
 101 TECH TIPS
For VB Developers For even more tricks and tips go to

 http://www.devx.com

WELCOME TO THE SEVENTH

EDITION OF THE VBPJ TECHNICAL

TIPS SUPPLEMENT!

These tips and tricks were submitted by professional
developers using Visual Basic 3.0, Visual Basic 4.0,
Visual Basic 5.0, Visual Basic for Applications (VBA),
and Visual Basic Script (VBS). The tips were com-
piled by the editors at Visual Basic Programmer’s Jour-
nal. Special thanks to VBPJ Technical Review Board
members. Instead of typing the code published here,
download the tips from the free, Registered Level of
The Development Exchange at http://www.devx.com.

If you’d like to submit a tip to Visual Basic
Programmer’s Journal, please send it to User Tips,
Fawcette Technical Publications, 209 Hamilton
Avenue, Palo Alto, California, USA, 94301-2500.
You can also fax it to 650-853-0230 or send it
electronically to vbpjedit@fawcette.com or
74774.305@compuserve.com. Please include a clear
explanation of what the technique does and why
it’s useful, and indicate if it’s for VBA, VBS, VB3, VB4
16- or 32-bit, or VB5. Please limit code length to 20
lines. Don’t forget to include your e-mail and mailing
address. If we publish your tip, we’ll pay you $25 or
extend your VBPJ subscription by one year.

VB3, VB4 16/32, VB5
Level: Beginning

DELETING AN ARRAY ELEMENT
Conventional wisdom suggests that to delete an array element,
you must move up all the subsequent elements to close the “gap”
left by the deleted item. However, if the sequence of the elements
isn’t significant (as in an unsorted array), this algorithm quickly
deletes an item:

' Element to delete
iDelete = 5
' Number of elements before deletion
nElements = UBound(Array)
' Replace iDelete with last item in array
Array(iDelete) = Array(nElements)
' Use ReDim Preserve to shrink array by one
ReDim Preserve Array(LBound(Array) _

To nElements - 1)
—Basil Hubbard, Hamilton, Ontario, Canada
http://www.devx.com
VB4 32, VB5, VBA
Level: Intermediate

INVOKE “OPEN WITH …” DIALOG BOX
When launching a data file with the ShellExecute() function,
Windows tries to find the associated application and open the
data file with this application. But what happens if no associa-
tion exists? ShellExecute() simply returns error code 31 (no as-
sociation) and nothing happens. Wouldn’t it be nice if your pro-
gram invoked the “Open with ...” dialog box so you can choose
which application you want to associate with your data file?
Here’s a solution—call the ShellDoc routine and pass a fully quali-
fied path/file name of the data file you wish to open:

Option Explicit

Declare Function GetDesktopWindow Lib "user32" () As Long
Declare Function ShellExecute Lib _

"shell32.dll" Alias "ShellExecuteA" _
(ByVal hWnd As Long, ByVal lpOperation _
As String, ByVal lpFile As String, _
ByVal lpParameters As String, _
ByVal lpDirectory As String, _
ByVal nShowCmd As Long) As Long

Declare Function GetSystemDirectory Lib _
"kernel32" Alias "GetSystemDirectoryA" _
(ByVal lpBuffer As String, ByVal nSize _
As Long) As Long

Private Const SE_ERR_NOASSOC = 31
Public Sub ShellDoc(strFile As String)

Dim lngRet As Long
Dim strDir As String
lngRet = ShellExecute(GetDesktopWindow, _

"open", strFile, _
vbNullString, vbNullString, vbNormalFocus)

If lngRet = SE_ERR_NOASSOC Then
' no association exists
strDir = Space(260)
lngRet = GetSystemDirectory(strDir, _

Len(strDir))
strDir = Left(strDir, lngRet)
' show the Open with dialog box
Call ShellExecute(GetDesktopWindow, _

vbNullString, "RUNDLL32.EXE", _
"shell32.dll,OpenAs_RunDLL " & _
strFile, strDir, vbNormalFocus)

End If
End Sub

—Thomas Weidmann, received by e-mail

VB4 32, VB5
Level: Beginning

SSTAB VS. OPTION BUTTONS
Although VB’s SSTab control behaves as if each tab page is a
container, it actually uses a single container for all tab pages.
This can cause unexpected behavior if you have groups of op-
tion buttons on different pages. Clicking on an option button on
one page clears all the uncontained option buttons on the other,
seemingly unrelated, pages. Solve this problem by adding your
own containers (frames or picture boxes) for each group of op-
tions you want to be mutually exclusive.

—Steve Cisco and Roland Southard, Franklin, Tennessee
Supplement to Visual Basic Programmer’s Journal AUGUST 1998 1

 101 TECH TIPS
For VB Developers
VB4 32, VB5
Level: Beginning

CHANGE THE APPEARANCE PROPERTY
OF A TEXT BOX AT RUN TIME
Sorry, you can’t change the Appearance property of a text box
at run time—but you can make it look like you have! If set to
none, a 3-D picture box has a flat BorderStyle property. Put your
text box (with a flat appearance) inside a picture box (with a 3-D
appearance) and change the picture box’s border style. Use this
complete code—be sure you place Text1 inside Picture1:

Private m_Text1_Appearance As Long

Private Sub Form_Load()
With Text1

Picture1.Width = .Width
Picture1.Height = .Height
.Move 0, 0

End With
Text1_Appearance = 1 '3D

End Sub

Public Property Let _
Text1_Appearance(nAppearance As Long)
With Picture1

Select Case nAppearance
Case 0 'Flat

.BorderStyle = nAppearance
Case 1 '3D

.BorderStyle = nAppearance
End Select

m_Text1_Appearance = .BorderStyle
End With

End Property

Public Property Get Text1_Appearance() As Long
Text1_Appearance = m_Text1_Appearance

End Property
—Jim Deutch, Cazenovia, New York

VB4 32, VB5
Level: Beginning

DEALING WITH NULL VALUES
RETURNED FROM RDO RESULTSETS
If you’re assigning the values of columns you return from RDO que-
ries into string variables, you’ll get an “Invalid use of Null” error if
one of the columns has a Null value. For most purposes, I’d rather
have the value as an empty string anyway. Rather than code for
that each time I access a column, I’ve written a function called Clean
that turns Null values into empty strings. I call it like this:

strMyString=Clean(rdoResultset("MyVarCharColumn"))

I also convert Empty values as well, for use with Variants:

Public Function Clean(ByVal varData As Variant) As String

If IsNull(varData) Then
Clean = ""

ElseIf IsEmpty(varData) Then
Clean = ""
2 AUGUST 1998 Supplement to Visual Basic Programmer’s Journal
Else
Clean = CStr(varData)

End If

End Function
—James T. Stanley, Muncie, Indiana

VB3, VB4 16/32, VB5
Level: Beginning

IN SEARCH OF SAMPLE CODE
I’m always looking for sample code, and the setup1.vbp file is an
excellent source of reusable code. It comes with VB and is part
of the VB setup kit. The contents vary, depending on what ver-
sion of VB you have, but you’ll find useful examples in each ver-
sion. For example, the VB5 file sample code does these things:

•␣ Gets the Windows directory.
•␣ Gets the Windows System directory.
•␣ Determines if a file or directory exists.
•␣ Determines if you’re running WinNT or Win95.
•␣ Determines drive type.
•␣ Checks disk space.
•␣ Creates a new path.
•␣ Reads from an INI file.
•␣ Parses date and time.
•␣ Retrieves the short path name of a file containing long file
␣ ␣ ␣ names.

Plus, a whole module works to log errors to an error file. This
code is well-commented and can easily be cut and pasted into
your project.

—Carole McCluskey, Seattle, Washington

VB4 16/32, VB5
Level: Intermediate

FLOATING AN EDIT BOX
To minimize the number of controls on my forms, I use a text
box as a floating input control that I either overlay onto a grid or
swap with a label. Here is my swap subroutine:

Public Sub SwapControls(cHide As Control, _
cShow As Control, Optional Value)
With cHide

.Visible = False
cShow.Move .Left, .Top, .Width, .Height

End With
If IsMissing(Value) Then

If TypeOf cShow Is TextBox Or _
TypeOf cShow Is Label Then

cShow = cHide
End If

Else
cShow = Value

End If

With cShow
.Visible = True
.ZOrder
If TypeOf cShow Is TextBox Then

.SelStart = 0
http://www.devx.com

 101 TECH TIPS
For VB Developers For even more tricks and tips go to

 http://www.devx.com

.SelLength = Len(cShow)
If .Visible Then

.SetFocus
End If

End If
End With

End Sub

When I enter the statement “SwapControls lblData, txtData,”
lblData disappears and txtData appears in its place with the value
of lblData selected and the focus set to it. After you make your
entry, execute the statement “SwapControls txtData, lblData.”

—Calogero S. Cumbo, Waterloo, Ontario, Canada

VB4 32, VB5
Level: Intermediate

YET ANOTHER CENTERFORM ROUTINE
In the April 1997 issue of VBPJ, you published a tip called “Con-
sider the Taskbar When Centering Forms.” You can center forms
more easily with the SystemParametersInfo API call:

Private Declare Function _
SystemParametersInfo Lib "user32" Alias _
"SystemParametersInfoA" (ByVal uAction _
As Long, ByVal uParam As Long, R As Any, _
ByVal fuWinIni As Long) As Long

Private Type RECT
Left As Long
Top As Long
Right As Long
Bottom As Long

End Type
Private Const SPI_GETWORKAREA = 48
Public Sub CenterForm(frm As Form)

Dim R As RECT, lRes As Long,
Dim lW As Long, lH As Long
lRes = SystemParametersInfo(_

SPI_GETWORKAREA, 0, R, 0)
If lRes Then

With R
.Left = Screen.TwipsPerPixelX * .Left
.Top = Screen.TwipsPerPixelY * .Top
.Right = Screen.TwipsPerPixelX * .Right
.Bottom = Screen.TwipsPerPixelY * .Bottom
lW = .Right - .Left
lH = .Bottom - .Top
frm.Move .Left + (lW - frm.Width) \ 2, _

.Top + (lH - frm.Height) \ 2
End With

End If
End Sub

—Nicholas Sorokin, Sarasota, Florida

VB5
Level: Intermediate

TIE A MESSAGE BOX TO DEBUG.ASSERT
FOR ADVANCED DEBUGGING
Placing a message box in an error trap can provide useful de-
bugging information, but it doesn’t allow you to return to the
subroutine or function to poke around and further debug the
code. This version of a message box expedites design-time de-
bugging by breaking execution if the developer presses OK:
http://www.devx.com
Private Function MyDebugMsg(ByVal aMessage _
As String) As Boolean
' This function is used for expediting
' development
If MsgBox(aMessage, vbOKCancel, _

"OK puts you into the Error Trap") = vbOK Then
MyDebugMsg = False

Else
MyDebugMsg = True

End If
End Function

' Sample sub
Public Sub SetColor()
On Error GoTo SetColorError

' body of the subroutine would go here,
' force an error to demonstrate
Error 5

SetColorErrorExit:
Exit Sub

SetColorError:
' In an error trap place this line in addition to any
' other error handling code
Debug.Assert MyDebugMsg(Err.Description & " in SetColor")

'other error handling code
Resume SetColorErrorExit

End Sub
—Stan Mlynek, Burlington, Ontario, Canada

VB4 32, VB5
Level: Intermediate

MODERNIZE YOUR TOOLBAR LOOK
Using only a few Windows API calls, you can change the stan-
dard VB5 toolbar into an Office 97 look-alike. I’ve implemented
two display styles for the toolbar. The first allows you to change
the toolbar to an Office 97-style toolbar (similar to the one used
by VB5), and the second allows you to change the toolbar to the
Internet Explorer 4.0-style toolbar. If you want to use the second
style, you must supply each button with some text in order to
achieve the effect. In both cases, the button edges are flat and
only appear raised when the mouse passes over the button. To
implement it, add this code to a BAS module:

Private Declare Function SendMessage Lib "user32" Alias _
"SendMessageA" (ByVal hwnd As Long, ByVal wMsg As Long, _
ByVal wParam As Integer, ByVal lParam As Any) As Long

Private Declare Function FindWindowEx Lib "user32" Alias _
"FindWindowExA" (ByVal hWnd1 As Long, ByVal hWnd2 _
As Long, ByVal lpsz1 As String, ByVal lpsz2 As _
String) As Long

Private Const WM_USER = &H400
Private Const TB_SETSTYLE = WM_USER + 56
Private Const TB_GETSTYLE = WM_USER + 57
Private Const TBSTYLE_FLAT = &H800
Private Const TBSTYLE_LIST = &H1000

Public Sub Office97Toolbar(tlb As Toolbar, _
tlbToolbarStyle As Long)
Dim lngStyle As Long
Dim lngResult As Long
Supplement to Visual Basic Programmer’s Journal AUGUST 1998 3

 101 TECH TIPS
For VB Developers
Dim lngHWND As Long

' Find child window and get style bits
lngHWND = FindWindowEx(tlb.hwnd, 0&, _

"ToolbarWindow32", vbNullString)
lngStyle = SendMessage(lngHWND, _

TB_GETSTYLE, 0&, 0&)

' Use a case statement to get the effect
Select Case tlbToolbarStyle
Case 1:

' Creates an Office 97 like toolbar
lngStyle = lngStyle Or TBSTYLE_FLAT

Case 2:
' Creates an Explorer 4.0 like toolbar,
' with text to the right
' of the picture. You must provide text
' in order to get the effect.
lngStyle = lngStyle Or TBSTYLE_FLAT _

Or TBSTYLE_LIST
Case Else

lngStyle = lngStyle Or TBSTYLE_FLAT
End Select

' Use the API call to change the toolbar
lngResult = SendMessage(lngHWND, _

TB_SETSTYLE, 0, lngStyle)

' Show the effects
tlb.Refresh

End Sub

Call this routine while a form with a toolbar is loading:

Private Sub Form_Load()
Call Office97Toolbar(Me.Toolbar1, 2)
' whatever…

End Sub
—Michiel Leij, The Netherlands

VB3, VB4 16/32, VB5
Level: Intermediate

FORCE AN MDI WINDOW REFRESH
I sometimes want an MDI parent window to be repainted. For
example, if a modal dialog is displayed over the MDI form and
you click on OK, the dialog is hidden and an operation occurs,
which takes a few seconds to complete. In the meantime, rem-
nants of the dialog are still visible because Windows doesn’t have
time to complete the paint operation, and the screen looks messy.
MDI forms don’t have a Refresh method, and I don’t want to throw
a DoEvents into my code because it’s dangerous. This code gives
my MDI form a Refresh method:

Public Sub Refresh()
Call RedrawWindow(Me.hWnd, 0&, 0&, _

RDW_ALLCHILDREN Or RDW_UPDATENOW)
End Sub

You need to declare these API constants:

Public Const RDW_ALLCHILDREN = &H80
Public Const RDW_UPDATENOW = &H100

' Note: The data type of the lprcUpdate
' parameter has been changed
4 AUGUST 1998 Supplement to Visual Basic Programmer’s Journal
' from RECT to Any so 0& (NULL) can be passed.
#If Win32 Then

Declare Function RedrawWindow Lib _
"user32" (ByVal hwnd As Long, _
lprcUpdate As Any, ByVal hrgnUpdate _
As Long, ByVal fuRedraw As Long) As Long

#ElseIf Win16 Then
Declare Function RedrawWindow Lib "User" _

(ByVal hWnd As Integer, lprcUpdate As Any, _
ByVal hrgnUpdate As Integer, ByVal fuRedraw As _
Integer) As Integer

#End If
—Thomas Weiss, Buffalo Grove, Illinois

VB5
Level: Beginning

TAKE ADVANTAGE OF RELATED
DOCUMENTS AREA IN PROJECT WINDOW
If you use a resource file in your application, you can see the
RES file appear in the project window under “Related Docu-
ments.” This is the only type of file that VB automatically adds
to this node of the project tree. You can add any type of file you
like to this area manually, though. From the Project menu, select
Add File, or right-click on the project window and select Add
File from the context menu. In the dialog box, select All Files for
the file type and check the Add As Related Document option.

