com

—Rod Stephens, Boulder, Colorado

 101 TECH TIPS
For VB Developers For even more tricks and tips go to

 http://www.windx.com

VB3, VB4 16/32, VB5
Level: Advanced

MAKE A FORM STAY ON TOP
You can make a form always remain above others, even when it
does not have focus. Use this code in a BAS module:

#If Win16 Then
Declare Sub SetWindowPos Lib "User" (_

ByVal hWnd As Integer, _
ByVal hWndInsertAfter As Integer, _
ByVal X As Integer, ByVal Y As Integer, _
ByVal cx As Integer, ByVal cy As Integer, _
ByVal wFlags As Integer)

#Else
Declare Function SetWindowPos Lib _

"user32" (ByVal hwnd As Long, _
ByVal hWndInsertAfter As Long, _
ByVal x As Long, ByVal y As Long, _
ByVal cx As Long, ByVal cy As Long, _
ByVal wFlags As Long) As Long

#End If
Public Const SWP_NOMOVE = &H2
Public Const SWP_NOSIZE = &H1
Public Const HWND_TOPMOST = -1
Public Const HWND_NOTOPMOST = -2

Use this code to make the form stay on top in the form module:

SetWindowPos hwnd, HWND_TOPMOST, 0, 0, 0, 0, _
SWP_NOMOVE + SWP_NOSIZE

Use this code to make the form no longer stay on top in the
form module:

SetWindowPos Parent.hwnd, HWND_NOTOPMOST, _
 0, 0, 0, 0, SWP_NOMOVE + SWP_NOSIZE

In 16-bit systems, use the 16-bit equivalents.
—Rod Stephens, Boulder, Colorado

VB3, VB4 16/32, VB5
Level: Intermediate

SET PRINTER MARGINS
You can use the Printer’s scale properties to set margins. Set the
properties so the position (0, 0) is mapped to where you want
the margins. This code makes the left margin 0.5 inch and the
top margin 0.75 inch. The factor of 1440 converts inches into
twips:

Printer.ScaleLeft = -0.75 * 1440
Printer.ScaleTop = -0.5 * 1440
Printer.CurrentX = 0
Printer.CurrentY = 0

—Rod Stephens, Boulder, Colorado
http://www.windx.com
VB3, VB4 16/32, VB5
Level: Advanced

MOVE A FORM WITHOUT A TITLE BAR
Enter this code in a BAS module to let users move a window
without a title bar:

Declare Function ReleaseCapture Lib "user32" () As Long
Declare Function SendMessage Lib "user32" _

Alias "SendMessageA" (_
ByVal hwnd As Long, ByVal wMsg As Long, _
ByVal wParam As Long, lParam As Any) As Long

Public Const HTCAPTION = 2
Public Const WM_NCLBUTTONDOWN = &HA1

To give users a way to begin the move, place a little colored
PictureBox in one corner of the form and let its MouseDown event
begin the process:

Private Sub Picture1_MouseDown(Button As _
Integer, Shift As Integer, X As Single, Y As Single)
ReleaseCapture
SendMessage hwnd, WM_NCLBUTTONDOWN, HTCAPTION, 0&

End Sub
—Rod Stephens, Boulder, Colorado

VB5
Level: Beginning

ENUMS IMPROVE READABILITY
An enumerated type is simply a list of constants, each of which
has a unique value. An Enum can improve the readability of your
code by allowing you to declare a variable of your enumerated
type, then assign one of the elements of the Enum to the value of
the variable. Visual Basic makes this easy by providing you with
a list of values for your variable as you use it:

Public Enum TimeOfDay
Morning = 0
Afternoon = 1
Evening = 2

End Enum
Sub Main()

Dim RightNow As TimeOfDay
If Time >= #12:00:00 AM# And Time < #12:00:00 PM# Then

RightNow = Morning
ElseIf Time >= #12:00:00 PM# And Time < #6:00:00 PM# Then

RightNow = Afternoon
ElseIf Time >= #6:00:00 PM# Then

RightNow = Evening
End If

End Sub

Validity checking is not done when assigning values to the
special-typed variable. Even though the TimeOfDay values range
from zero to two, VB doesn’t attempt to keep you from assigning
a value of four, or another number, to such a variable. Be espe-
cially aware of this when writing Property Let procedures, which
accept an enumerated parameter.

—Charles Caison, Greensboro, North Carolina
Visual Basic Programmer’s Journal FEBRUARY 1998 9

 101 TECH TIPS
For VB Developers

or dd/mm/yy).
VB3, VB4 16/32, VB5, VBA, VBS
Level: Intermediate

IMPROVE PERFORMANCE BY
ELIMINATING SUBEXPRESSIONS
Arrays can reduce the amount of code you must write to perform
an operation, especially when used with a loop. By using the same
array element in multiple places in your code, you can increase
the speed with which your code executes if you resolve the array
only once. This code determines if the value of the array element
is this value, or if the value of the array element is that value:

If intArray(intArrayIndex) = 5 or _
intArray(intArrayIndex) = 10 Then

Because Visual Basic must calculate the location of the array
element to resolve its value (base + intArrayIndex *
sizeof_intArray_type), it makes sense that the code executes
faster the less the calculation is performed. This code provides
a faster implementation:

TheValue = intArray(intArrayIndex)
If TheValue = 5 or TheValue = 10 Then

This technique offers performance gains that are even more
dramatic when used in a loop:

For intArrayIndex = 0 to 10
TheValue = intArray(intArrayIndex)
If TheValue = 5 or TheValue = 10 Then

' Do something here
End If
Next

By eliminating the redundant subexpression and assigning
the value to the variable named “TheValue” only once per loop
(executes 10 times) instead of twice per loop (executes 20 times),
you significantly reduce the amount of work that VB must per-
form to complete this loop.

—Charles Caison, Greensboro, North Carolina

VB3, VB4 16/32, VB5, VBA
Level: Intermediate

SIMPLIFY VARIABLE DECLARATIONS BY
USING DEFAULT TYPES
Hungarian notation and similar naming schemes tell you at a glance
the data type of any variable in your code. You know that the vari-
able intCounter is an integer, and you know that strName is a string.

You can simplify your variable declarations by telling VB that
any variable you declare that begins with a certain letter will al-
ways be a certain type. This relieves you of having to include the
AS DataType clause in your variable declarations, but you can
still take advantage of the benefits of explicit variable type decla-
ration. This code informs VB that all variables beginning with the
letter “i” will be integers:

DefInt i
Dim iCounter

If you use the Visual Basic function TypeName() and pass it
10 FEBRUARY 1998 Visual Basic Programmer’s Journal
the variable iCounter, it returns “Integer” rather than “Variant.”
In addition to specifying a specific character, you can also specify
a range or list of letters. This code assigns variables that begin
with the letters i, j, or k as integers, and those variables that
begin with s or c as strings:

DefStr s, c
DefInt i-k

Dim iCounter ' an integer
Dim sName ' a string

Here are more default variable type declarations:

DefBool (Boolean)
DefByte (Byte)
DefLng (Long)
DefCur (Currency)
DefSng (Single)
DefDbl (Double)
DefDec (Decimal)
DefDate (Date)
DefStr (String)
DefObj (Object)
DefVar (Variant)

—Charles Caison, Greensboro, North Carolina

VB3, VB4 16/32, VB5, VBA, VBS
Level: Intermediate

MAINTAIN USERNAME AND PASSWORD
Due to a minor bug, the Internet Transfer Control cannot use
the username and password properties if they are set before the
URL property. Because of this, you should always set the URL
property first. This code will fail:

Inet1.Password = "Chicken_Feet"
Inet1.UserName = "JohnnyW"
Inet1.URL = FTP://ftp.32X.com
Inet1.Text = Inet1.OpenURL

This code, however, should work properly:

Inet1.URL = FTP://ftp.32X.com
Inet1.Password = "Chicken_Feet"
Inet1.UserName = "JohnnyW"
Inet1.Text = Inet1.OpenURL

The first section of code fails because the URL is set after the
username and password are set. The second section of code
works because the URL is set first.

—Charles Casion, Greensboro, North Carolina

VB3, VB4 16/32, VB5
Level: Beginning

VB VERSION ISDATE DIFFERENCES
Under VB3, IsDate returns True only if the string corresponds to
the date format indicated by the “Regional” or “International”
settings in the Control Panel. Under VB4 and VB5, however, IsDate
returns True if the date is a valid date in any format (mm/dd/yy
http://www.windx.com

 101 TECH TIPS
For VB Developers For even more tricks and tips go to

 http://www.windx.com

There are two morals to this story. First, if your VB3 apps
claim that dates are invalid when they look correct, check the
Control Panel settings. Second, if you need to enforce a particu-
lar date format in your VB4 and VB5 programs, you need to take
steps beyond using IsDate. For example, you can use masked-
edit controls or extra code to validate date formats.

—Jon Pulsipher, Plano, Texas

VB3, VB4 16/32, VB5
Level: Intermediate

SIMULATE WIN95 TASKBAR WITHIN
YOUR APP
The Windows 95 taskbar (with the Auto Hide check box set) is quite
attractive and provides a compact, nonintrusive way to access and
organize information. You can easily simulate this functionality in a
VB program and provide a useful alternative to a pull-down menu
and/or SpeedButton. To set up such a “taskbar” in your VB applica-
tion, include a control that can act as a container for other controls
in your VB form. The PictureBox control looks good and works
well; or you can use a Panel or a Frame.

Set the PictureBox’s Align and AutoSize properties. The Align
property indicates where the taskbar will reside on the form,
and the AutoSize property ensures that the PictureBox is sized
to fit the contours of its parent form whenever the form is resized.

Set the PictureBox’s Visible property to False. Make sure your
custom taskbar is not visible until the mouse is moved over a
defined “hot” zone on the form. A “hot” zone is a location on the
screen defined in X or Y coordinates. You can use these coordi-
nates in any unit of measurement, such as twips or pixels. Set the
Parent form’s ScaleMode property to the unit of measurement
you wish to work in.

Set the Width and/or Height of the PictureBox to appropri-
ately show embedded controls or information. Set up code in
the Form’s MouseMove event to handle the taskbar. This code
aligns the taskbar to the left of the screen:

'Object Property Setting
'------ -------- -------
'Form Name FrmTaskBarEx
' ScaleMode Pixel

'PictureBox Name PicTaskBar
' Align Align Left
' AutoSize True
' Visible False

Private Sub Form_Load()
' Set Width of PictureBox to 1/4 size of Parent form
' when form is loaded. This is wide enough to show
' all of the controls I embedded in the PictureBox,
' and will vary with each application.