Adding additional related files here helps organize your
project and gives you quick access to useful items, including
design documents, databases, resource scripts, help-project files,
and so on. Once a file has been added, double-click on it in the
project window to open it with the appropriate application.

—Joe Garrick, Coon Rapids, Minnesota

VB4 32, VB5
Level: Advanced

COPY DRAWN PICTURE TO CLIPBOARD
The VB Picture control can hold several different formats of pic-
tures: BMP, DIB, ICO, CUR, WMF, and others under VB5. Addition-
ally, you can use graphics methods to “draw” on the control. The
only native method that converts the image on the picture con-
trol, including the drawn graphics, to a bitmap and transfers the
bitmap to the system clipboard requires you to use AutoRedraw.

However, this technique causes problems. This code shows
the declarations and functions required to transfer the image on
a VB picture control to the system clipboard as a bitmap. Add
this code to a BAS module, call PicToClip, and pass the picture
box as the only parameter:

' #
' # API Declarations
' #
' Bitmap
Private Declare Function BitBlt Lib "gdi32" _

(ByVal hDestDC As Long, ByVal x As Long, _
ByVal y As Long, ByVal nWidth As Long, _
ByVal nHeight As Long, ByVal hSrcDC As _
Long, ByVal xSrc As Long, ByVal ySrc As _
Long, ByVal dwRop As Long) As Long

Private Declare Function _
CreateCompatibleBitmap Lib "gdi32" (ByVal hDC As Long, _
http://www.devx.com

 101 TECH TIPS
For VB Developers For even more tricks and tips go to

 http://www.devx.com

ByVal nWidth As Long, ByVal nHeight As Long) As Long
Private Declare Function CreateCompatibleDC _

Lib "gdi32" (ByVal hDC As Long) As Long
Private Declare Function DeleteDC Lib _

"gdi32" (ByVal hDC As Long) As Long
Private Declare Function GetDC Lib "user32" _

(ByVal hWnd As Long) As Long
Private Declare Function ReleaseDC Lib "user32" _

(ByVal hWnd As Long, ByVal hDC As Long) As Long
Private Declare Function SelectObject Lib "gdi32" _

(ByVal hDC As Long, ByVal hObject As Long) As Long
' Clipboard
Private Declare Function OpenClipboard Lib _

"user32" (ByVal hWnd As Long) As Long
Private Declare Function CloseClipboard Lib _

"user32" () As Long
Private Declare Function EmptyClipboard Lib _

"user32" () As Long
Private Declare Function SetClipboardData Lib "user32" _

(ByVal wFormat As Long, ByVal hMem As Long) As Long
' #
' # API Constants
' #
' Clipboard formats
Private Const CF_BITMAP = 2
' ROP
Private Const SRCCOPY = &HCC0020

Public Sub PicToClip(pic As PictureBox)
Dim hSourceDC As Long
Dim hMemoryDC As Long
Dim lWidth As Long
Dim lHeight As Long
Dim hBitmap As Long
Dim hOldBitmap As Long
' #
' # NOTE: Error trapping has been removed
' for the sake of clarity
' #
With pic

' Determine bitmap size
lWidth = .Parent.ScaleX(.ScaleWidth, _

.ScaleMode, vbPixels)
lHeight = .Parent.ScaleY(.ScaleHeight, _

.ScaleMode, vbPixels)

' Get hBitmap loaded with image on
' Picture control
hSourceDC = GetDC(.hWnd)
hMemoryDC = CreateCompatibleDC(.hDC)
hBitmap = CreateCompatibleBitmap(_

.hDC, lWidth, lHeight)
hOldBitmap = SelectObject(hMemoryDC, _

hBitmap)
Call BitBlt(hMemoryDC, 0, 0, lWidth, _

lHeight, pic.hDC, 0, 0, SRCCOPY)
hBitmap = SelectObject(hMemoryDC, _

hOldBitmap)

' Copy to clip board
Call OpenClipboard(.Parent.hWnd)
Call EmptyClipboard
Call SetClipboardData(CF_BITMAP, _

hBitmap)
Call CloseClipboard

' Clean up GDI
Call ReleaseDC(.hWnd, hSourceDC)
Call SelectObject(hMemoryDC, hBitmap)
http://www.devx.com
Call DeleteDC(hMemoryDC)
End With

End Sub
—Tom McCormick, Bedford, Massachusetts

VB4 16/32, VB5
Level: Beginning

ERASE A VARIANT ARRAY
You’ll find the IsArray() function helpful when you use Variant
arrays that you can set or unset through your code and need to
test often. However, once you declare the array, IsArray() re-
turns True, even if the array has been erased using the Erase
keyword. To solve this, reset a Variant array by assigning zero
or null, so the IsArray() function returns the proper value:

Dim myVar As Variant
Debug.Print IsArray(myVar) 'Returns False
ReDim myVar(0 To 5)
Debug.Print IsArray(myVar) 'Returns True
Erase myVar
Debug.Print IsArray(myVar) 'Returns True
myVar = 0
Debug.Print IsArray(myVar) 'Returns False

To avoid this kind of tricky problem, use an Erase subroutine
like this one:

Public Sub vErase(ByRef pArray As Variant)
Erase pArray
pArray = 0

End Sub
—Nicolas Di Persio, Montreal, Quebec, Canada

VB5
Level: Intermediate

FORCE A SINGLE SELECT FOR A GRID
Setting the SelectionMode property of the MSFlexGrid to
flexSelectionByRow forces all columns in a row to be selected
rather than a single cell. It also allows selection of multiple rows
simultaneously. To force a single row selection for a grid, I have a
function called UpdateGrid that ensures only one row is selected,
regardless of a drag on the rows or if the Shift and the Up and
Down arrow keys are used. This is useful if you want to present a
list of items in a grid format and only want one highlighted:

Sub UpdateGrid(grdInput As MSFlexGrid)
If grdInput.Rows = (grdInput.FixedRows + 1) Then

' only one row in the grid and it
' it a fixed one: don't do anything
Exit Sub

Else
' more than one row in the grid
If grdInput.RowSel <> grdInput.Row Then

' user selected a different row in the grid
' than the current row:
' set it to the highlighted row
grdInput.RowSel = grdInput.Row

End If
End If

End Sub

In the SelChange event for a grid, put in this code:
Supplement to Visual Basic Programmer’s Journal AUGUST 1998 5

 101 TECH TIPS
For VB Developers
Private Sub myGrid_SelChange
UpdateGrid myGrid

End Sub
—Mike Peters, received by e-mail

VB4 16/32, VB5
Level: Intermediate

RAGGED ARRAYS
Who said arrays in VB can’t change all dimensions while pre-
serving data? I call this the “variable dimensions array,” and I
use it when applications need data arrays with more flexible sizes
in all dimensions. This variable prevents your apps from having
empty elements in arrays (even if the Variant data type takes a
lot of memory). For example, take a look at this two-dimensional
array. Instead of declaring the variables with the two dimensions
from the beginning, simply declare a Variant:

Dim myVar as Variant
' Then 'redim' the first dimension only (2
' elements):
redim myVar(0 to 1)
' You can now use the Array() function for
' each element of the array:
myVar(0) = Array(0, 10, 50)
myVar(1) = Array("test1", "test2", "test3", "test4")

Use this code to get the data:

myVar(0)(1) = 10
myVar(1)(2) = "test3"

You can use as many parentheses as you want, and you can
still use the Redim Preserve statement with each element and
all dimensions. Simple! Note that you can also use a subroutine
to resize one element of the array if you don’t want to use the
Array() function:

Public Sub sbDeclare(ByRef pItem As Variant, _
pLower As Integer, pUpper As Integer)
ReDim Preserve pItem(pLower To pUpper)

End Sub

Call sbDeclare(myVar(0), 0, 1)
—Nicolas Di Persio, Montreal, Quebec, Canada

VB4 32, VB5
Level: Intermediate

ADJUST COMBO BOX DROP-DOWN WIDTH
Due to limited space on a form, you sometimes must keep the
width of combo boxes small. Because a combo box lacks a hori-
zontal scrollbar, some text might remain hidden. Use these func-
tions to retrieve the current size of a drop-down and to resize
the drop-down portion of the combo box as needed at run time.
Add this code to a BAS module and call it from wherever conve-
nient—perhaps during your Form_Load procedure:

Private Declare Function SendMessage Lib _
"USER32" Alias "SendMessageA" _
(ByVal hwnd As Long, ByVal Msg As Long, _
ByVal wParam As Long, ByVal lParam As _
Long) As Long
6 AUGUST 1998 Supplement to Visual Basic Programmer’s Journal
Private Const CB_GETDROPPEDWIDTH = &H15F
Private Const CB_SETDROPPEDWIDTH = &H160
Private Const CB_ERR = -1

Public Function GetDropdownWidth(cboHwnd As Long) As Long
Dim lRetVal As Long
'*** To get the combo box drop-down width.
'*** You may use this function if you want
'*** to change the width in proportion
'*** i.e. double, half, 3/4 of existing width.
lRetVal = SendMessage(cboHwnd, CB_GETDROPPEDWIDTH, 0, 0)
If lRetVal <> CB_ERR Then

GetDropdownWidth = lRetVal
'Width in pixels

Else
GetDropdownWidth = 0

End If
End Function

Public Function SetDropdownWidth(cboHwnd As _
Long, NewWidthPixel As Long) As Boolean
Dim lRetVal As Long
' *** To set combo box drop-down width ***
lRetVal = SendMessage(cboHwnd, _

CB_SETDROPPEDWIDTH, NewWidthPixel, 0)
If lRetVal <> CB_ERR Then

SetDropdownWidth = True
Else

SetDropdownWidth = False
End If

End Function
—Rajeev Madnawat, Sunnyvale, California

VB3, VB4 16/32
Level: Intermediate

MESSAGEBOX ADVANTAGE
You’ve probably noticed that the display time stops when an
application pops up VB’s built-in MsgBox. Although the system
timer continues to tick, the timer control isn’t updated every
second, nor do other events (such as painting) process. To up-
date the timer, replace VB’s built-in MsgBox with the MessageBox
API function. MessageBox-generated dialogs don’t stop the timer
from updating, and they allow other normal processing, such as
form painting:

' General Declarations in BAS module
Public Declare Function MessageBox Lib _

"user32" Alias "MessageBoxA" (ByVal _
hWnd As Long, ByVal lpText As String, _
ByVal lpCaption As String, ByVal wType _
As Long) As Long

' Call from within any form like this:
Call MessageBox(Me.hWnd, _

"This is a test in API Message Box", _
"API Message Box", vbInformation)

To use this technique in VB3, declare all parameters in the
API call as integer. While calling, pass MB_ICONINFORMATION
as the last parameter, instead of vbInformation. You can find the
constant value for MB_ICONINFORMATION in the CONSTANT.txt
file. Note that many of the intrinsic VB constants used with
MsgBox also work with the MessageBox API. Now for the best
news about this workaround—it’s totally unnecessary under VB5!
Timer (and other) events are never blocked by a MsgBox call
http://www.devx.com

 101 TECH TIPS
For VB Developers For even more tricks and tips go to

 http://www.devx.com

when run from an EXE. It’s important to understand that they’ll
still be blocked in the IDE, but take a look next time you compile
and you’ll see your clock just keeps on ticking.