PicTaskBar.Width = Me.ScaleWidth / 4
End Sub

Private Sub Form_MouseMove(Button As _
Integer, Shift As Integer, X As Single, Y As Single)

' When the horizontal mouse position is less
' than or equal to defined hot zone
' (in this case, horizontal pixel position 4), show taskbar

If (X <= 4) Then
PicTaskBar.Visible = True
' When the horizontal mouse position is
' greater than the width of the
http://www.windx.com
' PictureBox, hide taskbar
ElseIf (X > PicTaskBar.Width) Then

PicTaskBar.Visible = False
End If

End Sub
—Pete Rodriguez, Jersey City, New Jersey

VB4 16/32, VB5
Level: Beginning

LET THE EDITOR CHECK YOUR
SPELLING
To make certain that you declared your variables, place Option
Explicit in your Declarations section. Using a mixture of upper
and lower case in variable names, you can easily verify that you
don’t misspell variable names as you type them. By entering the
names in all lower or upper case, the editor changes the vari-
ables’ appearance automatically to match the declared syntax:

Public strFetchThis as String
Public iCountMe as Integer

When you declare these variables, typing STRFETCHTHIS or
icountme results in the editor’s changing them to the declared
appearance when you move on.

—Randall Arnold, Coppell, Texas

VB3, VB4 16/32, VB5, VBA
Level: Intermediate

DETERMINE NEXT/PREVIOUS WEEKDAY
This function returns week identifier information, such as Week
Beginning/Ending date, and makes it more generic to return a
date of any previous or following weekday. You can use this func-
tion in VB5 and VBA5; with minor modifications to the optional
arguments, you can also use it in VB3 and VB4:

Public Function SpecificWeekday(d As Date, _
Optional ByVal WhatDay As Byte = _
vbSaturday, Optional ByVal GetNext _
As Boolean = True) As Date
'Purpose: Returns a date of the
'Next/Previous specific weekday for a given date
' Input: d - Date for which next/previous
' weekday is needed
' WhatDay - optional (byte)
' argument (default = vbSaturday)
' specifying what weekday to find
' GetNext - optional (Boolean)
' argument: True for
' Next(default), False for Previous
'Output: Date of the next/previous specific weekday
'Note: If both optional arguments are
' omitted, returns Week-Ending Date
' If passed date (d) falls on the
' same weekday as WhatDay, the
' function returns the passed date
' unchanged.
Dim iAdd As Integer
iAdd = (WhatDay - WeekDay(d))
If GetNext Then

SpecificWeekday = DateAdd("d", IIf(_
iAdd >= 0, iAdd, 7 + iAdd), d)
Visual Basic Programmer’s Journal FEBRUARY 1998 11

 101 TECH TIPS
For VB Developers
Else
SpecificWeekday = DateAdd("d", IIf(_

iAdd <= 0, iAdd, iAdd - 7), d)
End If

End Function
—Serge Natanov, received by e-mail

VB3, VB4, VB5, VBA, VBS
Level: Intermediate

FIND TROUBLE SPOTS
Implement a low-tech trace of your application by writing a mes-
sage whenever your code enters and exits a subroutine. This
can help you locate elusive bugs, because you can turn on the
trace and run your application until failure. The last entry in
your log indicates what subroutine you were executing when
the failure occurred. Enter this code in the General Declarations
section of a module:

Public DebugMode as Boolean

Normally, you should set this variable to False. During de-
bugging, however, set it to True (DebugMode = True). Place this
sub in the module:

Public Sub WriteDebugMessage(ByVal Msg as String)
If DebugMode then

'write a message, including the system time
End If

End Sub

Enter this code as the first statement in every subroutine
and function in your project:

Call WriteDebugMessage("Entering NameOfSubroutine")

Enter this code as the last statement in every subroutine and
function:

Call WriteDebugMessage("Exiting NameOfSubroutine")

VB4 introduced conditional compilation, which offers a sim-
pler way to implement this scheme. By defining a conditional
compiler constant rather than a global flag variable, you can
optimize your final EXE by toggling the constant to False. Condi-
tional calls to the WriteDebugMessage routine won’t be com-
piled into your shipping build:

#Const DebugMode = False
' for final code, true to test

#If DebugMode Then
Call WriteDebugMessage("Important Info")

#End If

Use this code to write other debug information to the log,
such as variable values. Don’t forget to turn off Debug mode
when you’re not using it to avoid writing massive amounts of
unneeded data to the log.
12 FEBRUARY 1998 Visual Basic Programmer’s Journal

—Shannon Huggins, Lancaster, South Carolina
VB4 16/32, VB5
Level: Beginning

USE ARRAYS, NOT COLLECTIONS
Arrays take less memory and are faster than collections. If you
don’t need to use a collection’s keyed lookup, easy extensibility,
and other features, use an array instead.

—Rod Stephens, Boulder, Colorado

VB3, VB4 16/32, VB5, VBA, VBS
Level: Beginning

DRAW COMPLEX SHAPES
You can create complex shapes easily if you have a copy of
Microsoft PowerPoint, CorelDraw, or any other graphics editor.
Using your graphic editor’s drawing tools, draw the shape you
want in the presentation document. PowerPoint features a wide
range of drawing tools and autoshapes that let you combine a
variety of basic shapes and styles into complex images that you
can fill, shade, or rotate to any angle.

When you’re satisfied with your complex shape, choose Se-
lect from the Edit menu, and Copy from the Edit menu in
PowerPoint. You can also save the image as a Windows metafile
from packages that support that option. Switch tasks to your
VB IDE, add an Image control to the active form, and paste the
metafile that was copied from PowerPoint into the Image.

When you want to draw the stored shape in your running VB
application, assign the metafile from the Image control to the
destination drawing object:

picDraw.Picture = imgMetafile.Picture

Use drag-and-drop to copy the image from the source control to
the drop target control. All scaling and drawing is handled auto-
matically. You don’t need to set the ScaleMode property of your des-
tination object. You can use this technique when you want to deco-
rate forms with complex shapes or create a Balloon Help form, a
process control modeling application in which the images represent
the elements of the production flow, or a flow-chart application.

—Rob Parsons, Dee Why, New South Wales, Australia

VB3, VB4 16/32, VB5
Level: Beginning

PASS PARAMETERS TO USER DIALOGS
It’s fairly common practice to add buttons to your date and nu-
meric fields to allow users to select and display a popup calen-
dar or calculator. However, to display a calculator or calendar
without allowing it to communicate with the calling application
defeats the purpose of giving the user these capabilities. The
called dialog is only an appendage that cannot pass the user’s
calculation back to the field from which the resource was called.

To solve this problem, add a button to a form next to a nu-
meric input field (txtAmount). In the Click event of this button,
place a Load statement for the form you want to show the user:

Sub cmd_Click()
Load Calculator_Dialog
Calculator_Dialog.Show 1 ' modal

End Sub
http://www.windx.com

 101 TECH TIPS
For VB Developers For even more tricks and tips go to

 http://www.windx.com

Pass parameters to a form by writing a wrapper utility that
handles the passing of these parameters to and from the called
dialog:

Sub cmd_Click()
CalculatorDialog_Show txtAmount

End Sub

Sub CalculatorDialog_Show (C As Control)
'' Display the Calculator_Dialog and return
'' the calculated value as a string
Load Calculator_Dialog
Calculator_Dialog.lblReadout = _

Format(Val(C.Text), "#.###############")
' Pass the number to dialog
Calculator_Dialog.Op1 = Format(Val(C.Text), _

“#.###############”)
' simulate user input
Calculator_Dialog.LastInput = "NUMS"
Calculator_Dialog.Show 1 ' modal
If Calculator_Dialog.Action = True Then

C.Text = Format(Calculator_Dialog._
lblReadout, "General Number")

End If
Unload Calculator_Dialog
Set Calculator_Dialog = Nothing
End Sub

The parameters are passed to hidden label controls on the
Calculator_Dialog form between the time the form is loaded and
the time it’s displayed. A hidden label control on the
Calculator_Dialog (Action) indicates whether the user chose the
OK or Cancel button to exit the dialog. Rather than unload the
Calculator_Dialog when the user presses the OK or Cancel but-
ton, the form hides until the calling sub (CalculatorDialog_Show)
processes the value of Calculator_Dialog.lblReadout. The form
is then unloaded, and the Set-to-Nothing statement is executed
to purge memory of the form’s controls and procedures.

This technique works with any version of VB. Starting with
VB4, you can add properties and methods to forms, which is a
preferable method to relying on hidden labels for interobject
communication.

—Rob Parsons, Dee Why, New South Wales, Australia

VB3, VB4 16/32, VB5
Level: Intermediate

LET THE USER CONTROL LONG
OPERATIONS
To allow the user to control long operations, use a single
CommandButton to control starting and stopping a looping
process:

Dim Running As Boolean
Private Sub CmdStartStop_Click()

If Running Then
' Stop the process.
Running = False
CmdStartStop.Caption = "Start"
CmdStartStop.Enabled = False

Else
' Start the process.
Running = True
CmdStartStop.Caption = "Stop"
http://www.windx.com
RunLongProcess
CmdStartStop.Enabled = True

End If
End Sub
Private Sub RunLongProcess()

Do While Running
' Do something repeatedly.
:
DoEvents

Loop
End Sub

—Rod Stephens, Boulder, Colorado

VB3, VB4 16/32, VB5
Level: Beginning

A QUICK EXPLORER-LIKE INTERFACE
Although the new VB5 Application Wizard can build a shell appli-
cation with an Explorer-like interface, it is often desirable to drop a
quick Explorer form into your code without the toolbar or the ex-
tra code included by the wizard. You can use only three controls to
create a form quickly with the Explorer split-panel look and feel.

To get an Explorer interface up and running, drop a picture
box onto a form and set the BorderStyle property to zero (none).
Add two controls to the picture box. These controls will repre-
sent the left and right panels. Drop in this code:

Private Sub Form_Resize()
' Optionally, resize manually if you don't
' want container to cover entire form and
' resize with form.
Picture1.Move 0, 0, Me.ScaleWidth, Me.ScaleHeight

End Sub
Private Sub Picture1_Resize()

Dim offset As Integer
Static percent As Single

offset = 4 * Screen.TwipsPerPixelX
If percent = 0 Then

percent = 0.5
Else

percent = (Text1.Width + offset) / _
Picture1.Width

End If
Text1.Top = 0
Text1.Left = 0
Text1.Width = Picture1.Width * percent - offset
Text1.Height = Picture1.Height
Text2.Top = 0
Text2.Left = Text1.Width + offset
Text2.Width = Picture1.Width - Text2.Left
Text2.Height = Picture1.Height

End Sub
Private Sub Picture1_MouseMove(Button As _

Integer, Shift As Integer, X As Single, _
Y As Single)
Dim offset As Integer, pwidth As Integer
offset = 2 * Screen.TwipsPerPixelX
pwidth = Picture1.Width

If Button = vbLeftButton And X > 20 * _
offset And X < pwidth - 20 * offset Then
Text1.Width = X - offset

ElseIf X < 20 * offset Then
Text1.Width = 19 * offset

ElseIf X > pwidth - 20 * offset Then
Visual Basic Programmer’s Journal FEBRUARY 1998 13

Text1.Width = pwidth - 19 * offset

 101 TECH TIPS
For VB Developers
End If
Text2.Left = Text1.Width + 2 * offset
Text2.Width = pwidth - Text2.Left

End Sub

In this example, I used two multiline text boxes with
scrollbars, but TreeView and ListView controls work just as well.

—David Grantier, Atlanta, Georgia

VB5
Level: Intermediate

TRICK SETUP WIZARD
Don’t you hate that VB5’s Setup Wizard doesn’t include all the
files you reference in your application? For example, if you ac-
cess a picture or animation file at run time using syntax such as
Animation1.Open App.Path & "\MyVideo.AVI", VB5’s Setup Wiz-
ard doesn’t include this file in its setup list.

To make VB5’s Setup Wizard include files in the setup auto-
matically, you can declare a fictional API procedure in the Decla-
rations section of any module that references the file within a
conditional compilation construct:

#If False Then
Private Declare Sub Foo Lib "VIDEO.AVI" ()
'Fake Declare
#End If

Because the condition is False, Visual Basic ignores this state-
ment. However, the Setup Wizard interprets this line as a func-
tion declaration, locates the file (in this case, VIDEO.AVI), and
includes it in the setup list. Setup Wizard will default to placing
these files in your App folder, so change it accordingly.

—Miguel Santos, Aveiro, Portugal

VB3, VB4 16/32, VB5
Level: Beginning

READ AND WRITE ARRAYS QUICKLY
You can read and write arrays quickly from files using Put and
Get. This approach is faster than reading and writing the array
one entry at a time:

Dim arr(1 To 100000) As Long
Dim fnum As Integer

fnum = FreeFile
Open "C:\Temp\xxx.dat" For Binary As fnum
Put #fnum, , arr
Close fnum

—Rod Stephens, Boulder, Colorado

VB3, VB4 16/32, VB5
Level: Intermediate

PRINT GRAY LINES AND AREAS
Black and white printers cannot print gray lines, but they can
dither to create gray areas. To create a gray border around an
area, draw thin gray boxes with DrawStyle = vbInvisible (5) so
they have no borders.

—Rod Stephens, Boulder, Colorado
14 FEBRUARY 1998 Visual Basic Programmer’s Journal
VB4 32, VB5
Level: Intermediate

CREATE INTERNET-STYLE HYPERLINKS
You can easily create a hyperlink in a VB form to let your users
connect to a Web page or send e-mail by clicking on the hyperlink.
To do this, add a Label control to your form, and set the AutoSize
property to True to ensure the label is exactly the same size as
your text. Set the Caption property to the text you want, such as
“Click here to send e-mail.” Set the Font property to Underline.
Set the ForeColor property to Blue or your favorite hyperlink color.
Set the MousePointer property to 99 - Custom. Set the MouseIcon
property to file H_POINT.CUR from your VB CD-ROM
(vb\graphics\cursors). The familiar mouse cursor that browsers
display over hyperlinks will be displayed when the mouse moves
over the label. Double-click on the Label control to open the code
window, and add this code to the Click event:

Private Sub Label1_Click()
Dim lRet As Long
Dim sText As String
sText = "http://www.yourURL.com"
lRet = ShellExecute(hwnd, "open", sText, _

vbNull, vbNull, SW_SHOWNORMAL)
If lRet >= 0 And lRet <= 32 Then

MsgBox "Error executing command!"
End If

End Sub

Add these declarations to the top of your form module:

Private Declare Function ShellExecute Lib _
"shell32.dll" Alias "ShellExecuteA" (_
ByVal hwnd As Long, ByVal lpOperation As String, _
ByVal lpFile As String, ByVal lpParameters As String, _
ByVal lpDirectory As String, _
ByVal nShowCmd As Long) As Long

Private Const SW_SHOWNORMAL = 1

In the label’s Click event, you can change the value assigned to
sText to specify what action ShellExecute performs. If you specify
a URL, ShellExecute launches your Web browser and points it to
the specified Web site. You can also use the mailto syntax
(mailto:yourname@youraddress.com) to instruct ShellExecute to
launch your e-mail program. You can even specify a file name, and
ShellExecute automatically loads the file into the program regis-
tered to use it. For example, specifying a file with the DOC exten-
sion loads Microsoft Word on systems that have Word installed.

—José Rodríguez Alvira, San Juan, Puerto Rico

VB4 16/32, VB5
Level: Intermediate

DETERMINE IF YOUR PROGRAM IS
RUNNING WITHIN VB’S IDE
Sometimes it is useful to know if your program is running within
Visual Basic’s Integrated Development Environment (IDE) or as
a standalone EXE. This routine returns True if the program is
running within VB’s IDE:

Public Function RunningInIDE() As Boolean
http://www.windx.com

'Assume running as EXE for now

 101 TECH TIPS
For VB Developers For even more tricks and tips go to

 http://www.windx.com

RunningInIDE = False
'Trap errors
On Error GoTo RunningInIDEErr
'Divide by zero (fails within IDE)
Debug.Print 1 / 0
'Exit if no error
Exit Function

RunningInIDEErr:
'We get error if Debug.Print was
'evaluated (i.e. running in the VB IDE)
RunningInIDE = True

End Function

RunningInIDE performs a division by zero in a Debug.Print
statement. Within the IDE, this causes a divide overflow, which
the function traps in an error handler. When the program is run
as a standalone EXE, Debug.Print statements are not evaluated
and no error occurs.

—Jeffrey Sahol, Greensboro, North Carolina

VB4 16/32, VB5
Level: Intermediate

EXTRA DLLS AS A RESULT OF
CONDITIONAL COMPILATION
Starting with Visual Basic 4.0, you can add conditional compila-
tion statements and use them to create different versions for 16-
bit and 32-bit environments or to call debugging DLLs while test-
ing your applications. However, you have to be careful when
you use the setup wizard to generate the installation package
because those files will be included unless you remove them
from the distribution list. It is even worse when 16-bit code is
upgraded to VB5 because some of the 16-bit DLLs are no longer
included in the operating system, such as USER.DLL. In this case,
you have to comment out all the references to these libraries.

—Gerardo Villeda, Drexel Hill, Pennsylvania

VB3, VB4 16/32, VB5
Level: Intermediate

SPEED UP SELECTING ITEMS IN A
MULTISELECT LIST BOX
Try this routine to select or deselect all items in a list box. Add
a list box to your form with the MultiSelect property set to Simple
or Extended, and add items to the list box:

Sub ToggleSelectAll (lst As ListBox, ByVal bState As Integer)
Dim i As Integer
lst.Visible = False
'Avoid redraws for each item
For i = 0 To (lst.ListCount - 1)

lst.Selected(i) = bState
Next i
lst.Visible = True

End Sub

This routine sets the list box’s Visible property to False to pre-
vent the list box from repainting itself after each item is selected.
This makes the routine more efficient. However, you can speed
http://www.windx.com
up this routine by using SendMessage instead of VB statements:

Sub ToggleSelectAll (lst As ListBox, _
ByVal bState As Integer)
Dim i As Integer
Dim nRet As Long
lst.Visible = False
For i = 0 To lst.ListCount - 1

nRet = SendMessage(lst.hWnd, LB_SETSEL, bState, i)
Next i
lst.Visible = True

End Sub

You can speed up this routine significantly by taking advan-
tage of the fact that the LB_SETSEL message sets the state of all
items in the list box at once if the index argument is -1. Because
this approach uses a single call to SendMessage, you don’t need
to worry about setting the list box’s Visible property to False to
prevent multiple redraws:

Sub ToggleSelectAll (lst As ListBox, _
ByVal bState As Integer)
Dim nRet As Long
nRet = SendMessage(lst.hWnd, LB_SETSEL, bState, -1)

End Sub

Use these 16-bit declarations:

Declare Function SendMessage Lib "User" (_
ByVal hWnd As Integer, ByVal wMsg As Integer, _
ByVal wParam As Integer, ByVal lParam As Long) As Long

Global Const WM_USER = &H400
Global Const LB_SETSEL = (WM_USER + 6)

Or use these 32-bit declarations:

Public Declare Function SendMessage Lib _
"User32" Alias "SendMessageA" (_
ByVal hWnd As Long, ByVal wMsg As Integer, _
ByVal wParam As Long, ByVal lParam As Long) As Long

Public Const WM_USER = &H400
Public Const LB_SETSEL = (WM_USER + 6)

—Garold Minkin, Brooklyn, New York

VB4 32, VB5
Level: Beginning

MODIFY A TOOLBAR’S IMAGE LIST
CONTROL
Have you ever tried to create tools on a toolbar using an image
list, only to find that you must detach the toolbar from the list
and reset all the toolbar button properties every time you want
to add to the image list? Annoying, isn’t it?

Before adding anything to the image list, cut the toolbar ob-
ject. Then you can revise the image list with no complaints from
the IDE. Provided that you retain all the original image indexes,
you can paste the toolbar object back on the form and retain
the toolbar’s link to the image list.

—David J. Schraff, Cleveland, Ohio
Visual Basic Programmer’s Journal FEBRUARY 1998 15

 101 TECH TIPS
For VB Developers
VB4 32, VB5
Level: Intermediate

EASILY CREATE ALL DIRECTORIES IN A
PATH
Use this code to create a tree of folders on Windows 95 or NT 4.0
in one line:

Private Declare Function _
MakeSureDirectoryPathExists Lib "IMAGEHLP.DLL" _
(ByVal DirPath As String) As Long

Private Sub Command1_Click()
Dim MyPath As String
Dim bResult As Long
'Specify the directory that we need
MyPath = "C:\Win95\Temp\MyFolder\" & _

"MyFolder\Fld1\Fld2\"
'Now create that directory if it does exist.
'The entire path will be created if needed
bResult = MakeSureDirectoryPathExists(MyPath)
'Test for failure
If bResult = 0 Then

MsgBox "MakeSureDirectoryPathExists failed!"
End If

End Sub
—Mordechai Eli, received by e-mail

VB4 16/32, VB5
Level: Intermediate

IMPLEMENT A BINARY TREE
A binary search tree can be useful when you have to traverse a lot
of data in sorted order. As this CBinarySearchTree class demon-
strates, you can implement binary search trees easily using ob-
jects and recursion (both data recursion and procedural recursion):

'class properties:
Private LeftBranch As CBinarySearchTree
Private RightBranch As CBinarySearchTree
Private NodeData As String
'Adds a new value to the binary tree
Public Sub AddNode(NewData As String)

If Len(NodeData) = 0 Then
'Store data in current node if empty
NodeData = NewData

ElseIf NewData < NodeData Then
'Store data in left branch if NewData < NodeData
If LeftBranch Is Nothing Then

Set LeftBranch = New CBinarySearchTree
End If
LeftBranch.AddNode NewData

Else
'Store data in right branch if NewData
'>= NodeData
If RightBranch Is Nothing Then

Set RightBranch = New CBinarySearchTree
End If
RightBranch.AddNode NewData

End If
End Sub

'Displays all values in this tree
'If called on a child node, displays all
'values in this branch
16 FEBRUARY 1998 Visual Basic Programmer’s Journal

Public Sub TraverseTree()
'Traverse left branch
If Not LeftBranch Is Nothing Then

LeftBranch.TraverseTree
End If
'Display this node
MsgBox NodeData
'Traverse right branch
If Not RightBranch Is Nothing Then

RightBranch.TraverseTree
End If

End Sub

Test this class by creating a new CBinarySearchTree object,
calling AddNode a few times to store data, and then calling
TraverseTree to see the results. Binary search trees don’t get
much simpler than this.