—Vasudevan Sampath, San Jose, California

VB5
Level: Intermediate

ENUM API CONSTANTS SAVE TIME
CODING
You can simplify Win32 APIs by using enumerated types instead
of constants. When you use enumerated types, VB provides you
with a list of values when you define the API in your application:

Option Explicit

' define scrollbar constants as enumerations
Enum sb

SB_BOTH = 3
SB_CTL = 2
SB_HORZ = 0
SB_VERT = 1

End Enum

Enum esb
ESB_DISABLE_BOTH = &H3
ESB_DISABLE_DOWN = &H2
ESB_DISABLE_LEFT = &H1
ESB_ENABLE_BOTH = &H0
ESB_DISABLE_RIGHT = &H2
ESB_DISABLE_UP = &H1

End Enum

Note that you need to change the Declares to match the new
Enums:

Private Declare Function EnableScrollBar Lib _
"user32" (ByVal hWnd As Long, ByVal _
wSBflags As sb, ByVal wArrows As esb) As _
LongPrivate Declare Function _
ShowScrollBar Lib "user32" (ByVal hWnd _
As Long, ByVal wBar As sb, ByVal bShow _
As Boolean) As Long

When coding up these API calls, VB displays enumerated lists
for both the wSBflags and wArrows parameters to
EnableScrollBar, and displays both the wBar and bShow param-
eters to ShowScrollBar:

Call EnableScrollBar(Me.hWnd, SB_BOTH, _
ESB_ENABLE_BOTH)

Call ShowScrollBar(Me.hWnd, SB_BOTH, True)
—Tom Domijan, Aurora, Illinois

VB3, VB4 16/32, VB5
Level: Intermediate

TYPE-O-MATIC TEXT BOX
This code creates a smart input box. Every time you type some-
thing into this text box, the first letters of your string are com-
pared against the members of a hidden list box. The code guesses
how your string should be completed and finishes it for you,
similar to how the latest versions of Microsoft Excel and Internet
http://www.devx.com
Explorer behave.
To use this technique, add a list box to your form and set its

Visible property to False. This example fills the list at Form_Load
with some likely selections. In a real app, you’d add a new ele-
ment to the list after each user entry is completed. Add this
code to the form containing the text and list boxes:

Option Explicit

#If Win32 Then
Private Const LB_FINDSTRING = &H18F
Private Declare Function SendMessage Lib _

"User32" Alias "SendMessageA" (ByVal _
hWnd As Long, ByVal wMsg As Long, _
ByVal wParam As Long, lParam As Any) _
As Long

#Else
Private Const WM_USER = &H400
Private Const LB_FINDSTRING = (WM_USER + 16)
Private Declare Function SendMessage Lib _

"User" (ByVal hWnd As Integer, ByVal _
wMsg As Integer, ByVal wParam As _
Integer, lParam As Any) As Long

#End If

Private Sub Form_Load()
List1.AddItem "Orange"
List1.AddItem "Banana"
List1.AddItem "Apple"
List1.AddItem "Pear"

End Sub

Private Sub Text1_Change()
Dim pos As Long
List1.ListIndex = SendMessage(_

List1.hWnd, LB_FINDSTRING, -1, ByVal _
CStr(Text1.Text))

If List1.ListIndex = -1 Then
pos = Text1.SelStart

Else
pos = Text1.SelStart
Text1.Text = List1
Text1.SelStart = pos
Text1.SelLength = Len(Text1.Text) - pos

End If
End Sub

Private Sub Text1_KeyDown(KeyCode As _
Integer, Shift As Integer)
On Error Resume Next
If KeyCode = 8 Then 'Backspace

If Text1.SelLength <> 0 Then
Text1.Text = Mid$(Text1, 1, _

Text1.SelStart - 1)
KeyCode = 0

End If
ElseIf KeyCode = 46 Then 'Del

If Text1.SelLength <> 0 And _
Text1.SelStart <> 0 Then
Text1.Text = ""
KeyCode = 0

End If
End If

End Sub
—Paolo Marozzi, Ascoli Piceno, Italy
Supplement to Visual Basic Programmer’s Journal AUGUST 1998 7

 101 TECH TIPS
For VB Developers
VB3, VB4 16/32, VB5
Level: Beginning

REDIM THE RIGHT ARRAY!
Many VB programmers use the Option Explicit statement to make
sure each variable has been explicitly declared before using it. This
means you’ll always notice a misspelled variable, which if not caught
might cause your application to behave erratically. However, when
you use the ReDim statement (documented, albeit ambiguously),
Option Explicit can’t save you. Consider this procedure:

Sub DisplayDaysInThisYear
Dim iDaysInYear(365)
' Initially dimension array

If ThisIsLeapYear() Then
' Is this year a leap year?

ReDim iDaysInYr(366)
' Extra day this year!

End If

MsgBox "This year has " & _
UBound(iDaysInYear) & " days in it!"

End Sub

This ReDim statement creates a new variable called iDaysInYr,
even though you really wanted to reallocate the storage space
of the iDaysInYear() array. So the message box displays the in-
correct number of days in the year. You can’t prevent this from
happening, other than being careful when coding the ReDim
statement. However, if you use ReDim Preserve, Option Explicit
makes sure the variable was previously declared.

—Frank Masters, Grove City, Ohio

VB4 32, VB5
Level: Intermediate

SET THE LISTINDEX WITHOUT THE
CLICK EVENT
If you set the ListIndex property of a list-box or combo-box con-
trol, VB might generate an unwanted Click event. Instead of writ-
ing code to bypass the Click event, use SendMessage to set the
ListIndex without generating the event. Call the SetListIndex func-
tion below, passing the list (either a list box or combo box) and
the desired new index value. SetListIndex attempts to set the
value and returns the current index so you can confirm whether
your request “took.” For example, this code should set the in-
dex to the tenth element:

Debug.Print SetListIndex(List1, 9)

If an error occurred (if there were only eight elements, for
example), the previous index value is returned. Code the
SetListIndex function in a standard module:

Private Declare Function SendMessage Lib _
"user32" Alias "SendMessageA" (ByVal _
hWnd As Long, ByVal wMsg As Long, ByVal _
wParam As Long, lParam As Any) As Long
8 AUGUST 1998 Supplement to Visual Basic Programmer’s Journal
Public Function SetListIndex(lst As Control, _
ByVal NewIndex As Long) As Long
Const CB_GETCURSEL = &H147
Const CB_SETCURSEL = &H14E
Const LB_SETCURSEL = &H186
Const LB_GETCURSEL = &H188

If TypeOf lst Is ListBox Then
Call SendMessage(lst.hWnd, _

LB_SETCURSEL, NewIndex, 0&)
SetListIndex = SendMessage(lst.hWnd, _

LB_GETCURSEL, NewIndex, 0&)
ElseIf TypeOf lst Is ComboBox Then

Call SendMessage(lst.hWnd, _
CB_SETCURSEL, NewIndex, 0&)

SetListIndex = SendMessage(lst.hWnd, _
CB_GETCURSEL, NewIndex, 0&)

End If
End Function

—Greg Ellis, St. Louis, Missouri

VB3, VB4 16/32, VB5, VBA
Level: Intermediate

CLEANING UP AFTER A CRASH
If your app uses temporary files, store the file name(s) in the
Registry as you create them. When you exit the program, delete
the temporary file and its related Registry entry. However, if you
shut off the machine, Windows crashes, or your program crashes,
your temporary file will stay in the Registry. This leads to wasted
space, and you must then delete the files from their temporary
directory. Because you stored the temporary file name in the
Registry, you can check for it when your program starts up again
and delete it if it still exists.

—Brian Hutchison, Seattle, Washington

VB3, VB4 16/32, VB5
Level: Beginning

SEND MAIL FROM VB5
If Microsoft Outlook is installed, you have an easy way to send e-
mail from VB5. To use this technique with VB3, remove the With
construct and fully qualify each object property reference:

Dim olapp As Object
Dim oitem As Object

Set olapp = CreateObject("Outlook.Application")
Set oitem = olapp.CreateItem(0)
With oitem

.Subject = "VBPJ RULES"

.To = "MONTEZUMA;other Names;"

.Body = "This message was sent from VB5"

.Send
End With

—Jim Griffith, Montezuma, Georgia
http://www.devx.com

 101 TECH TIPS
For VB Developers For even more tricks and tips go to

 http://www.devx.com

VB3, VB4 16/32, VB5
Level: Beginning

AVOID THE FLICKERING
Developers often need to load forms with information, which is
time-consuming. The form is often a list box filled from an out-
side source, and this causes the list-box contents to flash an-
noyingly as the information goes into it. Solve this by bringing
in the declaration of the LockWindowUpdate API call:

#If Win16 Then
Declare Function LockWindowUpdate Lib _

"User" (ByVal hWndLock As Integer) As Integer
#Else

Declare Function LockWindowUpdate Lib _
"user32" (ByVal hWndLock As Long) As Long

#End If

The hWndLock variable refers to the hWnd property of the
form where you don’t want to have screen updates shown. When
you reissue the LockWindowUpdate with a value of 0 for
hwndLock, you’ll free up the screen and all updates will be shown
instantly:

Dim lErr as Long
Dim x as Integer

'No list box flicker, it will appear blank for
'just a moment…
Screen.MousePointer = vbHourglass
lErr = LockWindowUpdate(Me.hWnd)

For x = 1 to 5000
lstMyListbox.AddItem CStr(x)

Next

Now all the information is there:

lErr = LockWindowUpdate(0)
Screen.MousePointer = vbDefault

—Bruce Goldstein, Highlands Ranch, Colorado

VB4 32, VB5
Level: Intermediate

ADDING FULL PATHS TO A TREEVIEW
Have you ever wanted to add nodes to a TreeView control using
a full path instead of adding a node at a time? You can do it with
this code:

Public Sub AddPathToTree(Tree As TreeView, Path As String)
Dim PathItem As String
Dim NewItem As String
Dim PathLen As Integer
Dim c As String * 1
Dim i As Integer

'ADD A BACKSLASH AS A TERMINATOR
If Right$(Path, 1) <> "\" Then Path = Path & "\"

PathLen = Len(Path)

'RUN THROUGH THE PATH LOOKING FOR BACKSLASHES
For i = 1 To PathLen

c = Mid$(Path, i, 1)
http://www.devx.com
If c = "\" Then
If PathItem = "" Then

'ADD THE ROOT ITEM TO THE TREE
On Error Resume Next
Tree.Nodes.Add , , "\" & NewItem, NewItem
PathItem = "\" & NewItem

Else
'ADD THE NEXT CHILD TO THE TREE
Tree.Nodes.Add PathItem, tvwChild, PathItem _

& "\" & NewItem, NewItem
PathItem = PathItem & "\" & NewItem

End If
NewItem = ""100

Else
NewItem = NewItem & c

End If
Next i

End Sub

Simply call this routine passing the TreeView control and the
full path as parameters. All the necessary nodes will be added if
they don’t already exist:

AddPathToTree TreeView1, _
"RootLevel\Child1\Child2\Child3\Child4"

—Tom Stock, St. Petersburg, Florida

VB3, VB4 16/32, VB5
Level: Beginning

REPLACEMENT FOR NOW() AND TIMER()
The simple BetterNow() function, shown here, replaces the built-
in Now() function. It’s faster (10 microseconds vs. 180 microsec-
onds on a Pentium 166MMX) and more accurate, potentially sup-
plying one-millisecond resolution, instead of 1000 milliseconds.

Because it’s also faster and more accurate than Timer(), which
clocks at 100 microseconds and provides 55 milliseconds reso-
lution, it should also replace Timer, especially when Timer() is
used to measure elapsed times. Besides, Timer() rolls over at
midnight, and BetterNow() doesn’t:

#If Win16 Then
Private Declare Function timeGetTime Lib _

"MMSYSTEM.DLL" () As Long
#Else

Private Declare Function timeGetTime Lib "winmm.dll" _
() As Long

#End If

Function BetterNow() As Date
Static offset As Date
Static uptimeMsOld As Long
Dim uptimeMsNew As Long
Const oneSecond = 1 / (24# * 60 * 60)
Const oneMs = 1 / (24# * 60 * 60 * 1000)
uptimeMsNew = timeGetTime()
' check to see if it is first time function called or
' if timeGetTime rolled over (happens every 47 days)
If offset = 0 Or uptimeMsNew < uptimeMsOld Then

offset = Date - uptimeMsNew * oneMs + CDbl(Timer) * _
oneSecond

uptimeMsOld = uptimeMsNew
End If
BetterNow = uptimeMsNew * oneMs + offset

End Function
—Andy Rosa, received by e-mail
Supplement to Visual Basic Programmer’s Journal AUGUST 1998 9

 101 TECH TIPS
For VB Developers
VB4 16/32, VB5
Level: Beginning

TILE AN IMAGE ONTO A FORM
Adding this code to a form causes it to tile the image stored in
Picture1 across the entire form whenever the form requires a
refresh:

Private Sub Form_Load()
With Picture1

.AutoSize = True

.BorderStyle = 0

.Visible = False
End With

End Sub

Private Sub Form_Paint()
Dim i As Long, j As Long
With Picture1

For i = 0 To Me.ScaleWidth Step .Width
For j = 0 To Me.ScaleHeight Step .Height

PaintPicture .Picture, i, j
Next j

Next i
End With

End Sub

Private Sub Form_Resize()
Me.Refresh

End Sub
—Devin Coon, Pittsburgh, Pennsylvania

VBA
Level: Beginning

ZAP EXPIRED DOCS
This VBA Microsoft Word routine purges a document when it’s
opened after a predefined expiration date. I’ve only tested this
macro with Word 97:

Sub Purge()
Dim ExpirationDate As Date
ExpirationDate = #4/1/98#
'This particular document expires on 1 April 1998
If Date >= ExpirationDate Then

'Purge the document
With Selection

.WholeStory

.Delete Unit:=wdCharacter, Count:=1

.TypeText Text:= _
"This document expired on" & _
Str(ExpirationDate) & "."

.TypeParagraph
End With
ActiveDocument.Save
'Alert the user
MsgBoxResult = MsgBox("This document has expired. " _

& "Please acquire an updated copy.", , _
"Document Purge")

End If
End Sub

In order to work, you should call this macro from a document’s
AutoOpen macro.

—Dorin Dehelean, Dollard des Ormeaux, Quebec, Canada
10 AUGUST 1998 Supplement to Visual Basic Programmer’s Journal
VB4 16/32, VB5
Level: Intermediate

QUICK CLASS TESTS
When testing properties and methods of an object that you’re
writing, you don’t have to run a test project or form to test it.
Instead, open the Immediate window and begin typing and ex-
ecuting code:

Set c = new Class1
? c.TestProperty

—Trey Moore, San Antonio, Texas

VB3, VB4 16/32, VB5
Level: Advanced

A QUICKER “NEXT/PREVIOUS WEEKDAY”
In the latest tips supplement [“101 Tech Tips for VB Develop-
ers,” Supplement to the February 1998 issue of VBPJ], I noticed
a tip titled “Determine Next/Previous Weekday.” This code is
shorter and accomplishes the same task with no DLL calls:

Public Function SpecificWeekday(ByVal D As Date, Optional _
ByVal WhatDay As VbDayOfWeek = vbSaturday, _
Optional GetNext As Boolean = True) As Date
SpecificWeekday = (((D - WhatDay + GetNext) \ 7) - _

GetNext) * 7 + WhatDay
End Function

This code averages about 10 times faster in VB3 and up to 30
times faster in VB5. It works because VB keeps dates internally
as the number of days since Saturday, December 30, 1899. A date
of 1 represents Sunday, December 31, 1899, which is also its own
weekday. This means the WeekDay function is equivalent to the
expression (Date - 1) Mod 7 + 1. This is coded for VB5, but by
altering the way the Optional parameters are handled, you can
make it work in either VB3 or VB4.