—David Doknjas, Surrey, British Columbia, Canada

VB3, VB4 16/32, VB5
Level: Advanced

USE TOOLBAR-STYLE TITLE BARS
To make a form use a small toolbar-style title bar, set the form’s
WS_EX_TOOLWINDOW extended style:

Declare Function GetWindowLong Lib "user32" _
Alias "GetWindowLongA" (_
ByVal hwnd As Long, _
ByVal nIndex As Long) As Long

Declare Function SetWindowLong Lib "user32" _
Alias "SetWindowLongA" (_
ByVal hwnd As Long, _
ByVal nIndex As Long, _
ByVal dwNewLong As Long) As Long

Public Const WS_EX_TOOLWINDOW = &H80&
Public Const GWL_EXSTYLE = (-20)
Declare Function SetWindowPos Lib "user32" (_

ByVal hwnd As Long, _
ByVal hWndInsertAfter As Long, _
ByVal x As Long, ByVal y As Long, _
ByVal cx As Long, ByVal cy As Long, _
ByVal wFlags As Long) As Long

Public Const SWP_FRAMECHANGED = &H20
Public Const SWP_NOMOVE = &H2
Public Const SWP_NOZORDER = &H4
Public Const SWP_NOSIZE = &H1
Private Sub Form_Load()
Dim old_style As Long

old_style = GetWindowLong(hwnd, GWL_EXSTYLE)
old_style = SetWindowLong(hwnd, _

GWL_EXSTYLE, old_style Or _
WS_EX_TOOLWINDOW)

SetWindowPos hwnd, 0, 0, 0, 0, 0, _
SWP_FRAMECHANGED Or SWP_NOMOVE Or _
SWP_NOZORDER Or SWP_NOSIZE

End Sub
—Rod Stephens, Boulder, Colorado

VB4 32, VB5
Level: Intermediate

USE UNC NAMES TO REFER TO
NETWORK DRIVES
If you write programs that access information on a network
http://www.windx.com

 101 TECH TIPS
For VB Developers For even more tricks and tips go to

 http://www.windx.com

server, you never want to hard-code drive letters. Not all soft-
ware vendors take advantage of the Uniform Naming Conven-
tion (UNC) (for example, \\SERVER\VOLUME\) technology. Use
these API declarations:

Public Declare Function GetVolumeInformation _
Lib "kernel32" Alias "GetVolumeInformationA" (_
ByVal lpRootPathName As String, _
ByVal lpVolumeNameBuffer As String, _
ByVal nVolumeNameSize As Long, _
lpVolumeSerialNumber As Long, _
lpMaximumComponentLength As Long, _
lpFileSystemFlags As Long, _
ByVal lpFileSystemNameBuffer As String, _
ByVal nFileSystemNameSize As Long) As Long

Public Function GetNetworkDrive(FileSystem _
As String, VolumeName As String) As String

'Returns the first mapped drive letter
'if successful or "NODRIVE" if fails.

'FileSystem and SysName refer to the
'Network file system type:
'NWCOMPA => Novell
'NTFS => Microsoft
'FAT => Local\Microsoft

Dim SerialNum As Long, SysFlags As Long
Dim retVal As Long, Complength As Long
Dim VolBuff As String * 255, SysName As String * 255
Dim DrivePath As String
Dim i As Integer

GetNetworkDrive = "NODRIVE"

For i = 70 To 90
DrivePath = Chr(i) & ":\"
retVal = GetVolumeInformation _

(DrivePath, VolBuff, 255, _
SerialNum, Complength, SysFlags, SysName, 255)

If (Mid$(VolBuff, 1, Len(VolumeName)) _
= UCase$(VolumeName)) And(Mid$(SysName,1, Len _
(FileSystem)) = FileSystem) Then

GetNetworkDrive = DrivePath
Exit For

End If
Next i

End Function

Here’s the wrong and right ways to refer to network drives:

Option Explicit

Public Sub OpenDatabase()
'The Wrong Way!
Dim filespec as String
filespec = "H:\PUBLIC\APPS\BTRIEVE\MYDB.RDB"
'Some third-party control that opens the
'database file.
...
...
...

End Sub

Public Sub OpenDatabase()
'A Better Way!
Dim filespec as String
http://www.windx.com

Dim Vol1Drive As String
Vol1Drive = GetNetworkDrive("NWCOMPA","VOL1")
If Vol1Drive = "NODRIVE" Then

MsgBox "Unable to open database. " & _
"The user does not have a " & _
"drive letter mapped to VOL1"

Else
filespec = Vol1Drive & _

"\PUBLIC\APPS\BTRIEVE\MYDB.RDB"
'Some third-party control that opens
'the database file.
...
...
...

End If
End Sub

—Charles Douglas, New Orleans, Louisiana

VB4 32, VB5
Level: Intermediate

SUSPEND CODE WHILE WAITING FOR
SHELLED PROCESS
This “wait” routine suspends your code and waits for the shelled
process to finish. It comes in handy when you need to run another
script\batch file during your process. Use this calling syntax:

Private sub cmdPrint_Click()
WaitForProcessToEnd "C:\PLOTTER.BAT"
'Let the user know when the process is finished.
MsgBox "The process is finished! "

End Sub

Here are the API declarations:

Public Const INFINITE = -1&
Public Declare Function WaitForSingleObject _

Lib "kernel32" (ByVal hHandle As Long, _
ByVal dwMilliseconds As Long) As Long

Public Declare Function OpenProcess Lib _
"kernel32" (ByVal dwAccess As Long, _
ByVal fInherit As Integer, _
ByVal hObject As Long) As Long

Public Sub WaitForProcessToEnd(cmdLine As String)
'You can substitute a discrete time
'value in milliseconds for INFINITE.
Dim retVal As Long, pID As Long, pHandle _

As Long
pID = Shell(cmdLine)
pHandle = OpenProcess(&H100000, True, pID)
retVal = WaitForSingleObject(pHandle, INFINITE)

End Sub
—Charles Douglas, New Orleans, Louisiana

VB4 32
Level: Advanced

MORE TIPS FOR “CREATING A BETTER
MOUSE TRAP”
I would like to add a few things to the “Building a Better Mouse
Trap” tip [VBPJ November 1996, page 56]. This approach also
works for any message, including button-up and button-down
messages. Windows 95 calls the appropriate function and passes
Visual Basic Programmer’s Journal FEBRUARY 1998 17

the mouse coordinates and other information in lParam and

 101 TECH TIPS
For VB Developers
wParam, which, in the case of the MouseMove event, VB con-
verts to the Button, Shift, X, and Y arguments. If the user clicks
on the icon in the system tray, Windows passes 513 and 514
(WM_LBUTTONDOWN and WM_LBUTTONUP) to VB, and VB
performs a conversion that leaves the original mouse message
in X. If ScaleMode of the invisible form, frmOmni in the example,
is left as Twips, this tip won’t work for every system. To make
this tip work on every system, set ScaleMode of the invisible
form to Pixels.

—Goran Stijacic, San Diego, California

VB4 32, VB5
Level: Advanced

CREATE A GLOBALLY UNIQUE
IDENTIFIER (GUID)
I use this routine in almost every application I develop. It’s handy
whether you need a key for a collection or whether you use it in a
database:

Option Explicit

Private Declare Function CoCreateGuid Lib _
"OLE32.DLL" (pGuid As GUID) As Long

Private Declare Function StringFromGUID2 Lib _
"OLE32.DLL" (pGuid As GUID, _
ByVal PointerToString As Long, _
ByVal MaxLength As Long) As Long

' Private members
Private Const GUID_OK As Long = 0

Private Type GUID
Guid1 As Long
Guid2 As Integer
Guid3 As Integer
Guid4(0 To 7)␣ As Byte

End Type

Public Function CreateGUIDKey() As String
'*** Possible max length for buffer
Const GUID_LENGTH As Long = 38

Dim udtGUID As GUID
'User Defined Type
Dim strFormattedGUID As String
'The formatted string
Dim lngResult As Long
'Useless result flag

'*** Create a 'raw' GUID
lngResult = CoCreateGuid(udtGUID)

If lngResult = GUID_OK Then
'*** Pre-allocate space for the ID
strFormattedGUID = String$(GUID_LENGTH, 0)
'*** Convert the 'raw' GUID to a
'formatted string
StringFromGUID2 udtGUID, _

StrPtr(strFormattedGUID), GUID_LENGTH + 1
Else

'*** Return nothing or handle error
strFormattedGUID = ""

End If
18 FEBRUARY 1998 Visual Basic Programmer’s Journal
' *** Return our nicely formatted GUID
CreateGUIDKey = strFormattedGUID

End Function
—Doug Olson, Eden Prairie, Minnesota

VB4 32, VB5
Level: Advanced

SEND MESSAGES TO WINPOPUP FROM
YOUR APPLICATION
If you have an application that must run “unattended” and you
want it to alert you if something goes wrong, your application
can send you a message through WinPopUp. WinPopUp uses a
mail slot to communicate with other computers in the network.
Choose a mail slot name, such as \\computername
\mailslot\messngr, and use this code:

Option Explicit

Private Declare Function CloseHandle Lib _
"kernel32" (ByVal hHandle As Long) As Long

Private Declare Function WriteFile Lib _
"kernel32" (ByVal hFileName As Long, _
ByVal lpBuff As Any, _
ByVal nNrBytesToWrite As Long, _
lpNrOfBytesWritten As Long, _
ByVal lpOverlapped As Long) As Long

Private Declare Function CreateFile Lib _
"kernel32" Alias "CreateFileA" (_
ByVal lpFileName As String, _
ByVal dwAccess As Long, _
ByVal dwShare As Long, _
ByVal lpSecurityAttrib As Long, _
ByVal dwCreationDisp As Long, _
ByVal dwAttributes As Long, _
ByVal hTemplateFile As Long) As Long

Private Const OPEN_EXISTING = 3
Private Const GENERIC_READ = &H80000000
Private Const GENERIC_WRITE = &H40000000
Private Const GENERIC_EXECUTE = &H20000000
Private Const GENERIC_ALL = &H10000000
Private Const INVALID_HANDLE_VALUE = -1
Private Const FILE_SHARE_READ = &H1
Private Const FILE_SHARE_WRITE = &H2
Private Const FILE_ATTRIBUTE_NORMAL = &H80

Function SendToWinPopUp(PopFrom As String, _
PopTo As String, MsgText As String) As Long
' parms: PopFrom: user or computer that
' sends the message
' PopTo: computer that receives the
' message
' MsgText: the text of the message
' to send
Dim rc As Long
Dim mshandle As Long
Dim msgtxt As String
Dim byteswritten As Long
Dim mailslotname As String
' name of the mailslot
mailslotname = "\\" + PopTo + _

"\mailslot\messngr"
msgtxt = PopFrom + Chr(0) + PopTo + Chr(0) + _

MsgText + Chr(0)
mshandle = CreateFile(mailslotname, _
http://www.windx.com

 101 TECH TIPS
For VB Developers For even more tricks and tips go to

 http://www.windx.com

GENERIC_WRITE, FILE_SHARE_READ, 0, _
OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, 0)

rc = WriteFile(mshandle, msgtxt, _
Len(msgtxt), byteswritten, 0)

rc = CloseHandle(mshandle)
End Function

—Mauro Mariz, Trento, Italy

VB4 16/32, VB5
Level: Beginning

FILL A LIST BOX WITH THE VALUES
FROM A DATABASE TABLE
Use this code to fill a list box with the values from a database table.
The first field in the query provides the ItemData for the list:

Call FillList(dbase, "select personno, " & _
"personname from tblperson order by " & _
"personname;", lstperson)

Sub FillList(thedb As Database, thesql As _
String, THELIST As Control)

On Error Resume Next
THELIST.Clear
Call FillListAp(thedb, thesql, THELIST)

End Sub
Sub FillListAp(thedb As Database, thesql As _

String, THELIST As Control)
On Error Resume Next
Dim theset As Recordset
Dim inlist As String
Dim I As Integer
Set theset = thedb.OpenRecordset(thesql, _

dbOpenSnapshot)
While Not theset.EOF

For I = 1 To theset.Fields.Count - 1
If I = 1 Then

If IsNull(theset.Fields(I)) Then
inlist = "Null"

Else
inlist = theset.Fields(I)

End If
Else

If IsNull(theset.Fields(I)) Then
inlist = inlist & Chr(9) & "Null"

Else
inlist = inlist & Chr(9) & _

theset.Fields(I)
End If

End If
Next I
THELIST.AddItem inlist
THELIST.ItemData(THELIST.NewIndex) = _

theset.Fields(0)
theset.MoveNext

Wend
theset.Close

End Sub
—Tim Miller, received by e-mail
http://www.windx.com
VB3, VB4 16/32, VB5
Level: Intermediate

MAKE SURE DATA IS SAFE BEFORE
UNLOADING
To decide when it is safe to exit your program, use a DataUnsafe
function. Set the DataModified variable to False when you load
or save data, or when you start a new file. Set DataModified to
“OK” to remove the current data:

Dim DataModified As Boolean
Private Function DataUnsafe() As Boolean

If DataModified Then
Select Case MsgBox _

("Save changes to the data?", vbYesNoCancel)
Case vbYes

' Save the data. SaveData should
' set DataModifed False if successful.
SaveData
DataUnsafe = DataModified

Case vbNo
' OK to clear data.
DataUnsafe = False

Case vbCancel
' Cancel operation and keep data.
DataUnsafe = True

End Select
Else

' The data is not modified.
DataUnsafe = False

End If
End Function
Private Sub Form_Unload(Cancel As Integer)

Cancel = DataUnsafe()
End Sub

—Rod Stephens, Boulder, Colorado

VB3, VB4 16/32, VB5
Level: Beginning

CONVERT FROM FRACTIONAL TO
DECIMAL NUMBERS
While developing a database front end for hand-tool management,
I discovered a need to handle both fractional and decimal repre-
sentations of dimensions in the same text box. This makes it easier
on users who worked from a variety of prints to input part feature
sizes. To accomplish this, place this function in the LostFocus
event of any text box that can receive numerical input. You can
also cycle through the appropriate text boxes and run the func-
tion against the text value of each. In addition, this function only
checks for the inches character (double quotes) at the end of the
text string of fractional dimensions. It also looks for spaces and/
or dashes between whole numbers and fractions and checks for
both forward and backward slashes within fractions. It doesn’t
work with negative values:

Private Function ReturnDecimalValue(Size As _
String) As String
Dim strSize As String
Dim iGap As Integer
Dim iSlash As Integer
Dim sWhole As Single
Visual Basic Programmer’s Journal FEBRUARY 1998 19

If Size <> "" Then Size = LTrim(RTrim(Size))

2

 101 TECH TIPS
For VB Developers

—Ketan Patel, Lansing, Michigan
'previous code may have stripped text to nothing
'if it was just spaces, so test
If Size <> "" Then

'strip off inch character (double
'quotes) if it's there
If Right(Size, 1) = Chr$(34) Then _

Size = Left(Size, Len(Size) - 1)
iGap = InStr(Size, "-")
If iGap = 0 Then iGap = InStr(Size, " ")
If iGap Then sWhole = CSng(Left(Size, iGap - 1))
strSize = Right(Size, Len(Size) - iGap)
iSlash = InStr(strSize, "/")
'user may have input backward slash
'in fraction instead of forward slash;
'verify
If iSlash = 0 Then iSlash = InStr(strSize, "\")
'convert result to decimal form for
'saving in database
If iSlash Then Size = CStr(sWhole + _

(CSng(Left(strSize, iSlash - 1)) / _
CSng(Right(strSize, Len(strSize) - iSlash))))

End If
ReturnDecimalValue = Size

End Function
—Randall Arnold, Coppell, Texas

VB3, VB4 16/32, VB5
Level: Intermediate

SEED THE RANDOM NUMBER GENERATOR
You can use Rnd followed by Randomize to seed Visual Basic’s
random number generator. Whenever you use the same seed,
Rnd produces the same sequence of random numbers:

Rnd -1
Randomize seed

—Rod Stephens, Boulder, Colorado

VB4 16/32, VB5
Level: Beginning

BETTER AUTO-PROPERCASE
The “Auto-Propercase Text Box at Entry” tip [VBPJ May 1997,
page 63] has a simpler solution. The StrConv function can
propercase any string. You can achieve the same effect with this
code in the KeyUp event of a text box:

Private Sub Text1_KeyUp(KeyCode As Integer, _
Shift As Integer)
Dim iCurPos As Integer
iCurPos = Text1.SelStart
Text1.Text = StrConv(Text1, vbProperCase)
Text1.SelStart = iCurPos

End Sub
—Manish Garg, Bloomington, Minnesota

VB3, VB4 16/32, VB5
Level: Intermediate

AVOID FORM CONFUSION
When you define a form named MyForm, Visual Basic creates
one instance with the name “MyForm.” Many programmers con-
0 FEBRUARY 1998 Visual Basic Programmer’s Journal

fuse this special instance with other instances created using Dim.
For example, the Caption statement in this code sets the cap-
tion on the automatically created instance. When the instance
FRM appears, its caption is not set:

Dim frm As New MyForm
MyForm.Caption = "This is the single instance"
frm.Show

Even more confusing problems can arise if you use MyForm
within the MyForm code module, when an instance such as FRM
might accidentally set properties on the automatically created
form rather than itself. For this reason, never use MyForm within
the MyForm code module.

—Rod Stephens, Boulder, Colorado

VB3, VB4 16/32, VB5
Level: Beginning

READ-ONLY TEXT CONTROLS WITHOUT
THE CARET
Assume you want a text control with a vertical scrollbar, but
you don’t want users to be able to modify it and you don’t want
users to see any caret in the control when they click on it. How-
ever, you still want users to be able to scroll all text.

Here is the solution. First, put a Text1 control and a Com-
mand1 control on Form1. Change the Text1 control property to
Locked = True. Change the Text1 control property to
MousePointer = 1 - Arrow. Change the Text1 control property to
ScrollBars = 2 - Vertical, and enter this code:

'code in Form1
Private Sub Form_Load()

'make Command1 control disappear when the form shows
Command1.Left = -2000

End Sub
'code in Text1 control
Private Sub Text1_GotFocus()

'move the focus to somewhere else
Command1.SetFocus

End Sub
—Jian Wang, Woodside, New York

VB3, VB4 16/32, VB5
Level: Beginning

SWITCH TO ANOTHER APP AND CLOSE IT
Use the built-in AppActivate command to switch to another ap-
plication easily if you know its title. You can even close the ap-
plication programmatically:

'This will close app
Private Sub CloseApp (AppTitle As String)

On Error GoTo ErrExit
AppActivate AppTitle
SendKeys "%{F4}", True

ErrExit:
End Sub
http://www.windx.com

 101 TECH TIPS
For VB Developers For even more tricks and tips go to

 http://www.windx.com

VB3, VB4 16/32, VB5
Level: Intermediate

SHOW 3-D TEXT MESSAGES
If you want to print text on an object with 3-D effects, use this
subroutine to convert fonts into 3-D fonts with borders. In this
routine, the user can define shadow length, shadow color, font
color, border color, and position of text on the object. Note that
all color values are in the range of 0-15 because they are used as
arguments for the QBColor function:

Sub Fonts3d(Print_Object As Object, Text1 As _
String, postx As Single, Posty As _
Single, Shadow_Length As Integer, _
FontsColor As Integer, ShadowColor As _
Integer, BorderColor As Integer)
Dim I As Integer, Prev_Scale_Mode As Integer
Prev_Scale_Mode = Print_Object.ScaleMode
If postx = -1 Then 'for center align

postx = (Print_Object.ScaleWidth - _
Print_Object.TextWidth(Text1)) / 2

End If
Print_Object.ForeColor = QBColor(ShadowColor)
'Generate shadow
For I = 1 To Shadow_Length * 16 Step 8

Call PrintText(Print_Object, _
postx + I, Posty + I, Text1)