—Phil Parsons, Newmarket, Ontario, Canada

VB3, VB4 16/32, VB5
Level: Intermediate

REMOVE MIN/MAX BUTTONS FROM
MDI FORM
Unlike other forms, MDI forms don’t have MinButton and
MaxButton properties to enable or disable the form’s Minimize
and Maximize buttons. If you add this code to an MDI parent form’s
Load event, it disables the Minimize and Maximize buttons on the
MDI form. If you just want to disable one or the other, comment
out the appropriate line, based on which constant you don’t need:

Sub MDIForm_Load()
Dim lWnd as Long
lWnd = GetWindowLong(Me.hWnd, GWL_STYLE)
lWnd = lWnd And Not (WS_MINIMIZEBOX)
lWnd = lWnd And Not (WS_MAXIMIZEBOX)
lWnd = SetWindowLong(Me.hWnd, GWL_STYLE, lWnd)

End Sub

Add this code (which includes the required API declarations)
http://www.devx.com

 101 TECH TIPS
For VB Developers For even more tricks and tips go to

 http://www.devx.com

to a BAS module:

#If Win32 Then
Private Declare Function SetWindowLong Lib "user32" _

Alias "SetWindowLongA" (ByVal hwnd As Long, ByVal _
nIndex As Long, ByVal dwNewLong As Long) As Long

Private Declare Function GetWindowLong Lib "user32" _
Alias "GetWindowLongA" (ByVal hwnd As Long, ByVal _
nIndex As Long) As Long

#Else
Declare Function SetWindowLong Lib "User" (ByVal hwnd _

As Integer, ByVal nIndex As Integer, ByVal _
dwNewLong As Long) As Long

Declare Function GetWindowLong Lib "User" (ByVal hwnd _
As Integer, ByVal nIndex As Integer) As Long

#End If

Const WS_MINIMIZEBOX = &H20000
Const WS_MAXIMIZEBOX = &H10000
Const GWL_STYLE = (-16)

—Joselito Ogalesco, Morton, Pennsylvania

VB4 32, VB5
Level: Intermediate

MAKE BUTTONS APPEAR
VB doesn’t display the Min and Max buttons in a form’s caption
area when you specify BorderStyle Fixed Dialog. If you set the
MinButton and MaxButton properties on the form to True, the
Minimize and Maximize entries in the context menu are visible—
but the buttons are still invisible! To fix this, add this code to a
standard module:

Private Declare Function GetWindowLong Lib "user32" Alias _
"GetWindowLongA" (ByVal hWnd As Long, ByVal nIndex As _
Long) As Long

Private Declare Function SetWindowLong Lib "user32" Alias _
"SetWindowLongA" (ByVal hWnd As Long, ByVal nIndex As _
Long, ByVal dwNewLong As Long) As Long

Private Const GWL_STYLE = (-16)
Private Const WS_MINIMIZEBOX = &H20000
Private Const WS_MAXIMIZEBOX = &H10000

Public Sub SetCaptionButtons(Frm As Form)
Dim lRet As Long
lRet = GetWindowLong(Frm.hWnd, GWL_STYLE)
SetWindowLong Frm.hWnd, GWL_STYLE, lRet Or _

WS_MINIMIZEBOX * (Abs(Frm.MinButton)) Or _
WS_MAXIMIZEBOX * (Abs(Frm.MaxButton))

End Sub

You must call the subroutine SetCaptionButtons from the
Form_Load event, passing a reference to your form. This should
work in VB3 and VB4 16 with the proper 16-bit API declarations
(see “Remove Min/Max Buttons From MDI Form”).

—Geir A. Bergsløkken, Grinder, Norway
http://www.devx.com
VB4 16/32, VB5
Level: Intermediate

ADD A NEW NUMBER FORMAT
A client needed the numbers to show up in certain data files in
the “x100” format to accommodate interchanging data with a
legacy system. That is, if the number is “23.56,” it shows up as
“2356,” and “23” becomes “2300.” Because I didn’t want to cre-
ate a special case throughout my code to manage this, and the
VB Format function doesn’t support such a format, I subclassed
the Format function and added the new format myself:

Public Function Format(Expression As Variant, Optional _
sFormat As Variant, Optional FirstDayOfWeek As _
Variant, Optional FirstWeekOfYear As Variant) As String
If IsMissing(sFormat) Then

Format = VBA.Format(Expression)
ElseIf sFormat = "x100" Then

' handle the special x100 case
Expression = Expression * 100
Format = VBA.Format(Expression, "0.")
Format = Left$(Format, InStr(1, Format, ".") - 1)

Else
' wasn’t my special format, so pass through to the
' real format function
If IsMissing(FirstWeekOfYear) And _

IsMissing(FirstDayOfWeek) Then
Format = VBA.Format(Expression:=Expression, _

Format:=sFormat)
ElseIf IsMissing(FirstDayOfWeek) Then

Format = VBA.Format(Expression:=Expression, _
FirstWeekOfYear:=FirstWeekOfYear)

ElseIf IsMissing(FirstWeekOfYear) Then
Format = VBA.Format(Expression:=Expression, _

FirstDayOfWeek:=FirstDayOfWeek)
End If

End If
End Function

This allows me to simply call the Format function as I nor-
mally would everywhere in my code, have my “x100” format,
and still support all the normal Format parameters and options.
Note the use of VBA.Format in the routine to reference the built-
in format function.

—Jon Pulsipher, Bellevue, Washington

VB5
Level: Intermediate

LIVE ACTION CAPTIONS
When building a TextBox or Label UserControl, the Caption or
Text property sometimes doesn’t work well with the standard
controls, as the control’s appearance doesn’t change when you
type the value into the Properties window.

To make your UserControl behave the way you want, go to
the UserControl’s code window and select Procedure Attributes
from the Tools menu. Find your Caption or Text property on the
combo box and click on Advanced. On the Procedure ID combo
box, select Text. Test it by putting an instance of your control
on a form and changing the Text or Caption property at design
time. The Property Let procedure will fire with each keystroke,
allowing your update routine to reflect what the user has typed.

—Leonardo Bosi, Buenos Aires, Argentina
Supplement to Visual Basic Programmer’s Journal AUGUST 1998 11

 101 TECH TIPS
For VB Developers
VB5
Level: Intermediate

ISMISSING BEHAVIOR CHANGED IN VB5
In VB5, you can assign a default value to a typed optional argu-
ment. But you must then use the IsMissing function carefully,
because when the optional argument is typed, IsMissing always
returns False. Only when using an untyped (Variant) optional
argument will IsMissing be accurate in determining whether a
value was passed. If no default value is assigned and the argu-
ment is typed, VB automatically assigns the default value nor-
mally assigned to such a type—typically 0 or an empty string.

Under this condition, you shouldn’t use IsMissing to detect
whether the argument has been set. You can detect it with two
methods. The first method is to not give the argument a type
when you declare, so you can use the IsMissing function to de-
tect it. The second method is to give a default value when you
declare, but you won’t have to set that value when you call it.
This code gives some examples about using optional arguments
and the IsMissing function:

Private Sub fun1(..., Optional nVal)
'- Without type (Variant)

...
If IsMissing(nVal) Then
'- You can use IsMissing here
Else
End If

End Sub

Private Sub fun2(..., Optional nVal As Integer)
'- With type but no default value

...
If IsMissing(nVal) Then

'- You cannot use IsMissing here to detect is
'- nVal been set, always return true
'- VB will give nVal a default value 0 because
'- its type is Integer

End If

End Sub

Private Sub fun3(..., Optional nVal As Integer = -1)
If nVal = -1 Then
'- You can use this to detect , in function equals to
'- IsMissing
'- But you must sure the the value -1 will not be
'- used when the procedure is called
Else
End If

End Sub
—Henry Jia, received by e-mail

VB3, VB4 16/32, VB5
Level: Beginning

SET DEFAULT FONT FOR NEW CONTROLS
When you place controls on a form, the Font properties of all
the controls default to a sans serif font rather than a default font
that you specify. To avoid this annoyance, set the Font property
for the form to the value you’d like the controls to use before
placing controls on the form.

—Trey Moore, San Antonio, Texas
12 AUGUST 1998 Supplement to Visual Basic Programmer’s Journal
VB3, VB4 16/32, VB5
Level: Intermediate

REDUCE FILTERING FRUSTRATION
This code works wonders to reduce flicker and lessen your frus-
tration. Place a timer on the form (tmr_Timer) and set the Inter-
val to 1000. Set Enabled to False, then place this code in the
txt_Filter_Change event:

Private Sub txtFilter_Change()
Timer1.Enabled = False
Timer1.Enabled = True

End Sub

In the Timer event, call this routine that refreshes your
recordset:

Private Sub Timer1_Timer()
Timer1.Enabled = False
Call MyUpdateRecordsetRoutine

End Sub

The recordset will only be updated if you haven’t pressed a
key for a full second. Each time you press a key, the timer is
reset and the one-second countdown starts all over again.

—Tom Welch, received by e-mail

VB3, VB4 16/32, VB5
Level: Intermediate

ROTATE AN OBJECT ABOUT A POINT
You can rotate any object about a center using polar coordi-
nates. Simply define your center Xo and Yo, which in this case is
the center of a form. The amount of rotation is determined by
direction, one degree:

Private Direction As Long
Private Xo As Long, Yo As Long

Private Sub Form_Click()
If Direction = 1 Then

Direction = 359 'counterclockwise
Else

Direction = 1 'clockwise
End If

End Sub

Private Sub Form_Load()
Direction = 1 'clockwise

End Sub

Private Sub Form_Resize()
Xo = Me.ScaleWidth \ 2
Yo = Me.ScaleHeight \ 2

End Sub

Private Sub Timer1_Timer()
Dim i As Byte
Dim r As Single
Dim Pi As Single
Dim theta As Single
Dim plotx, ploty, dx, dy As Integer

Xo = Form1.Width / 2
'get center, image is to rotate about
http://www.devx.com

 101 TECH TIPS
For VB Developers For even more tricks and tips go to

 http://www.devx.com

Yo = Form1.Height / 2
Pi = 4 * Atn(1)
dx = Image1.Left - Xo
'get horizontal distance from center
dy = Image1.Top - Yo
' "" vertical ""
theta = Atn(dy / dx)
'get angle about center
r = dx / Cos(theta)
'get distance from center
plotx = r * Cos(theta + Direction * Pi / 180) + Xo
'get new x rotate about center
ploty = r * Sin(theta + Direction * Pi / 180) + Yo
' "" y ""
Image1.Left = plotx
Image1.Top = ploty

End Sub
—David A. Sorich, Countryside, Illinois

VB4 16/32, VB5
Level: Intermediate

USE OLE AUTOMATION TO CALL 16-BIT
DLLS FROM VB5 (OR VB4 32)
First, create a VB4-16 project and call it VB16Project. In the
project, create a class module that includes a function that calls
your 16-bit DLL in the usual way. Name the class VB16Class and
the function VB16DLLCall. In your VB4-16 project, remove the
default form and add a standard module with a Main subroutine
or function.

Under the Tools/Options/Project/StartMode section, click on
the OLE Server radio button. Make sure your class module’s In-
stancing Property is set to 1 (CreateableSingleUse) or 2
(CreateableMultiUse). Compile and save your project as an Ex-
ecutable. Now create a 32-bit application using VB4-32 or VB5.
To call the 16-bit DLL in your 32-bit project, use this code:

Dim MyObj as Object
Set MyObj = CreateObject("VB16Project.VB16Class")
Call MyObj.VB16DLLCall()

—Jim Miles, Thousand Oaks, California

VB4 32, VB5
Level: Advanced

YEAH, BUT WHICH COMMON CONTROLS?
This fragment of code from the VB standard module shows the
GetComCtlVersion function that retrieves the major and minor
version numbers of the Comctl32.dll installed on the local sys-
tem. Use this function when you subclass toolbar or listview
controls from Comctl32.ocx and implement hot-tracking toolbar
or full-row select in the listview. It’s also useful when checking
the DLL version in your setup application:

VersionDistribution Platform
4.00 Microsoft Windows 95/Windows NT 4.0
4.70 Microsoft Internet Explorer 3.0x
4.71 Microsoft Internet Explorer 4.00
4.72 Microsoft Internet Explorer 4.01

Option Explicit

Private Const S_OK = &H0
http://www.devx.com
Private Declare Function LoadLibrary Lib "kernel32" _
Alias "LoadLibraryA" (ByVal lpLibFileName As String) _
As Long

Private Declare Function GetProcAddress Lib "kernel32" _
(ByVal hModule As Long, ByVal lpProcName As String) As _
Long

Private Declare Function FreeLibrary Lib "kernel32" (_
ByVal hLibModule As Long) As Long

Private Declare Function DllGetVersion Lib "comctl32.dll" _
(pdvi As DLLVERSIONINFO) As Long

Private Type DLLVERSIONINFO
cbSize As Long
dwMajorVersion As Long
dwMinorVersion As Long
dwBuildNumber As Long
dwPlatformID As Long

End Type

Public Function GetComCtlVersion(nMajor As Long, nMinor As _
Long) As Boolean
Dim hComCtl As Long
Dim hResult As Long
Dim pDllGetVersion As Long
Dim dvi As DLLVERSIONINFO

hComCtl = LoadLibrary("comctl32.dll")
If hComCtl <> 0 Then
hResult = S_OK
pDllGetVersion = GetProcAddress(hComCtl, _

"DllGetVersion")
If pDllGetVersion <> 0 Then

dvi.cbSize = Len(dvi)
hResult = DllGetVersion(dvi)

If hResult = S_OK Then
nMajor = dvi.dwMajorVersion
nMinor = dvi.dwMinorVersion

End If
End If
Call FreeLibrary(hComCtl)
GetComCtlVersion = True

End If
End Function

—Lubomir Bruha, Czech Republic

VB3, VB4 16/32, VB5
Level: Beginning

DISABLE EASILY
You can easily give your check-box control a Locked property
without making your own custom control. First, create a frame
large enough to contain your check boxes. Clear the caption and
set the border style to None. Put as many check boxes as needed
on this frame, setting their captions and so on. When you’re done,
set the frame’s Enabled property to False. You can use the same
trick to make other controls, such as option buttons and text
boxes, appear enabled but not respond.

—Dexter Jones, received by e-mail
Supplement to Visual Basic Programmer’s Journal AUGUST 1998 13

 101 TECH TIPS
For VB Developers
VB3, VB4 16/32, VB5
Level: Intermediate

DETERMINE LIST ITEM BY COORDINATES
I wanted users to be able to get a definition for each item in a list
box by right-clicking on the item. Unfortunately, right-clicking
doesn’t automatically select the item, so you need some other
way of knowing your location in the list box. Simply reading the
Y value from the MouseDown event and converting that value
to a line number will work, unless the user scrolls the list. I used
the SendMessage API, which can get information from controls,
to solve the problem. Here’s the code:

'Declarations section
Private Declare Function SendMessage Lib "user32" _

Alias "SendMessageA" (ByVal hWnd As Long, ByVal _
wMsg As Long, ByVal wParam As Long, lParam As _
Any) As Long

Const LB_GETITEMHEIGHT = &H1A1
'value to get height of one line in listbox

'listbox code
Private Sub List1_MouseDown(Button As Integer, Shift As _

Integer, X As Single, Y As Single)
Dim msg As String
Dim TopIndex As Long
Dim CharHeight As Long
Dim CurIndex As Long

With List1
'find height of one line in listbox
CharHeight = SendMessage(.hWnd, LB_GETITEMHEIGHT, _

0, 0)
'function returns height in pixels so convert to
'twips
CharHeight = CharHeight * Screen.TwipsPerPixelY

If Button = 2 Then 'right click
'find index number of item that received right
'click
CurIndex = Y \ CharHeight + .TopIndex
'If index number is valid then display information
If CurIndex < .ListCount Then

'Code to retrieve and display item definition
'goes here. Mine looks like this.
msg = GetMessage(.List(CurIndex))
frmInfo.Label1.Caption = msg
frmInfo.Show

End If
End If

End With
End Sub

If the items in your list box are always displayed in the same
order and no deletions occur, then all you need is an array of
definitions that correspond to each item in the list box. To re-
trieve the appropriate definition, use this code:

msg = DefinitionArray(CurIndex)

After displaying the definition in a window, you only need
code for the list-box MouseUp event:

If Button = 2 Then frmInfo.Hide
—Kevin W. Williams, Oklahoma City, Oklahoma
14 AUGUST 1998 Supplement to Visual Basic Programmer’s Journal
VB3, VB4 16/32, VB5
Level: Intermediate

CUSTOM MENU ACCELERATORS
To set the shortcut key of a menu item to something other than
what the VB menu editor displays, use this code in the
Form_Load event of a form:

Private Sub Form_Load()
mnuExit.Caption = mnuExit.Caption & vbTab & "ALT+F4"

End Sub

This adds the text “ALT+F4” to the caption of the mnuExit
menu item and right-justifies it with any other shortcuts on the
menu. ALT+F4 is already supported by Windows to close a win-
dow, so this shortcut needs no additional code for an exit menu
choice. If you add shortcuts that Windows doesn’t internally
support, then set the KeyPreview property of the form to True
and check the KeyUp event on the form to see if the shortcut
was selected.

—Dave Kinsman, Renton, Washington

VB3, VB4 16/32, VB5
Level: Beginning

MENU PROPERTIES SHORTCUT
You can set the properties of any menu item by selecting the
menu item in the Properties window drop-down list. This is of-
ten faster than selecting the Menu Editor menu choice and has
the added benefit of showing you the changes to the menu choice
immediately. It’s also the only way to access the Tag property of
the menu item at design time.

—Dave Kinsman, Renton, Washington

VB5
Level: Beginning

TAKING A FORM IN FRONT OF ANOTHER
FORM
When building a floating toolbar, you might need to keep it in
front of the main form of your application. This took time to do
in VB3 and VB4, because you had to resort to API functions. In
VB5, you can take advantage of a new, optional argument of the
Show method:

' within the main form
frmFloating.Show 0, Me

The second argument sets the owner form for the window
being displayed. The “owned” form will always be in front of its
owner, even when it doesn’t have the input focus. Moreover,
when the owner form is closed, all its owned forms are auto-
matically closed also.

—Francesco Balena, Bari, Italy
http://www.devx.com

 101 TECH TIPS
For VB Developers For even more tricks and tips go to

 http://www.devx.com

VB5
Level: Intermediate

ADD REMARKS TO YOUR PROCEDURES
You can make your code more readable by always adding a re-
mark on top of all your procedures. Create an add-in that makes
it fast and easy. First, run New Project under the File menu and
select Addin from the project gallery that appears. In the Project
Properties dialog, change the project name to RemBuilder. In
the AddToIni procedure (contained in the AddIn.bas module),
change the MyAddin.Connect string to RemBuilder.Connect.

Press F2 to show the Object Browser, select the RemBuilder
project in the upper combo box, then right-click on the Connect
class in the left-most pane and select the Properties menu com-
mand. In the dialog that appears, change the description into
Automatic Remark Builder (or whatever you want).

In the IDTExtensibility_OnConnection procedure (in the
Connect.cls module), search for the My Addin string and modify
it to &Remark Builder. This is the caption of the menu item
that will appear in the Add-Ins menu. In the Immediate window,
type AddToIni and press Enter to register the add-in in the
VBADDIN.ini file. In the MenuHandler_Click procedure in
Connect.cls, delete the only executable line (Me.Show) and
insert this code instead:

SendKeys "'" & String$(60, "-") & vbCrLf _
& "' Name:" & vbCrLf _
& "' Purpose:" & vbCrLf _
& "' Parameters:" & vbCrLf _
& "' Date: " & Format$(Now, "mmmm,dd yy") _
& "' Time: " & Format$(Now, "hh:mm") & vbCrLf _
& "'" & String$(60, "-") & vbCrLf

Compile this program into an EXE or a DLL ActiveX compo-
nent, then install the add-in as usual from the Add-In Manager.
Before you create a procedure, select the Remark Builder menu
item from the Add-Ins menu to insert a remark template in your
code window, and you’ll never again have to struggle against an
under-documented program listing.

—Francesco Balena, Bari, Italy

VB5
Level: Intermediate

REDUCE THE CLUTTER IN YOUR VB IDE
Here’s another simple but useful add-in you can add to your arse-
nal. Follow the directions given in the previous tip “Add Remarks
to Your Procedures,” with only minor differences. Use the project
name CloseWindows rather than RemBuilder. Also, change the
description to “Close All IDE Windows.” Finally, type a suitable
caption for the menu command, such as Close IDE &Windows.
Insert this code in the MenuHandler_Click procedure:

Dim win As VBIDE.Window
For Each win In VBInstance.Windows
If win Is VBInstance.ActiveWindow Then
' it's the active window, do nothing
ElseIf win.Type = vbext_wt_CodeWindow Or _

win.Type = vbext_wt_Designer Then
' code pane or designer window
win.Close
End If
Next
http://www.devx.com
When you select the add-in from the Add-Ins menu, it closes
all the forms and code windows currently open, except the one
you’re working with.

—Francesco Balena, Bari, Italy

VB5
Level: Intermediate

HIDE ENUMERATIONS FOR VALIDATION
VB5 introduced support for enumerations, which are related sets
of constants. Although you can declare a property as an enu-
merated type, VB lets you assign any long integer value to the
property. Were you able to determine the lowest and highest
values in the enumeration, you could easily validate an enumer-
ated property, but the language doesn’t support it. Instead, you
can inspect the minimum and maximum values by creating hid-
den members in the enumeration:

Public Enum MyAttitudeEnum
[_maMin] = 1
maHappy = 1
maSad = 2
maIndifferent = 3
[_maMax] = 3

End Enum

Inspecting the values of [_maMin] and [_maMax] makes it
easy for you to validate against an enumerated type.

—Jeffrey McManus, San Francisco, California

VB5
Level: Beginning

BROWSE VB COMMAND AS YOU TYPE
When you refer to an object in VB5, you get a drop-down list of
that object’s properties and methods. But, did you know that
the statements and functions of the VB language itself are just a
big list of properties and methods? You can view this list at any
time in a VB code window by typing the name of the library in
which this code resides:

VBA.

Once you type the dot after VBA, the bulk of the VB language
drops down. You can then select the language element you want
from the list. This is a great help when you’re trying to remem-
ber the name of a VB language element that you don’t often use.

—Jeffrey McManus, San Francisco, California

VB5
Level: Beginning

FIND YOUR CONSTANT OR ENUM VALUES
I use constants for things like control-array index numbers, but
it’s a hassle to keep scrolling to the top of the module to remem-
ber the constant names. If you name all the constants with the
same first few letters, you can use the new IntelliSense features of
VB5 to obtain the list any time you need it. Simply type in the first
few letters and press Ctrl+Space. A selection list then appears.

—Deborah Kurata, Pleasanton, California
Supplement to Visual Basic Programmer’s Journal AUGUST 1998 15

 101 TECH TIPS
For VB Developers
VB3, VB4 16/32, VB5
Level: Beginning

WATCH OUT FOR “()” WHEN CALLING
SUBROUTINES
To call a subroutine, you can use the Call statement or simply
the name of the subroutine:

Call MyRoutine(firstParameter)
'Or
MyRoutine firstParameter

Notice you don’t include the parentheses in the second case.
If you do, VB assumes you mean them as an operator. VB then
determines the value of the parameter and passes the value to
the routine, instead of passing the reference as expected. This
is apparent in this example:

Call MyRoutine(Text1)

This passes the text-box control to MyRoutine. If you did it
without the Call statement, VB evaluates Text1, which returns
the default property value of the text box:

MyRoutine(Text1)

This default property is the text-box text. So, if the routine
expects a control, you pass the text string from the control in-
stead and will receive a type-mismatch error. To prevent this,
always use the Call statement or don’t put parentheses in when
calling a subroutine.

—Deborah Kurata, Pleasanton, California

VB5
Level: Beginning

USE THE SAME NAME FOR YOUR ERROR
HANDLERS
Older versions of VB required a unique name for your error-han-
dler labels in order to use On Error GoTo <label>. You had to
concatenate the module name and routine name to ensure a
unique error-handler label. This is no longer true. You can now
use something standard, such as ERR_HANDLER, to identify ev-
ery error handler. This makes them easier to find when review-
ing your error handling.

—Deborah Kurata, Pleasanton, California

VB5
Level: Beginning

VIEW THE NAMES OF YOUR DATABASE
FIELDS DIRECTLY FROM THE IDE
When developing code that maps to database fields, you often
need to look back at the tables to determine the correct data-
base fields. With VB5, you can now do this without leaving the
comfort of the Integrated Development Environment (IDE). Start
by setting a breakpoint after the code that populates the
recordset, then run the application. When VB breaks at that line,
drag your recordset object variable onto the Watches window,
16 AUGUST 1998 Supplement to Visual Basic Programmer’s Journal
or open the Locals window. Click on the plus sign to open the
recordset. You can look at any recordset properties, including
the field names.

—Deborah Kurata, Pleasanton, California

VB3, VB4 16/32, VB5
Level: Beginning

COLLECT USER REQUIREMENTS WITH
SCENARIOS
When talking to the user or subject-matter expert about an
application’s requirements, write the requirements in the form
of scenarios. A scenario both defines the requirement and pro-
vides a list of steps detailing how the resulting feature will be
used. For example, instead of writing a requirement to “process
payroll,” your scenario might be to select an employee from a
list of existing employees, to enter the time allocated to the
project for each employee, and so on. This clarifies requirements
and helps you better visualize how users will use the feature.
Once you understand the reasoning behind the request, you
might even find a better way to meet the requirement. You can
then use these scenarios as the test plan for the feature.

—Deborah Kurata, Pleasanton, California

VB3, VB4 16/32, VB5
Level: Beginning

PUT YOUR CHECK-BOX VALUE INTO
YOUR DATABASE
Jeremy Boschen pointed out an easy way to load a Boolean into
a check-box control in the tip, “Use Boolean Variables for Check-
Box Values” [101 Tech Tips for VB Developers, Supplement to
the February 1998 issue of VBPJ, page 1]. Conversely, you might
want to put the value of the check box into a database as a num-
ber. To do so, use this code:

!db_field = Abs(Check1.Value = vbChecked)

This puts 1 into your database field. To make the value -1,
change the Abs in the line to CInt. For VB3, you can’t use the
constant vbChecked and must use the value 1.

—Joe Karbowski, Traverse City, Michigan

VB3, VB4 16/32, VB5
Level: Intermediate

BE CAREFUL WHEN MIMICKING TOOL-
TIP HELP
Be careful about tips to easily duplicate tool-tip help with only
tip control and mouse events. If your “tip” control doesn’t have
the same parent as the control you’re moving over, you’ll put
your tip control in the wrong spot! The coordinates for a control
refer to its parent, so trying to position it against the wrong par-
ent (as opposed to the form) results in an (x, y) position differ-
ent than you want. Also, make sure your tip control has the high-
est z-order, or it might show up “behind” a nearby control. Lastly,
http://www.devx.com

 101 TECH TIPS
For VB Developers For even more tricks and tips go to

 http://www.devx.com

be careful about relying on the Form_MouseMove event to “turn
off” your tip, because the event might not get fired as you move
between two frames or move quickly over the form.

—Joe Karbowski, Traverse City, Michigan

VB4 32, VB5
Level: Beginning

WATCH HOW YOU USE YOUR BOOLEANS
With the introduction of the Boolean data type in VB4, you might
be tempted to convert it to a numeric value using the Val func-
tion for storage in a database table. Watch out! Val won’t con-
vert a Boolean into -1 (or 1) as you might expect. Use the Abs or
CInt functions, depending on the format you need:

Val(True) gives 0
CInt(True) gives -1
Abs(True) gives 1

—Joe Karbowski, Traverse City, Michigan

VB3, VB4 16/32, VB5
Level: Beginning

USE REFRESH, NOT DOEVENTS
When executing code and tying up the system, developers often
use a label or status bar to display messages. If you simply assign
your text or message to the control (for example, lblMsg.Caption
= “Still working…”), you won’t see the text because your code
loop isn’t allowing the form to respond to the message. To make
the message visible, use the Refresh method of the control. Don’t
use the DoEvents command to refresh the text to the user—this
introduces re-entrancy issues. Note that displaying messages
slows down performance, so use them intelligently:

Private Sub Command1_Click()
Dim J As Long
For J = 1 To 1000

Label1.Caption = "Message " & J
Label1.Refresh

Next J
End Sub

—Joe Karbowski, Traverse City, Michigan

VB3, VB4 16/32, VB5
Level: Beginning

FORM-LEVEL VARIABLES WON’T CLEAR
When you use multiple forms in a project, make sure you explic-
itly set a form to Nothing after you unload it. If you don’t, simply
unloading the form won’t necessarily clear out variables from
the form. Setting it to Nothing does reset form-level variables:

Private Sub ShowNewForm()
Load Form2
Form2.Show vbModal
Unload Form2
Set Form2 = Nothing

End Sub

To see how the problem occurs, create a new standard execut-
able project, with a form and a command button. Use this code:
http://www.devx.com
Option Explicit
Private Sub Command1_Click()

Load Form2
Form2.Show vbModal
Unload Form2
'Set Form2 = Nothing

End Sub

Add a second form with a label and a command button on it,
and paste in this code:

Option Explicit
Private msStuff As String
Private Sub Command1_Click()

Hide
End Sub
Private Sub Form_Load()

Label1.Caption = "value is " & msStuff
End Sub
Private Sub Form_Unload(Cancel As Integer)

msStuff = "hey!"
End Sub

Press the command button on Form 1 to show Form 2. The
label control shows that the msStuff variable is empty. Hide Form
2 by pressing the button, then pressing the button on Form 1
again. This time, Form 2 will have a value in the msStuff vari-
able, showing that it doesn’t clear out.