Next I
'Print border
Print_Object.ForeColor = QBColor(BorderColor)
Call PrintText(Print_Object, postx - 15, Posty, Text1)
Call PrintText(Print_Object, postx + 15, Posty, Text1)
Call PrintText(Print_Object, postx, Posty - 15, Text1)
Call PrintText(Print_Object, postx, Posty + 15, Text1)
Print_Object.ForeColor = QBColor(FontsColor)
Call PrintText(Print_Object, postx, Posty, Text1)

End Sub
Sub PrintText(Print_Object As Object, _

Xposition As Single, Yposition As _
Single, Text1 As String)
Print_Object.CurrentX = Xposition
Print_Object.CurrentY = Yposition
'Print text on object
Print_Object.Print Text1

End Sub
' example of usage:
Call Fonts3d(Picture1, "WELCOME TO T.T.T.I.", _
␣ ␣ 50, 150, 5, 6, 11, 12)

—Atmabodh Hande, Shamla Hills, Bhopal, India

VB5
Level: Beginning

ADD RIGHT-CLICK FUNCTIONALITY
By default, the right-click functionality needed for What’s This?
Help is not available in VB. Selecting a menu command from a
context menu created for the button lets you display the What’s
This? Help topic when the user right-clicks on a command but-
ton. First, set the WhatsThisHelp property of the form to True.
Place a CommandButton control on the form. Using the Menu
Editor, create a menu with a top-level invisible item named
mnuBtnContextMenu, and a submenu named mnuBtnWhatsThis
with a caption of “What’s This?”. Finally, place this code in the
MouseUp event of the command button:
http://www.windx.com
Private ThisControl As Control
Private Sub Command1_MouseUp(Button As _

Integer, Shift As Integer, X As Single, Y As Single)
If Button = vbRightButton Then
Set ThisControl = Command1
PopupMenu mnuBtnContextMenu
End If
Set ThisControl = Nothing

End Sub
Private Sub mnuBtnWhatsThis_Click()

ThisControl.ShowWhatsThis
End Sub

—Blue Sky Software Technical Support

VB5
Level: Beginning

ADD THE “?” BUTTON TO A FORM
The WhatsThisButton property returns or sets a value that de-
termines whether the WhatsThisButton appears in the title bar
of a Form object during run time. For the WhatsThisButton to
appear on your form, set the WhatsThisButton and
WhatsThisHelp properties to True; the ControlBox property to
True; the BorderStyle property to Fixed Single or Sizable; and
the MinButton and MaxButton properties to False, or the
BorderStyle property to Fixed Dialog.

—Blue Sky Software Technical Support

VB4 16/32, VB5
Level: Advanced

PROVIDE PRINT PREVIEW
You can provide Print Preview at different scales. First, make your
printing routine take on the object it should draw as a parameter.
Then, for printing, pass the routine the Printer object. For pre-
view, pass the routine a hidden PictureBox. Then use PaintPicture
to copy the hidden picture to a visible PictureBox at the desired
scale. Drawing at full scale on the hidden PictureBox allows you
to scale fonts and other graphics without distortion.

—Rod Stephens, Boulder, Colorado

VB3, VB4 16/32, VB5
Level: Intermediate

FASTER SEARCHES ON ARRAYS, LIST
BOXES, AND COMBO BOXES
This method is handy when the user enters data that you need
to validate against a lookup table. Validating the value by query-
ing the database is out of the question because of the relatively
slow response time. An alternative is to keep the lookup table
locally in a sorted array, or in a list-box or a combo-box control
whose Sorted property is set to True. Lookup tables are static,
so you don’t need to worry about the local copy being out of
sync with the database. For large sorted arrays of strings or for
list-box or combo-box controls with large sorted lists (in the
range of 10,000 entries), you will find the binary search to be 10
to 20 times faster than calling the API, and hundreds of times
faster than a sequential search. The difference becomes dramatic
Visual Basic Programmer’s Journal FEBRUARY 1998 21

if the operation needs to be done multiple times. If you want to

 101 TECH TIPS
For VB Developers
use an array instead of a combo-box or a list-box control, there
is no API call you can use. Use this code for an array:

'In:
'Array to search
Dim rasArray() As String
'String to search for
Dim vsName As String
'Out:
'Index in the array of the string if found
Dim rlIndex As Long
'Local variables:
'Index in the array
Dim lnIdx As Long
'Lower bound of the search interval
Dim lnMin As Long
'Upper bound of the search interval
Dim lnMax As Long
'Return an invalid index, if string is not found
rlIndex = LBound(rasArray) - 1
lnMax = UBound(rasArray)
lnMin = LBound(rasArray)
'lookup vsName in rasArray()
Do While lnMin <= lnMax

lnIdx = (lnMax + lnMin) \ 2
If vsName = rasArray(lnIdx) Then

rlIndex = lnIdx
Exit Do

ElseIf vsName < rasArray(lnIdx) Then
lnMax = lnIdx - 1

Else
lnMin = lnIdx + 1

End If
Loop

You can easily modify this code for a combo-box control to
use with list-box controls as well:

'In:
'Combo to search
' (change into As ListBox for listbox controls
' or use As Controls to use with both types
' of controls)
Dim rcboCombo As ComboBox
'String to search for
Dim vsName As String
'Out:
'Index in the combo if the string is found
Dim rlIndex As Long
'Local variables
'Index in the array
Dim lnIdx As Long
'Lower bound of the search interval
Dim lnMin As Long
'Upper bound of the search interval
Dim lnMax As Long
'Return an invalid index, if string is not found
rlIndex = -1
lnMin = 0
lnMax = rcboCombo.ListCount - 1
lnIdx = lnMax \ 2
'lookup name in the combo
Do While rlIndex = -1 And lnMin <= lnMax

If vsName = rcboCombo.List(lnIdx) Then
rlIndex = lnIdx

ElseIf vsName < rcboCombo.List(lnIdx) Then
lnMax = lnIdx - 1
lnIdx = (lnMax + lnMin) \ 2
22 FEBRUARY 1998 Visual Basic Programmer’s Journal
Else
lnMin = lnIdx + 1
lnIdx = (lnMax + lnMin) \ 2

End If
Loop

—Adrian Cerchia, received by e-mail

VB3, VB4 16/32, VB5
Level: Intermediate

COMPRESS SHORT STRINGS INTO A
LONG VALUE
When developing relational database applications, you often
need to use list boxes or combo boxes to store records with
alphanumeric keys. You can load numeric keys into the ItemData
array of combo boxes and list boxes as Long integers. Program-
mers traditionally store alphanumeric keys in a String array with
the index of the array elements stored in ItemData. However, for
four-character, alphanumeric keys, avoid the overhead of an ar-
ray by using CodeCrypt to convert the key into a Long integer.

CodeCrypt accepts a variant and returns a variant. If a four-
character string is received, then CodeCrypt converts it to a Long
integer. Each character, in turn, is converted to its ASCII value.
The value in CodeCrypt is multiplied by 256 to shift the current
value left by one byte. The ASCII value is then added to
CodeCrypt (filling the empty low-order byte). Because a Long
integer is made up of 32 bits (four bytes), up to four characters
can now be stored in ItemData. If CodeCrypt receives a Long
integer, the process is reversed and a string is returned:

Function CodeCrypt(pvInput As Variant) As Variant
Dim i As Integer, temp As Long
If UCase(TypeName(pvInput)) = "LONG" Then

temp = pvInput
Do While temp > 0

CodeCrypt = Chr$(temp Mod 256) & CodeCrypt
temp = CLng(temp / 256)

Loop
Else

If Len(pvInput) > 4 Then Exit Function
For i = 1 To Len(pvInput)

CodeCrypt = CodeCrypt * 256 + _
Asc(UCase$(Mid$(pvInput, i, 1)))

Next i
End If

End Function

Use this code to add alphanumeric code to lstBox.ItemData:

lstBox.AddItem text
lstBox.ItemData(lstBox.NewIndex) = CodeCrypt(code)

Use this code to get alphanumeric code back from
lstBox.ItemData:

sCode = CodeCrypt(lstBox.ItemData(lstBox.ListIndex))

This routine is unable to deal with strings whose first char-
acter is greater than Chr$(127).
—Matthew B. Butler and Steve Hochreiter, San Angelo, Texas
http://www.windx.com

 101 TECH TIPS
For VB Developers For even more tricks and tips go to

 http://www.windx.com

VB5
Level: Intermediate

SORT DATA IN THE SHORT DATE
FORMAT
Suppose you have a database field that returns a date in the Short
Date format. Neither a numeric sort nor a string sort would order
this column correctly. To sort by date, you need to add an extra
column to the grid and set its width to zero. Populate the column
with values obtained by converting the date to a number, and
sort on that column as demonstrated here (this code assumes
the date field is in column 2):

Dim Ro As Integer
Dim SortCol As Integer
Dim SortDate As Double

'add a column to hold the sort key
MSFlexGrid1.Cols = MSFlexGrid1.Cols + 1
SortCol = MSFlexGrid1.Cols - 1
MSFlexGrid1.ColWidth(SortCol) = 0 'invisible

'calculate key values & populate grid
For Ro = 1 To MSFlexGrid1.Rows - 1
SortDate = DateValue(MSFlexGrid1.TextMatrix(Ro, 2))
MSFlexGrid1.TextMatrix(Ro, SortCol) = SortDate
Next Ro

'do the sort
MSFlexGrid1.Col = SortCol 'set the key
MSFlexGrid1.Sort = flexSortNumericAscending

—VideoSoft Tech Support

VB4 16/32
Level: Intermediate

PROGRESS BARS WITH A GRADIENT
The tip “Color Status Indicator” [“101 Tech Tips for VB Develop-
ers,” Supplement to the February 1997 issue of VBPJ, page 26]
got me thinking that it would look even more attractive to have
the status change color in gradient steps. Instead of changing
the color at particular points, start at red, blend to orange, then
yellow, and finally green.