—Joe Karbowski, Traverse City, Michigan

VB3, VB4 16/32, VB5
Level: Beginning

FORMS NOT SHOWING UP IN TASKBAR
In VB3 you can set up an executable project to start up in the
main subroutine, and it shows up in the Windows 95 taskbar:

Public Sub Main()

Load frmFoo
frmFoo.Show 1
Unload frmFoo

End Sub

However, if you show a form modally in VB5, no matter if it’s
the first form in the program or not, it won’t show up in the
taskbar. If you want to see the item in the taskbar, you must
show it nonmodally.

—Joe Karbowski, Traverse City, Michigan

VB3, VB4 16/32, VB5, VBA, VBS
Level: All

RTFM
Read The Fawcette Magazines.

—VBPJ Staff
Supplement to Visual Basic Programmer’s Journal AUGUST 1998 17

 101 TECH TIPS
For VB Developers
VB3, VB4 16/32, VB5
Level: Beginning

DON’T FORGET THAT MOUSE POINTER
If you turn the mouse pointer into an hourglass (and back to
normal) in a routine with error handling, don’t forget to turn the
mouse pointer back to normal in the error-handler section. Oth-
erwise, the program might look busy, but actually be done:

Private Function CalcTotal() As Long
On Error GoTo ProcErr

Screen.MousePointer = vbHourglass
'
'Code that may raise error
'
Screen.MousePointer = vbNormal
Exit Function 'Don't go into error handler

ProcErr:
Screen.MousePointer = vbNormal
'
'Error handling code
'

End Function
—Joe Karbowski, Traverse City, Michigan

VB4 32, VB5
Level: Beginning

WORKING WITH COLLECTIONS
When working with collections, use an error handler to easily
determine if a given key exists in the collection. If you try to
access an item from a collection where the key doesn’t exist,
you’ll get an error. Likewise, if you try to add an item that exists,
you’ll also get an error. This example shows an error handler for
adding an item to a collection. To trap for errors where an item
exists, trap error code 457:

Private Function BuildCustCol(CustList As ListBox) As _
Collection
On Error GoTo ProcError
Dim colCust As Collection
Dim lngCustCnt As Long
Dim J As Long

Set colCust = New Collection
For J = 0 To CustList.ListCount - 1

lngCustCnt = colCust(CStr(CustList.List(J))) + 1
colCust.Remove (CStr(CustList.List(J)))
colCust.Add Item:=lngCustCnt, _

Key:=CStr(CustList.List(J))
Next J
Set BuildCustCol = colCust
Set colCust = Nothing
Exit Function

ProcError:
Select Case Err

Case 5 'collection item doesn't exist, so add it
colCust.Add Item:=0, _
18 AUGUST 1998 Supplement to Visual Basic Programmer’s Journal
Key:=CStr(CustList.List(J))
Resume

Case Else
'untrapped error

End Select

End Function
—Joe Karbowski, Traverse City, Michigan

VB3, VB4 16/32, VB5, VBA, VBS
Level: Beginning

SIMPLIFY BOOLEAN VARIABLE UPDATES
Instead of using an If construct to set a Boolean variable, you
can assign a Boolean variable to the result of any logical com-
parison. For example, instead of this code:

If MyNumber > 32 Then
BooleanVar = True

Else
BooleanVar = False

End If

Use this code:

BooleanVar = (MyNumber > 32)
—Joe Karbowski, Traverse City, Michigan

VB3, VB4 16/32, VB5
Level: Intermediate

KEYPRESS WON’T FIRE WHEN PASTING
INTO TEXT BOX
Don’t put rules for validating text values or formats in the
KeyPress event—use the Change event instead. If you “paste”
into a text box, the KeyPress event isn’t fired and all your
validation goes out the window. Also, if you don’t carefully put
code in the Change event that sets the value of a text box, you’ll
create an infinite loop:

Private Sub Text1_Change()
'Append asterisk to text
Text1.Text = Text1.Text & "*"

End Sub

Here’s a better way:

Private Sub Text2_Change()
Dim lCurr As Long
'Append asterisk to text
lCurr = Text2.SelStart
If Right$(Text2.Text, 1) <> "*" Then

Text2.Text = Text2.Text & "*"
'Be kind and don't put the cursor at the front of the
'text
Text2.SelStart = lCurr

End If
End Sub
http://www.devx.com

 101 TECH TIPS
For VB Developers For even more tricks and tips go to

 http://www.devx.com

—Joe Karbowski, Traverse City, Michigan

VB4 32, VB5
Level: Intermediate

LIMIT SELECTED CHECK BOXES WITH
COLLECTION LOGIC
Use the Count property to determine exactly how many con-
trols are loaded. You can also use the For Each loop to perform
code on each control. For instance, if you have a control array
of check boxes and you don’t want more than three checked,
use this code:

Private Sub Check1_Click(Index As Integer)
Dim chk As CheckBox
Dim lCnt As Long
Const cMAX = 3

For Each chk In Check1
If chk.Value = vbChecked Then

lCnt = lCnt + 1
If lCnt > cMAX Then

Check1(Index).Value = vbUnchecked
MsgBox "Too many checked!"
Exit For

End If
End If

Next chk

End Sub
—Joe Karbowski, Traverse City, Michigan

VB4 32, VB5
Level: Beginning

NUMERIC CONVERSION OF STRINGS
When dealing with numerics and strings, be advised of a couple
“gotchas.” The Val() function isn’t internationally aware and will
cause problems if you have users overseas. But you can’t just
blindly switch to CLng, CInt, and so on, which are internation-
ally aware. These functions don’t support an empty string
(vbNullString or "") or strings that fail the IsNumeric test and
will raise an error if used as such. Consider wrapping your own
function around these calls to check for an empty text string
before converting:

Public Function CInt(IntValue as Variant) as Integer
If IsNumeric(IntValue) Then

MyCInt = CInt(IntValue)
Else

MyCInt = 0
End If
http://www.devx.com
End Function
—Joe Karbowski, Traverse City, Michigan

VB3, VB4 16/32, VB5
Level: Intermediate

SQL TRICK TO JOIN MULTIPLE SELECT
STATEMENTS
Don’t overlook the UNION keyword in SQL as a way to simplify
selections from multiple tables. For instance, to select the cus-
tomer with the highest sales from three tables with basically
the same layout, use the UNION keyword to allow your VB code
to open only one resultset with the answer:

Private Function MaxCustSales() As Long
Dim sSql as string

sSql = "select max(cust_sales) max_sales from " & _
"sales.dbo.sales_east " & "UNION " & _
"select max(cust_sales) max_sales from " & _
"sales.dbo.sales_west " & _"UNION " & _
"select max(cust_sales) max_sales from " & _
"sales.dbo.sales_intl " & _
"ORDER BY max_sales DESC”

Do this to open the resultset:

If NOT IsNull(!max_sales) Then
MaxCustSales = !max_sales

End If

End Function
—Joe Karbowski Traverse City, Michigan

VB5
Level: Intermediate

DEBUGGER ISN’T INVOKED
When working on developing or debugging an app created by
automation (for example, by ActiveX DLL), if you normally in-
voke that app from a calling program (EXE), leave the calling
program running and run the app you’re debugging in the VB
Integrated Development Environment (IDE)—gotcha! Your de-
bug and breakpoints won’t get hit. The calling program still has
the “real” automation project in memory and isn’t using the ver-
sion from the VB IDE. You must close down the calling program
that’s running and restart it to use your VB IDE version. You’ll
see an example of this when you try to make your automation
project into a DLL and it balks, saying “Permission Denied.” You
need to close down any calling programs.

—Joe Karbowski, Traverse City, Michigan

VB4 32, VB5
Level: Intermediate

WHERE DID IT GO?
Have you ever wondered why your ActiveX DLL with a form
doesn’t show up in the taskbar? Because you’re showing the
form modally (.Show vbModal). VB4 only allows DLLs with a user
interface to be shown modally. VB5, however, has no such limi-
tation. If you want your VB5 DLL to show up in the taskbar, you
Supplement to Visual Basic Programmer’s Journal AUGUST 1998 19

 101 TECH TIPS
For VB Developers
need to change your code to support showing it nonmodally.
—Joe Karbowski, Traverse City, Michigan

VB5
Level: Intermediate

VB HIJACKS THE REGISTRY
Be aware that VB’s Integrated Development Environment (IDE)
hijacks the Registry settings for your public classes when work-
ing on projects such as ActiveX DLLs and Controls. The IDE tem-
porarily replaces (in the Registry) the existing InProcServer32
for your class to a LocalServer32 entry pointing to the VB IDE
version being run. Should VB crash, that Registry entry won’t
return to its proper state. Then, when you try to run your pro-
gram “normally,” you’ll get various messages that the item can’t
run in multi-instance mode—or other cryptic errors. You must
restart the project inside the VB IDE and stop it again.

—Joe Karbowski, Traverse City, Michigan

VB5
Level: Beginning

CONSISTENT PROJECT DESCRIPTIONS
Always set the Description property of your ActiveX projects
(found in Properties) to be prefixed with your company name
or initials. That way, all your internal objects and components
will be grouped together alphabetically, and you won’t have to
search for them in the list.

—Joe Karbowski, Traverse City, Michigan

VB5
Level: Advanced

ROLL YOUR OWN
If you roll your own controls in VB5 to support database appli-
cations, consider putting a Valid property, a Validation event,
and a Required property on your controls. The Required prop-
erty helps you determine whether a text box (for example) can
be left blank, and it updates the Valid property. The Validation
event should be fired by your control, allowing the developers
to put their custom checks or links to the business-rules layer.
Then, the developers can set the Valid property of your control
accordingly. At the appropriate time, developers can check a
control’s Valid property to see if they can continue.

—Joe Karbowski, Traverse City, Michigan

VB4 32, VB5
Level: Intermediate

USE RDO TO ACCESS STORED FUNCTIONS
AND PROCEDURES ON A SERVER
This code illustrates a VB5 routine that calls a given server’s
stored functions or procedures. The first parameter is the stored
function procedure name that resides on the server (ORACLE,
SQL Server, and so on). The second parameter is a dynamic ar-
ray that takes an arbitrary number of input arguments for the
stored function or procedure. It returns data from the server:
20 AUGUST 1998 Supplement to Visual Basic Programmer’s Journal
Public db As rdoEngine
Public en As rdoEnvironment
Public cn1 As rdoConnection

Public Function Get_STOREDFUN(sFun As String, ParamArray _
sColumns() As Variant) As Variant [rdoResultset]

Dim sSQL As String
Dim Rs As rdoResultset
Dim Qry As rdoQuery
Dim X As Integer

sSQL = "{ ? = Call " & sFun
If UBound(sColumns) = -1 Then

'Do Nothing here
Else

sSQL = sSQL & " ("
For X = 0 To UBound(sColumns)

sSQL = sSQL & "?,"
Next

sSQL = Left(sSQL, Len(sSQL) - 1) & ")"
End If

sSQL = sSQL & " }"

Set Qry = cn1.CreateQuery("doFunction", sSQL)
Qry(0).Direction = rdParamReturnValue

For X = 0 To UBound(sColumns)
Qry(X + 1).Direction = rdParamInput
Qry.rdoParameters(X + 1) = sColumns(X)

Next

Set Rs = Qry.OpenResultset(rdOpenForwardOnly, _
rdConcurReadOnly)

Get_STOREDFUN = Qry(0)
[Set Get_STOREDFUN = Rs]

End Function

If you have three stored functions in a server, each one takes
a different number of input arguments. You can call the same
VB5 routine to get returning data:

sPrdPlant = Get_STOREDFUN("ZIP_2PLANT", CStr(txtZip))
sControl = Get_STOREDFUN("CONTRNUM")
fItemPrice = Get_STOREDFUN("GET_UnitPrice", Cstr(prd), _

Clng(qty))
—Kevin Shieh, Milton, Washington

VB4 32, VB5
Level: Intermediate

USE OLE AUTOMATION TO PRINT
ACCESS REPORTS
You can print canned reports in an Access database from VB in
different ways. I created this routine to print any report with
any criteria or filter from any database. It opens Access with the
user- or program-controlled database, then opens the report in
the mode specified. In order for this to work with Access con-
stants, you must select Access from the References dialog box
(accessed from References under the Tools menu in VB4 and
under the Project menu in VB5).

The PrintReport subroutine has the same parameters as the
http://www.devx.com

 101 TECH TIPS
For VB Developers For even more tricks and tips go to

 http://www.devx.com

Access Docmd.OpenReport command with the exception of
DBPath. I didn’t use IsMissing to test for missing parameters
because Access handles it for you, but you can add it to supply
your own default values for any missing parameters. Note: In
VB4, any optional parameter must be a Variant data type. When
you want to print a report from code, call the routine like this:

PrintReport MyDBPath, MyReportName, acPreview, _
MyCriteria

Sub PrintReport(ByVal DBPath As String, ByVal ReportName _
As String

Optional OpenMode As Integer, Optional Filter As String, _
Optional

Criteria As String)

Dim appAccess As Object
Set appAccess = CreateObject("Access.Application")
appAccess.OpenCurrentDatabase (DBPath)

'**
'Access constants for OpenMode are
'acNormal - Print (default)
'acPreview - Print Preview
'acDesign - Design Edit Mode

'**
appAccess.DoCmd.OpenReport ReportName, OpenMode, _

FilterName
Criteria

'**
'if open mode is Preview then don’t quit Access this can
'also be deleted if you do not want Access to quit after
'printing a report

'**
If OpenMode <> acPreview Then

appAccess.Quit
End If
Set appAccess = Nothing

End Sub
—James Kahl, St. Louis Park, Minnesota

VB4 32, VB5
Level: Intermediate

FIND OUT WHO IS CONNECTED TO AN
ACCESS DATABASE
 If you’re creating a Jet-based multiuser database system, you’ll
sometimes need to know who is currently connected to the shared
database. To get this information in situations where you don’t
want to integrate a full Access security system, you have two
choices. First, you can code in your own “connected users” table
and require users to log on with a simple form on startup. Sec-
ond, and better, you can use the simple msldbusr.dll. This is prob-
ably the best “power toy” ever created for multiuser Jet develop-
ers. It tells you the computer names connected by accessing the
LDB of the database file.You can rename the MDB with any exten-
sion, but the LDB is what counts and it works fine.

Once you get the data from the DLL, you can integrate it with
Mauro Mariz’s tip, “Send Messages to WinPopUp from Your Appli-
cation” [101 Tech Tips for VB Developers, Supplement to the Feb-
ruary 1998 issue of VBPJ, page 18] to tell the remote user to finish
up and shut down the remote app so you can perform mainte-
nance with an exclusive connection.
http://www.devx.com
If you want to integrate your own security system based on
connected users without forcing manual logons, you can let the
remote apps connect, then run the connections against a list of
allowed computer names and take action before allowing them
full access. Although this DLL is listed as “currently unsup-
ported,” it does only what it’s supposed to. You can get it, along
with a few other Jet locking utilities, at http://
support.microsoft.com/support/kb/articles/q176/6/70.asp.

—Robert Smith, San Francisco, California

VB4 32, VB5
Level: Intermediate

PERFORM SOME COMMON
DATABASE CHORES
These several database functions work together and perform
various utility functions, such as checking if fields and tables
exist, creating fields and tables, and so on. The interface hides
all the code and returns True or False to report the status of the
functions:

Function CreateDatabase(DatabasePath As String, dbLanguage _
As String, JetVersion As Integer) As Boolean
Dim TempWs As Workspace
Dim TempDB As Database

On Error GoTo Errors:
Set TempWs = DBEngine.Workspaces(0)
Set TempDB = TempWs.CreateDatabase(DatabasePath, _

dbLanguage, JetVersion)
CreateDatabase = True

Exit Function
Errors:

CreateDatabase = False
End Function

Function CreateTable(DatabasePath As String, NewTableName _
As String) As Boolean
Dim dbsTarget As Database
Dim tdfNew As TableDef

On Error GoTo Errors:
If TableExists(DatabasePath, NewTableName) = False _

Then
'This table does not exist on the target
'database, so it is ok to add it.
Set dbsTarget = OpenDatabase(DatabasePath)
Set tdfNew = _

dbsTarget.CreateTableDef(NewTableName)
With tdfNew

.Fields.Append .CreateField("Temp", dbInteger)
End With

'The new table has been created, append it to the
'database
dbsTarget.TableDefs.Append tdfNew
dbsTarget.TableDefs(NewTableName).Fields. _

Delete ("Temp")
dbsTarget.Close

CreateTable = True
Else

'This table does exist on the target
'database, so do not add it.

End If
Supplement to Visual Basic Programmer’s Journal AUGUST 1998 21

 101 TECH TIPS
For VB Developers
Exit Function
Errors:
 CreateTable = False
End Function

Function CreateField(DatabasePath As String, _
TargetTableName As String, NewFieldName As String, _
FieldDataType As Integer) As Boolean
Dim dbsTarget As Database
Dim tdfTarget As TableDef

On Error GoTo Errors:
CreateField = False
Set dbsTarget = OpenDatabase(DatabasePath)
If TableExists(DatabasePath, TargetTableName) Then

'The table exists, assign the table to the
'tabledef and proceed.
Set tdfTarget = _

dbsTarget.TableDefs(TargetTableName)
If Not FieldExists(DatabasePath, _

TargetTableName, NewFieldName) Then
'The Field doesn’t exist, so create it.
With tdfTarget

.Fields.Append _
.CreateField(NewFieldName, _
FieldDataType)

End With
CreateField = True

Else
'Field exists, we cannot create it.

End If
Else

'The table does not exist, so we cannot add a new
'field to it.

End If
Exit Function

Errors:
CreateField = False

End Function

Function TableExists(DatabasePath As String, TableName As _
String) As Boolean
Dim dbsSource As Database
Dim tdfCheck As TableDef

On Error GoTo Errors:
TableExists = False
Set dbsSource = OpenDatabase(DatabasePath)
With dbsSource

' Enumerate TableDefs collection.
For Each tdfCheck In .TableDefs

If tdfCheck.Name = TableName Then
TableExists = True
Exit For

Else
End If
Next tdfCheck

End With
Exit Function

Errors:
 TableExists = False
End Function

Function FieldExists(DatabasePath As String, TableName As _
String, FieldName As String) As Boolean
Dim dbsSource As Database
Dim tdfSource As TableDef
Dim fldCheck As Field
22 AUGUST 1998 Supplement to Visual Basic Programmer’s Journal
On Error GoTo Errors:
FieldExists = False
If TableExists(DatabasePath, TableName) Then

Set dbsSource = OpenDatabase(DatabasePath)
Set tdfSource = dbsSource.TableDefs(TableName)
With tdfSource

' Enumerate TableDefs collection.
For Each fldCheck In .Fields

If fldCheck.Name = FieldName Then
FieldExists = True
Exit For

End If
Next fldCheck

End With
Else

'The Table doesn't exist, so neither
'can the field.
FieldExists = False

End If
Exit Function

Errors:
FieldExists = False

End Function

If you do frequent lookups, it’s more productive to open and
close your database externally to the functions. Because this
code opens and closes the database each time, it’s not meant
for intensive or constant calling.

—Marc Mercuri, Somerville, Massachusetts

VB5
Level: Beginning

PASSWORD PROTECT AN ACCESS
DATABASE
For simple Microsoft Access security, set the database password
from the Security item under the Tools menu in Access, select
Set Database Password, and enter a password. To use the data-
base in VB, pass a value along with the “pwd” keyword to the
SOURCE value of the OpenDatabase method:

Dim db as Database
Dim Wkspc as WorkSpaces
Dim strPass as STRING

strPass = ";pwd=PASSWORD"

Set Wkspc = Workspaces(0)
Set db = Wkspc.OpenDatabase(DBName, False, False, strPass)

—Danny Valentino, Brampton, Ontario, Canada

VB4 32, VB5
Level: Beginning

GENERATE RANDOM STRINGS
This code helps test SQL functions or other string-manipulation
routines so you can generate random strings. You can generate
random-length strings with random characters and set ASCII
bounds, both upper and lower:

Public Function RandomString(iLowerBoundAscii As _
Integer, iUpperBoundAscii As Integer, _
lLowerBoundLength As Long, _
lUpperBoundLength As Long) As String
http://www.devx.com

 101 TECH TIPS
For VB Developers For even more tricks and tips go to

 http://www.devx.com

Dim sHoldString As String
Dim lLength As Long
Dim lCount As Long

'Verify boundaries
If iLowerBoundAscii < 0 Then iLowerBoundAscii = 0
If iLowerBoundAscii > 255 Then iLowerBoundAscii = 255
If iUpperBoundAscii < 0 Then iUpperBoundAscii = 0
If iUpperBoundAscii > 255 Then iUpperBoundAscii = 255
If lLowerBoundLength < 0 Then lLowerBoundLength = 0

'Set a random length
lLength = Int((CDbl(lUpperBoundLength) - _

CDbl(lLowerBoundLength) + _
1) * Rnd + lLowerBoundLength)

'Create the random string
For lCount = 1 To lLength

sHoldString = sHoldString & _
Chr(Int((iUpperBoundAscii - iLowerBoundAscii _
+ 1) * Rnd + iLowerBoundAscii))

Next
RandomString = sHoldString

End Function
—Eric Lynn, Ballwin, Missouri

VB4 32, VB5
Level: Intermediate

MAKE SURE ALL ACCESS QUERYDEF
OBJECTS ARE CLOSED
When you’re working with QueryDef (SQL instructions stored
on an MDB database) and open it, DAO loads all the QueryDefs.
For example, if you have an MDB with five QueryDefs named
qryCustomers, qryOrders, qryContacts, qrySales, and
qryPersons, and you want to use the qryCustomers, do this:

Dim qdCustomer as QueryDef
Dim rsCustomer as RecordSet

Set qdCustomer= Db.QueryDefs("qryCustomers")
qdCustomer.Parameters![Custom ID]= 195
Set rsCustomer= qdCustomer.OpenRecordSet(dbReadOnly)

While not rsCustomer.Eof
txtCustomerName= rsCustomer!Name

...........
rsCustomer.MoveNext

Wend

rsCustomer.Close 'Close it
set rsCustomer=Nothing
'Free the reference to rsCustomer

qdCustomer.Close 'Close it
set qdCustomer = Nothing
'Free the reference to qdCustomer

The problem is that DAO only closes the qdCustomer,
but the other four QueryDefs (qryOrders, qryContacts, qrySales,
and qryPersons) remain open. To solve the problem, use
this subroutine:

Public Sub ToNothing()
Dim qdGeneric as QueryDef
Shttp://www.devx.com
'Surf the QueryDefs Collection
For each qdGeneric in Db.QueryDefs

qdGeneric.close 'Close it
Set qdGeneric = Nothing

Next

End Sub

Now put the call to the subroutine ToNothing:
.
.
.

rsCustomer.Close
Set rsCustomer = Nothing
ToNothing

—Gonzalo Medina Galup, Miami, Florida

VB4 32, VB5
Level: Intermediate

USE NAME PARAMETERS WITH ORACLE
STORED PROCEDURES
When executing an Oracle stored procedure, use the named
parameter convention. In place of this code:

OraDatabase.ExecuteSQL _
("Begin Employee.GetEmpName (:EMPNO, :ENAME); end;")

Use this code:

OraDatabase.ExecuteSQL ("Begin Employee.GetEmpName _
(empno=>:EMPNO, ename=>:ENAME); end;")

The second example still works even if you change the posi-
tions of the stored-procedure arguments. Also, with this con-
vention, you can write a generic routine to assemble the SQL
statement without worrying about positioning the stored-pro-
cedure arguments.

—Arnel J. Domingo, Hong Kong, China

VB3, VB4 16/32, VB5
Level: Intermediate

DECLARE YOUR OBJECTS PROPERLY
Never declare an Object variable as New. If you do, you’ll always
increment the reference count of the object, regardless of
whether you use it. Also, remember to set your objects to Noth-
ing when finished. For instance, instead of this way:

Private Sub Foo()
Dim oCust as New clsCust
'do stuff with oCust

End Sub

Do it this way:

Private Sub Foo()
Dim oCust as clsCust
Set oCust = New clsCust
'do stuff with oCust
upplement to Visual Basic Programmer’s Journal AUGUST 1998 23

 101 TECH TIPS
For VB Developers
Set oCust = Nothing

End Sub
—Joe Karbowski, Traverse City, Michigan

VB4 32, VB5
Level: Beginning

USE THE OBJECT LIBRARY NAME WHEN
DIMMING OBJECT VARIABLES
I always put the word DAO in front of all references to DAO ob-
jects. Here are some examples:

Dim Db As DAO.DataBase
Dim rs As DAO.Recordset

This way, VBA knows what library to look in for the defini-
tion of DBEngine (the top object). If you don’t do this, VBA surfs
the references collections to find it. You can also use the word
VBA in front of functions (Left$, Mid$, MsgBox, and so on) and
write the subroutine or function like this:

Public Sub MsgBox ()
VBA.Msgbox "The new way to use VBA :-)", vbInformation + _

vbOkonly, "VBPJ TechTip Section"

End Sub

Private Sub Form_Load()
'Call the MsgBox Sub
MsgBox

End Sub
—Gonzalo Medina Galup, Miami, Florida

VB4 16/32, VB5
Level: Beginning

A BETTER USE FOR STRCONV
When using proper names, you sometimes need to capitalize
the first letter of each word. For example, you need to convert
“john smith” into “John Smith.” With VB3, you had to write a
custom function to do the job; VB4’s versatile StrConv routine,
on the other hand, lets you do it with one statement:

properName = StrConv(text, vbProperCase)

However, be aware that this variant of StrConv also forces a
conversion to lowercase for all the characters not at the begin-
ning of a word. In other words, “seattle, USA,” is converted to
“Seattle, Usa,” which you don’t want. You still need to write a
custom routine, but you can take advantage of StrConv to re-
duce the amount of code in it:

Function ProperCase(text As String) As String
Dim result As String, i As Integer
result = StrConv(text, vbProperCase)
' restore all those characters that
' were uppercase in the original string
For i = 1 To Len(text)

Select Case Asc(Mid$(text, i, 1))
Case 65 To 90 ' A-Z

Mid$(result, i, 1) = Mid$(text, i, 1)
24 AUGUST 1998 Supplement to Visual Basic Programmer’s Journal
End Select
Next
ProperCase = result

End Function
—Francesco Balena, Bari, Italy

VB4 32, VB5
Level: Beginning

LOAD A GRID FROM A SQL STATEMENT
Use this code for a generic routine to load a grid from a SQL
statement. The example is for Remote Data Objects (RDO) and
Sheridan Software Systems’ grid, but it works with minor modi-
fication for any grid and resultset type. Also, you can load combo
boxes in a similar fashion:

Public Sub LoadGridFromSQL(TargetGrid As SSDBGrid, rdoConn _
As rdoConnection, Sql As String, Optional ClearGrid As _
Boolean = True)
Dim J As Integer
Dim rsResult As rdoResultset
Dim sAddItem As String

If ClearGrid Then
TargetGrid.RemoveAll

End If
TargetGrid.Redraw = False

Set rsResult = rdoConn.OpenResultset(Sql, _
rdOpenForwardOnly, rdConcurReadOnly, rdExecDirect)

With rsResult
Do Until .EOF

'Build add item string
sAddItem = vbNullString
For J = 1 To .rdoColumns.Count

If IsNull(.rdoColumns.Item(J - 1)) Then
sAddItem = sAddItem & vbNullString & vbTab

Else
sAddItem = sAddItem & _

.rdoColumns.Item(J - 1) & vbTab
End If

Next J

'Remove extra tab from end
TargetGrid.AddItem Left$(sAddItem, _

Len(sAddItem) - 1)
.MoveNext

Loop
.Close

End With 'rsResult

TargetGrid.Redraw = True
Set rsResult = Nothing

End Sub
—Joe Karbowski, Traverse City, Michigan

VB4 16/32, VB5
Level: Beginning

INVISIBLE CONTROL PLACEMENT ON
MDIFORM CLIENT AREA
http://www.devx.com

 101 TECH TIPS
For VB Developers For even more tricks and tips go to

 http://www.devx.com

With VB4 or higher, you can place invisible controls—such as
the standard Timer and CommonDialog or UserControls built
with VB5 that have their InvisibleAtRuntime property set—
directly on an MDIForm. In previous versions of VB, you could
only put controls with an Align property on an MDIForm.

Because CommonDialog and Timer controls are often neces-
sary, programmers previously had to hide “container” forms or
use a PictureBox as a ToolBar and cash in on its container func-
tionality to hide the invisible controls. This is no longer neces-
sary, though it’s not widely known.

—Ron Schwarz, Mt. Pleasant, Michigan

VB5
Level: Intermediate

Q&D ZOOM USING FORMS 2.0 DESIGNER
How would you like to be able to make a form automatically
resize and reposition all its controls and fonts whenever you
resize the form? How would you like to do that using only two
lines of executable code and no third-party controls? It’s easy,
using one of VB5’s little-explored features: the Forms 2.0 Designer.