To try this, place a Sheridan 3-D panel on your form and set
the FloodType property to 1 (Left to Right) and ShowFloodPct to
False. Place a command button and a text box (set the Caption to
blank) on the form to do your testing. Place this code in the form:

Private Sub Command1_Click()
Dim i As Integer, iIncrement As Integer
Dim iMidPoint As Integer, iCheckpoint As Integer
Dim j As Integer, sAddIncrement As String
Dim sSubIncrement As String
iIterations = Val(Text1)
iMidPoint = iIterations * 0.5 - 1
' find the midpoint
If iIterations / 510 = iIterations \ 510 Then

'perfect algorithm
iIncrement = 1
iCheckpoint = 1

ElseIf iIterations < 510 Then
'increment the color faster
iIncrement = 510 \ iIterations
http://www.windx.com

iCheckpoint = 1
Else
'change the color less frequently
iIncrement = 1
iCheckpoint = iIterations \ 510 + 1

End If
sAddIncrement = "&H0000" & _

Format$(iIncrement, "00") & "00"
sSubIncrement = "&H0000" & _

Format$(iIncrement, "0000")
SSPanel1.FloodColor = &HFF
'start the panel at Red
'At your preference show the
'percentage. However, the tighter
'the loop, the less valuable this is.
SSPanel1.FloodShowPct = True
For i = 0 To iIterations - 1

'do your real processing here
If i / iCheckpoint = i \ iCheckpoint Then

With SSPanel1
If i <= iMidPoint Then

.FloodColor = _
.FloodColor + sAddIncrement

Else
.FloodColor = _

.FloodColor - sSubIncrement
End If
.FloodPercent = (i + 1) / iIterations * 100

End With
End If
'if the loop is tight, be sure to
'release the processor
'occasionally - also, some flood
'controls (other than SSPanel)
'may require this to get the
'color updated in the control
DoEvents

Next
MsgBox "All done!", vbOKOnly + vbInformation
SSPanel1.FloodPercent = 0
SSPanel1.FloodShowPct = False

End Sub

The effect works best when your video is set to at least 16-bit
(High Color). Because there are exactly 510 progressive gradi-
ents between red and green, the number of iterations you enter
will influence what shade of green you end up with. As the itera-
tions increase (>900), you’ll end up with bright green.

—Jim Poland, Cedar Rapids, Iowa

VB3, VB4 16/32, VB5
Level: Intermediate

ADD USER PROPERTIES TO CONTROLS
To add user-defined properties to controls, use this code to store
them in the control’s tag. You can define multiple additional prop-
erties at design or run time. You can easily retrieve the value stored:

Control.Tag = AddParam((Control.Tag), _
"tooltip", "Close this window.")

Control.Tag = AddParam((Control.Tag), "user", "True")
Tooltip = GetParam((Control.Tag), "tooltip")

Function AddParam (Text As String, _
Param As String, Value) As String

Dim Text1 As String
If Not IsNull(GetParam(Text, Param)) Then

Text1 = DelParam(Text, Param)
Visual Basic Programmer’s Journal FEBRUARY 1998 23

 101 TECH TIPS
For VB Developers
Else
Text1 = Text

End If
If Text1 <> "" Then

Text1 = Text1 & ";"
End If
AddParam = Text1 & Param & "=" & (Value)
End Function
Function DelParam (Text As String, _

Param As String) As String
Dim i As Integer
Dim j As Integer
Dim s1 As String
Dim s2 As String
Dim Text1 As String
Text1 = Text
i = InStr(UCase(Text), UCase(Param) & "=")
If i > 0 Then

If i = 1 Then
s1 = ""

Else
s1 = Left(Text, i - 2)

End If
j = InStr(i, Text, ";")
If j > 0 Then

s2 = Mid(Text, j + 1)
Else

s2 = ""
End If
If s1 = "" Or s2 = "" Then

Text1 = s1 & s2
Else

Text1 = s1 & ";" & s2
End If

End If
DelParam = Text1
End Function
Function GetParam (Text, Param)
Dim i As Integer
Dim j As Integer
Dim Text1 As String
If Len(Text) Then

If Left(Text, 1) <> "'" Then
Text1 = ";" & Text & ";"
i = InStr(LCase(Text1), ";" _

& LCase(Param) & "=") + 1
If i > 1 Then

j = InStr(i + Len(Param), Text1, ";")
GetParam = Mid(Text1, i + Len(Param) + 1, _

j - i - Len(Param) - 1)
Else

GetParam = Null
End If

Else
GetParam = Null

End If
Else

GetParam = Null
End If
End Function

—Dean Genner, North Sydney, Australia
24 FEBRUARY 1998 Visual Basic Programmer’s Journal
VB4 16/32, VB5
Level: Beginning

JUMP BACK AND FORTH AMONG
PROCEDURES QUICKLY
My code often has a lot of nested procedure calls, which can be
painful to trace while doing walk-throughs. Developers might be
unaware of the “Procedure Definition” (Shift+F2) feature, which
provides a way to go to the code of a called procedure. This is
particularly convenient if you like to keep your hands on the
keyboard as much as possible.

Simply place the cursor on the procedure call, and press
Shift+F2 to get to the procedure’s code. When you’re done,
Ctrl+Shift+F2 takes you back.

—Aseem Pitamber, Haryana, India

VB3, VB4 16/32, VB5
Level: Intermediate

USE VB SYSTEM COLOR CONSTANTS IN
API CALLS
Visual Basic includes constants, such as vbActiveTitleBar and
vbButtonFace, for Windows system colors, which the user might
change through the Control Panel. (In VB3, these constants are
defined in the file CONSTANT.TXT.) When you assign one of these
constants to a VB color property, Visual Basic automatically
translates it to the actual color the user has chosen for that item.
You cannot, however, use VB’s system color constants directly
with API functions, such as SetPixel, that expect a color as one
of their parameters.

VB’s system color constants are the same as those defined
by the Windows API, except that VB’s constants have the high
bit set. You can use this function to translate both VB and Win-
dows system color constants into the corresponding RGB color
value, suitable for use in API calls:

' 32-bit
Option Explicit
Declare Function GetSysColor Lib "User32" (_

ByVal nIndex As Long) As Long
Public Function SysColor2RGB(ByVal lColor As Long) As Long

lColor = lColor And (Not &H80000000)
SysColor2RGB = GetSysColor(lColor)

End Function

For 16-bit versions of VB, replace the GetSysColor declara-
tion with this code:

Declare Function GetSysColor Lib "User" (_
ByVal nIndex As Integer) As Long

—Steve Cisco, Perrysburg, Ohio

VB3, VB4 16/32, VB5
Level: Beginning

CHANGE TOOLTIPS BACKGROUND COLOR
To change the ToolTips background color, open the Control Panel’s
Display tool. Click on the Appearance tab. In the Item combo box,
select ToolTip. Click on the little color box to change the color.
http://www.windx.com

—Rod Stephens, Boulder, Colorado

 101 TECH TIPS
For VB Developers For even more tricks and tips go to

 http://www.windx.com

VB3, VB4 16/32, VB5
Level: Beginning

DOUBLING QUOTES FOR SQL
STATEMENTS
This routine parses a string and returns an equivalent string
where all the instances of a given substring are doubled. This is
especially useful for doubling quotes within SQL statements to
be passed to Access or other database engines that expect
double quote marks to represent a single quote mark:

Public Function DoubleString (_
ByVal str As String, _
ByVal strDoubleString As String) As String
Dim intStringLength As Integer
Dim intDoubleStringLength As Integer
Dim intPosition As Integer
Dim strTemp As String
intStringLength = Len(str)
intDoubleStringLength = Len(strDoubleString)
strTemp = str
If intStringLength >= _

intDoubleStringLength And _
intDoubleStringLength > 0 Then
intPosition = 1

Do While (intPosition > 0) And _
(intPosition <= intStringLength)
intPosition = InStr(intPosition, _

strTemp, strDoubleString)
If intPosition > 0 Then

strTemp = Left(strTemp, _
intPosition - 1 + _
intDoubleStringLength) & _
strDoubleString & _
Mid(strTemp, intPosition + _
intDoubleStringLength, _
intStringLength)

intStringLength = Len(strTemp)
intPosition = intPosition + _

(intDoubleStringLength * 2)
End If

Loop
End If
DoubleString = strTemp

End Function
—Eric Lynn, Ballwin, Missouri

VB4 32, VB5
Level: Intermediate

DRAW USERS’ ATTENTION BY FLASHING
WINDOWS’ CAPTION
Do you want your programs to call users’ attention? Use the
API’s FlashWindow function. Put this code in a module:

Option Explicit
Declare Function FlashWindow Lib "user32" (_

ByVal hwnd As Long, ByVal bInvert As Long) As Long

Sub Flash(hFlash As Long, iTimes As Integer, _
sInterval As Single)
Dim i As Integer
For i = 0 To iTimes
http://www.windx.com
'iTimes sets the number of flashes
Call FlashWindow(hFlash, True)
Dim Start As Single
Start = Timer ' Set start time.
' sInterval sets the time between flashes
Do While Timer < Start + sInterval

DoEvents
' Yield to other processes

Loop
Next i
' Puts everything back to normal
Call FlashWindow(hFlash, False)

End Sub

Add this code to a button:

Private Sub Command1_Click()
'Start the fun...
Flash Me.hWnd, 20, 0.5

End Sub
—Iván Márquez, Miranda, Venezuela

VB5
Level: Beginning

USE PICTURES ON COMMAND BUTTONS
To use a picture on a CommandButton, you must set its Picture
property and set its Style to 1 - Graphical. Otherwise, the pic-
ture will be ignored.

—Rod Stephens, Boulder, Colorado

VB5
Level: Intermediate

PROVIDING AN “INSERT OBJECT”
DIALOG FOR THE RICHTEXTBOX
One of the enhancements to the RichTextBox control in VB5 is
the addition of an OLEObjects collection, which allows Rich Text
documents to include linked or embedded OLE objects. How-
ever, the RichTextBox control provides no interactive way for
users to insert such objects; they must be added by means of
the Add method of the OLEObjects collection.

You can, however, use the Insert Object dialog provided by
VB’s OLE Container control to allow the user to insert an OLE
object into a RichTextBox. Add an OLE Container control (oleObj)
to your form, and set its Visible property to False. Then add this
code behind a button or menu item:

Private Sub cmdInsertObject_Click()
Dim sClass As String
' Show OLE Container control's
' Insert Object dialog
oleObj.InsertObjDlg
' If user makes a selection, add it to
' RichTextBox's OLEObjects collection
sClass = oleObj.Class
If Len(sClass) Then

rtfText.OLEObjects.Add , , , sClass
' Clear OLE Container's object to conserve memory
oleObj.Class = ""

End If
End Sub

—Basil Hubbard, Hamilton, Ontario, Canada
Visual Basic Programmer’s Journal FEBRUARY 1998 25

 101 TECH TIPS
For VB Developers

Do While snpExport.EOF = False
VB3, VB4 16/32, VB5
Level: Beginning

RUN YOUR VB APP ON STARTUP
Do you have an application you need to launch on Windows
startup? Typically, you do this by placing an item in the Startup
directory. However, you can also do this with a registry entry.
Add a new string value using the name of your application. The
value is the path to your executable:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft_
Windows\CurrentVersion\Run

A sample entry might look like this:

MyApp C:\Program Files\MyApp\MyApp.exe
—Kevin Gilchrist, Glendale, Arizona

VB5
Level: Beginning

CODE-COMMENTING SHORTCUTS
Instead of going to the Edit menu to comment out a section of
code, you can add the comment command to the shortcut menu
you access by right-clicking in a code window. Select View/
Toolbars/Customize. On the Toolbars tab of the Customize dia-
log, click on the “Shortcut Menus” check box. On the toolbar
that pops up, click on Code Windows... Code Window. On the
Commands tab of the Customize dialog, select “Edit” in the cat-
egories list box. Drag and drop “Comment Block” and
“Uncomment Block” from the “Commands list” box to the code
window menu. Hit the “Close” button on the Customize dialog.
Now go to a code window, drag the mouse over a section of code,
right-click, and select “Comment code.”

—Greg Ellis, St. Louis, Missouri

VB3, VB4 16/32, VB5, VBA
Level: Intermediate

IS MY OBJECT VALID?
Have you ever needed to determine if an object variable is holding
a valid reference? TypeName() returns a class name if the object
holds a valid reference. It returns the word “Nothing” if it does not:

Public Function IsObjValid(objTest As Object) As Boolean
Dim vntResult As Variant
vntResult = TypeName(objTest)
If vntResult <> "Nothing" Then _

IsObjValid = TrueEnd Function
—Lee Taylor, Cornelius, North Carolina

VB3, VB4 16
Level: Advanced

CANCEL A PENDING PRINT JOB
In the tip, “Please Stop Printing!” [“101 Tech Tips for VB Devel-
opers,” Supplement to the August 1997 issue of VBPJ, page 13],
the code works fine with one exception. If you use PrintManager,
anything printed before you press the Abort button is sent to
26 FEBRUARY 1998 Visual Basic Programmer’s Journal
the printer. This code uses the Windows API AbortDoc to pre-
vent this. Put a button named cCancel on the form and caption
it “Abort Printing.” Add this declaration to your program:

Declare Function AbortDoc% Lib "GDI" (_
ByVal hDC As Integer)

Add this code to the cCancel button’s Click event procedure:

Sub cCancel_Click ()
dim i%
AbortPrintFlag=True
On Local Error Resume Next
i = AbortDoc(Printer.hDC)

End Sub

Add this code to the print routine:

AbortPrintFlag=False
Do While

Printer.Print
DoEvents
If AbortPrintFlag then exit do

Loop
On Local Error resume next
Printer.EndDoc

—Dennis E. Hining, Houston, Texas

VB3, VB4 16/32, VB5, VBA, VBS
Level: Beginning

CLEAN DRIED MARKS ON YOUR WHITE
BOARD
If old words or marks have dried on a white board and you can’t
wipe them off, write on top of them with a fresh pen and then
rub them off. This also works if someone has used a permanent
pen.

—Rob Parsons, DeeWhy, New South Wales, Australia

VB4 32, VB5
Level: Intermediate

EXPORT SQL DATA TO A COMMA-
SEPARATED VALUE FILE
Use this code to create a comma-separated value (CSV) file from
a recordset based on a SQL query. A number of applications,
including Excel and Access, can read CSV files:

Function CSVExport(sSQL As String, sDest As _
String) As Boolean

On Error goto Err_Handler
Set snpExport = db.OpenRecordset(sSQL, dbOpenSnapshot)
Open App.Path & "\" & sDest For Output As #1
For iLoop = 0 To snpExport.Fields.Count _

 - 1 'Export Field Names
sFieldText = "" & _

(snpExport.Fields(iLoop).Name)
Write #1, sFieldText;

Next
Write #1,
snpExport.MoveFirst
http://www.windx.com

 101 TECH TIPS
For VB Developers For even more tricks and tips go to

 http://www.windx.com

For iLoop = 0 To snpExport.Fields.Count - 1
sFieldText = "" & (snpExport.Fields(iLoop))
Write #1, sFieldText;

Next
Write #1,
snpExport.MoveNext

Loop
CSVExport = True
Exit Function

Err_Handler
MSGBOX("Error: " & Err.Description)
CSVExport=False

End Function
—Kevin O’Donnel, Mission Viejo, California

VB4 32, VB5
Level: Intermediate

CLOSE ALL OPEN RECORDSETS
AND DATABASES
This small subroutine iterates through and closes all databases
in the Databases collection of the Workspaces object. For each
database in the collection, it iterates through each Recordset
and closes it first:

Public Sub DBCloseAll()
Dim DBInstance As Database
Dim RSInstance As Recordset
On Error Resume Next

For Each DBInstance In Workspaces(0).Databases
'For all open databases....

For Each RSInstance In DBInstance.Recordsets
'For all open=20
Recordsets....

RSInstance.Close
'Close all Recordsets
Next

DBInstance.Close
' Close DB

 Next
End Sub

—Marcus Cedergren, Gothenburg, Sweden

VB3, VB4 16/32, VB5
Level: Intermediate

RETRIEVE THE ID OF A NEWLY
INSERTED DATABASE RECORD
The ID (counter field) of a newly inserted record is available
immediately after the AddNew method executes. Retrieving the
ID at this point means you don’t have to mess with the
LastModified property and bookmarks. You can clear the vari-
able used to store the ID if you cancel the update. Try this code
from a button Click event:

With Data1.Recordset
.AddNew
MsgBox !ID
.CancelUpdate

End With
http://www.windx.com

—Joe Maki, received by e-mail
VB4 16/32, VB5
Level: Beginning

RETURN TO A PREVIOUS LOCATION IN
YOUR CODE
To return to a previous location in your code, press Ctrl+Shift+F2.
This way you don’t need to set bookmarks. VB only keeps track
of the last eight lines of code that you accessed or edited. This
feature is available in design time and in break mode.

—Trish Anders, Peoria, Arizona

VB3, VB4 16/32, VB5
Level: Beginning

A FAST WAY TO FIND ROUTINES
To quickly go to the code for a called function, subroutine, or
property, simply place your cursor on the called routine and hit
Shift+F2. VB will immediately go to the routine as long as it is
defined in your project.

—Fred Meyer, Iowa City, Iowa

VB4 16/32, VB5
Level: Beginning

FORCE UPPERCASE CHARACTERS IN A
TEXT BOX
To change text in a text box to uppercase as soon as the user
types it in, use this code:

Private Sub txtname_KeyPress(KeyAscii As Integer)
'Puts in uppercase as soon as typed
KeyAscii = Asc(UCase(Chr(KeyAscii)))

End Sub
—Trish Anders, Peoria, Arizona

VB4 32, VB5
Level: Intermediate

ADD COLUMNS TO A STANDARD VB
LIST BOX
Use the Win32 API to set tab stops in a Visual Basic list box by
creating these declarations and routine in a module:

Public Const LB_SETTABSTOPS = &H192
Declare Function SendMessage Lib "user32" _

Alias "SendMessageA" (ByVal hwnd As Long, _
ByVal wMsg As Long, ByVal wParam As Long, _
lParam As Any)As Long

Sub SetListTabStops(iListHandle As Long)
' sets 2 tab stops in a list box at the 24th
' and 48th character
' iListHandle = the window handle of the list box
Dim iNumColumns As Long
Dim iListTabs(1) As Long
Dim Ret As Long
Visual Basic Programmer’s Journal FEBRUARY 1998 27

iNumColumns = 2

2

 101 TECH TIPS
For VB Developers
iListTabs(0) = 96 ' 96/4 = 24 characters
iListTabs(1) = 192 ' 192/4 = 48 characters
Ret = SendMessage(iListHandle, _

LB_SETTABSTOPS, iNumColumns, iListTabs(0))
End Sub

In your form, create a list box called lstMyListBox. Call this
routine in the form load to set your tab stops:

Call SetListTabStops(lstMyListBox.hwnd)

Then add items to the list box using vbTab:

lstMyListBox.AddItem "Column 1 data" & _
vbTab & "Column 2 data"

—Catherine Spence, Hollis, New Hampshire

VB3, VB4 16/32, VB5
Level: Intermediate

PLACE A VARIABLE-LENGTH
STRING IN TEXT
VB doesn’t have a function to replace part of a string (of n-length)
with another string (of x-length). The Mid() statement works
only with target and replacement strings of the same length. Use
this code to solve the problem:

Function ReplaceText(_
ByVal sOriginalString As String, _
ByVal sTargetString As String, _
ByVal sReplacement As String) As String
Dim iOriginalLen As Integer
Dim iTargetLen As Integer
Dim iReplaceLen As Integer
Dim iTargetLoc As Integer
iOriginalLen = Len(sOriginalString)
iTargetLen = Len(sTargetString)
iReplaceLen = Len(sReplacement)
If (iTargetLen = 0) Or (iOriginalLen = 0) Or _

(iReplaceLen = 0) Then
ReplaceText = sOriginalString

'Improper use of function.
Else

iTargetLoc = InStr(sOriginalString, sTargetString)
ReplaceText = Iif(iTargetLoc = 0, sOriginalString, _

Left(sOriginalString, iTargetLoc - _
1) & sReplacement & Right(_
sOriginalString, iOriginalLen - _
iTargetLoc iTargetLen + 1))

End If
End Function
8 FEBRUARY 1998 Visual Basic Programmer’s Journal

—Bruce Goldstein, Highlands Ranch, Colorado
VB3, VB4 16/32, VB5, VBA
Level: Beginning

PUT AN AMPERSAND (&) IN A MENU OR
COMMAND BUTTON
When creating menus and command buttons, use the amper-
sand symbol to create a shortcut key for that option. For ex-
ample, you might use “&Cancel” for a command button with a
“Cancel” button used to cancel an event. To create menu op-
tions or command buttons with an ampersand in the caption,
set the Caption property (either by coding or through the prop-
erty settings form), using “&&” to place it in the caption.

—James Kahl, St. Louis Park, Minnesota

VB4 32, VB5
Level: Advanced

REGISTER ACTIVEX COMPONENTS
MANUALLY
Not all ActiveX DLL and OCX files include installation programs
to properly register the control. You need to run REGSVR32.EXE
manually to perform the registration. You can save time by creat-
ing a shortcut in your WINDOWS\SENDTO folder called “Register
ActiveX Control.” Use the target name of
C:\WINDOWS\REGSVR32.EXE for the shortcut. When you have
an ActiveX control you wish to register, right-click on the file name
to display the context menu, click on “Send To,” and click on “Reg-
ister ActiveX Control.” The RegSvr32 program will display a mes-
sage box indicating the success or failure of the registration.

—Tony Pappas, Calabasas, California

VB4 16/32, VB5
Level: Intermediate

DESTROYING COLLECTIONS’ ITEMS
Many programmers mistakenly believe they can remove all the
items from a collection by setting the collection itself to Nothing:

Dim children as New Collection
...
Set children = Nothing

This technique only works if you don’t have another object vari-
able pointing to the same collection. In this case, setting the chil-
dren variable to Nothing doesn’t destroy the collection; instead, it
decreases its internal reference counter. The only way to remove
all the items of the collection is with a loop of Remove methods:

Do While children.Count
children.Remove 1

Loop
http://www.windx.com

—Francesco Balena, Bari, Italy