To place a Forms 2.0 Designer in your project, open the Com-
ponents window (hit Control T; select Components from the
Project menu; or right-click on the toolbox and select Compo-
nents). Click on the Designers tab.

A few caveats: You can only use the Forms 2.0 control set—it
appears in its own toolbox when you’re in the designer—and
ActiveX controls. Only the Forms 2.0 controls scale their fonts.
You can’t use control arrays in a Forms 2.0 Designer. And you’re
not allowed to distribute the Forms 2.0 engine, so users need to
have Office or Internet Explorer installed on their machines.

Here’s all you need to do:

Option Explicit
Private w As Long

Private Sub UserForm_Initialize()
w = Me.Width

End Sub

Private Sub UserForm_Resize()
Me.Zoom = (Me.Width / w) * 100

End Sub
—Ron Schwarz, Mt. Pleasant, Michigan

VB5
Level: Intermediate

SCROLLBARS AND 3-D EFFECTS ON
NON-MDI FORMS
Standard VB forms don’t support a scrollable client area. Nor-
mally, when one is needed, programmers resort to convoluted
solutions such as filling the client area with a picture box, plac-
ing another picture box inside the first, manually adding two
scrollbars, and placing the actual form content inside the nested
picture box. Then programmers add code to handle the scroll-
ing when the scrollbars are changed.

VB5’s Forms 2.0 Designer provides the ability to automati-
cally place scrollbars on a form and have them appear only when
required. Place a Forms 2.0 Designer into your project and ex-
amine the Properties window. Click on the Categorized tab, and
http://www.devx.com
look at the Scrolling section for information on the scrolling prop-
erties and their usage.

For information on how to add a Forms 2.0 Designer and
caveats on usage, see the “Q&D Zoom Using Forms 2.0
Designer” tip.

—Ron Schwarz, Mt. Pleasant, Michigan

VB5
Level: Intermediate

SPECIAL EFFECTS WITH FORMS 2.0
DESIGNER
Forms 2.0 Designer provides a variety of special visual effects.
Your forms can have flat, raised, sunken, etched, or bumpy back-
ground textures. You can also have the background picture tile,
zoom, or stretch (zoom without distortion) to the form size. For
background effects, check out the SpecialEffect property in the
Appearance section of the Properties window. Picture proper-
ties are covered in the Picture section.

For information on how to add a Forms 2.0 Designer
and caveats on usage, see the “Q&D Zoom Using Forms 2.0
Designer” tip.

—Ron Schwarz, Mt. Pleasant, Michigan

VB5
Level: Beginning

EASY UPDATES OF PROPERTY WINDOW
FOR MULTIPLE CONTROLS
When you’re editing a series of controls, you can multiselect
them either by clicking while holding down the Control button
or by “lassoing” them with the mouse, then enter the appropri-
ate data in the Properties window, and apply it to all selected
controls.

But what about those times when you need to edit the prop-
erties for several controls, but each needs different data? You’re
in for a tedious session of clicking on the controls one by one
and hopping back and forth between the Form window and Prop-
erties window.

Unless, of course, you’re in on a dirty little secret: When you
click on a control—or a form—you can simply start typing! As
soon as you type the first key, VB automatically switches focus
to the Properties window and starts entering your keystrokes
into the same property that you edited in the previous control.

—Ron Schwarz, Mt. Pleasant, Michigan

VB3, VB4-16/32, VB5
Level: Beginning

ROLL-YOUR-OWN DECIMAL ENTRY FILTER
Here’s an easy method for making sure your users enter only
numeric data, and only one decimal point. First, place two Pub-
lic procedures in a standard module. You can use Private proce-
dures in a form if you’re only using it there, but you’ll lose easy
portability for future projects.

The first procedure makes sure the decimal point is only en-
tered once. The second procedure filters out all non-numeric
characters except the decimal point:
Supplement to Visual Basic Programmer’s Journal AUGUST 1998 25

 101 TECH TIPS
For VB Developers
Public Sub DecCheck(Target As String, ByRef KeyStroke As _
Integer)
If InStr(Target, ".") And KeyStroke = 46 Then

KeyStroke = 0
End If

End Sub

Public Sub NumCheck(ByRef KeyStroke As Integer)
If (KeyStroke < 48 Or KeyStroke > 57) And (KeyStroke _

<> 46 And KeyStroke <> 8) Then
KeyStroke = 0

End If
End Sub

Then invoke the code from your TextBox’s KeyPress event:

Private Sub txtUnitPrice_KeyPress(KeyAscii As Integer)
DecCheck txtUnitPrice, KeyAscii
NumCheck KeyAscii

End Sub

One caveat: This code doesn’t prevent text characters from be-
ing pasted in via the clipboard.

—Ron Schwarz, Mt. Pleasant, Michigan

VB3, VB4 16/32, VB5, VBA
Level: Beginning

REPEAT PERFORMANCE
A simple loop through your main string lets you count the oc-
currences of a specified character or string. This function is use-
ful for determining if enough commas appear in your comma-
delimited string:

Function Tally(sText As String, sFind As String) As Long
Dim lFind As Long
Dim lLast As Long

Do
lFind = InStr(lLast + 1, sText, sFind)
If lFind Then

lLast = lFind
Tally = Tally + 1

End If
Loop Until lFind = 0

End Function
—Jeffrey Renton, Spring, Texas

VB5
Level: Intermediate

TRANSPORT A LIST
The typical way of entering user-specified data into a list box is
one entry at a time; however, you can accept multiple delimited
entries at once and add them to a list box with a call to this
function. Passing the function a delimited string fills the list box
with the values; the list box can be cleared first if requested in
the bClear parameter. If you pass an empty string, the values
from the list box are used to create a delimited string:

Function ConvertList(cList As Control, ByVal sText As _
String, ByVal sDelimiter As String, Optional bClear As _
Boolean = False) As String
26 AUGUST 1998 Supplement to Visual Basic Programmer’s Journal
Dim lLoop As Long
Dim lFind As Long

If Len(sText) Then
If bClear Then cList.Clear
Do

lFind = InStr(sText, sDelimiter)
If lFind Then

cList.AddItem Left$(sText, lFind - 1)
sText = Mid$(sText, lFind + 1)

End If
Loop Until lFind = 0
If Len(sText) Then cList.AddItem sText

Else
For lLoop = 0 To cList.ListCount - 1

If lLoop = cList.ListCount - 1 _
Then sDelimiter = vbNullString

ConvertList = ConvertList & cList.List(lLoop) _
& sDelimiter

Next lLoop
End If

End Function

Here’s how you can call it to fill a list, then output the same list
using a different delimiter:

Call ConvertList(List1, "yellow|green|red", "|", True)
Debug.Print ConvertList(List1, "", "/")

—Jeffrey Renton, Spring, Texas

VB3, VB4 16/32, VB5, VBA
Level: Beginning

FIND TEXT BETWEEN TWO STRINGS
This function is useful for returning a portion of a string between
two points in the string. You could, for example, extract a range
name returned by Excel found between parentheses:

Function Between(sText As String, sStart As _
String, sEnd As String) As String
Dim lLeft As Long, lRight As Long

lLeft = InStr(sText, sStart) + (Len(sStart) - 1)
lRight = InStr(lLeft + 1, sText, sEnd)

If lRight > lLeft Then Between = _
Mid$(sText, lLeft + 1, ((lRight - 1) - lLeft))

End Function

Note that it only works for the first occurrences of the start and
stop delimiters.

—Jeffrey Renton, Spring, Texas

VB5
Level: Beginning

TELL ME IT’S TRUE
The typical method of validating multiple expressions is to string
together a series of If statements separated with an equal num-
ber of And statements. Shorten that process by passing one or
more comma-delimited equations to return a True or False result:

Function IsTrue(ParamArray paOptions()) As Boolean
Dim lLoop As Long
http://www.devx.com

 101 TECH TIPS
For VB Developers For even more tricks and tips go to

 http://www.devx.com

IsTrue = True
For lLoop = LBound(paOptions) To UBound(paOptions)

IsTrue = IsTrue And paOptions(lLoop)
If paOptions(lLoop) = False Then Exit For

Next lLoop
End Function

—Jeffrey Renton, Spring, Texas

VB5
Level: Beginning

MAKE ONE FORM PARENT OF ANOTHER
Prior to VB5, when you wanted to make a form appear on top of
another form, you either made it modal or used an MDIForm
with children. If you wanted to go beyond that, you had to use
API calls. Starting with VB5, you can use the Show method’s
optional ownerform parameter to set one form as the parent of
another. This means you always place the child form—not an
MDI child—on top of the parent form, even though the parent
form remains active. You can also use the style vbModal param-
eter to force modality, but that defeats any reason to use
ownerform. Here’s how you invoke the ownerform parameter,
making a form a nonmodal child of a non-MDIForm:

Private Sub Command1_Click()
Form2.Show , Me

End Sub
—Ron Schwarz, Mt. Pleasant, Michigan

VB3, VB4 16/32, VB5
Level: Intermediate

DO EASY FORM-LEVEL KEYSTROKE
TRAPPING
If you set a form’s KeyPreview property to True, all keystrokes
for items on that form first trigger the form’s events. This makes
it easy to do form-level filtering and keystroke trapping. For ex-
ample, if you want to make all text boxes on a form force upper-
case entry, you can do it with three lines of executable code:

Private Sub Form_KeyPress(KeyAscii As Integer)
If KeyAscii >= 97 And KeyAscii <= 122 _

Then 'a-z
KeyAscii = KeyAscii - 32

End If
End Sub

—Ron Schwarz, Mt. Pleasant, Michigan

VB4 32, VB5
Level: Advanced

AVOID BINARY COMPATIBILITY
PROBLEMS
To prevent losing the ability to maintain binary compatibility
with compiled object code, take the first compiled build and
http://www.devx.com
move it into a separate directory, then tell VB to maintain com-
patibility with it. It makes intuitive sense to maintain compat-
ibility with each previous version, but it leaves lots of room for
breaking compatibility. Maintaining a separate version that is
used solely as a compatibility master protects you.

—Ron Schwarz, Mt. Pleasant, Michigan

VB3, VB4 16/32, VB5
Level: Intermediate

EMULATE A CLICK EVENT FOR RIGHT-
CLICKS OVER COMMANDBUTTON
CONTROLS
Sometimes it’s useful to trap the right click over controls such
as CommandButton. Unfortunately, the Click event only fires for
left button clicks. The MouseDown and MouseUp events fire for
both buttons, and even report which button was clicked, but
nothing in life could ever be that simple, right?

The first problem is that if you use the MouseDown event,
you trap the click when the user clicks down on the key, which
is counter to the way things normally work in Windows. For in-
stance, when you click the left button, the control’s Click event
won’t fire until you release, giving you the ability to slide off the
control before releasing. A fire-on-downstroke event gives no
such safety net.

So you’re probably thinking, “Well, then just use the MouseUp
event!” This solution creates another gotcha: Even if you slide
off the control before releasing, the MouseUp event fires any-
way!

Fortunately, the MouseUp event reports the mouse cursor’s
X and Y positions, and using simple math comparing them to
the control’s placement and size, it’s easy to determine whether
the mouse was over the control at the instant it was released.
Here’s how you do it:

Option Explicit
Private Sub Command1_MouseUp(Button As Integer, _

Shift As Integer, X As Single, Y As Single)
Dim OffMe As Boolean

If Button = 2 Then 'right button
X = X + Command1.Left
Y = Y + Command1.Top
OffMe = False
Select Case X

Case Is < Command1.Left, Is > _
(Command1.Left + Command1.Width)

OffMe = True
End Select
Select Case Y

Case Is < Command1.Top, Is > _
(Command1.Top + Command1.Height)

OffMe = True
End Select
If Not OffMe Then

'*****************
'Your code goes here
'*****************

End If
End If

End Sub
—Ron Schwarz, Mt. Pleasant, Michigan
Supplement to Visual Basic Programmer’s Journal AUGUST 1998 27

 101 TECH TIPS
For VB Developers
VB3, VB4 16/32, VB5
Level: Intermediate

Q&D SORT USING HIDDEN LIST BOX
VB has no built-in Sort function. Although lots of sort routines of
varying complexity and performance are available, there’s a simple
“cheat” that you might find useful. The standard VB ListBox con-
trol has a Sorted property. Anything you add to a list box will
automatically be placed in its proper rank, if you set Sorted to
True before running the program. (Sorted is read-only at run time.)

Then simply use the AddItem method to insert items, and
the ListBox maintains them in sorted order. A couple things to
watch out for: list boxes store everything as strings. Although
you can use Evil Type Coercion (ETC) to load numbers into them,
keep in mind that as strings, they’re sorted according to string
rules. That means that 900 are perceived as greater than 1,000.
This code uses random numbers and adds leading zeros to them
as needed after ETCing them to strings. This code uses two
CommandButtons, one ListBox, and one TextBox with its
MultiLine property set to True. Click on Command1 to load up
the ListBox, and click on Command2 to extract the data one ele-
ment at a time and display it in Text1.

Don’t forget to set the ListBox’s Visible property to False for
your real applications:

Option Explicit
Dim c As Long
Dim i As String
Private Sub Command1_Click()

List1.Clear
For c = 1 To 10

i = Int(Rnd * 10000)
While Len(i) < 4

i = "0" + i
Wend
List1.AddItem i

Next
End Sub
Private Sub Command2_Click()

Text1 = ""
For c = 0 To List1.ListCount

Text1 = Text1 & List1.List(c) & vbCrLf
Next

End Sub
—Ron Schwarz, Mt. Pleasant, Michigan

VB4 32, VB5
Level: Intermediate

A GENERIC ROUTINE TO FILL
UNBOUND LISTS
A common need in database processing is retrieving a list of the
values of a particular column field for every record in a table.
This function takes arguments for a database name, table name,
field name, and optional SQL criteria string, and it returns a col-
lection that contains the list of all row values for the specified
column field:

Public Function GetColumnData(ByVal DbName As String, _
ByVal TableName As String, ByVal DataFieldName As _
String, Optional WhereCriteria As String) As Collection
28 AUGUST 1998 Supplement to Visual Basic Programmer’s Journal
 http://www.devx.com

Dim WS As Workspace
Dim DB As Database
Dim RS As Recordset
Dim SQLQuery As String
Dim Results As Collection
Dim FieldValue As String
Dim Count As Integer

Set WS = CreateWorkspace("", "admin", "", dbUseJet)
Set DB = WS.OpenDatabase(DbName)
SQLQuery = "SELECT " & TableName & _

"." & DataFieldName & " FROM " & TableName
If WhereCriteria <> "" Then _

SQLQuery = SQLQuery & " WHERE " & WhereCriteria
Set Results = New Collection
Set RS = DB.OpenRecordset(SQLQuery, dbOpenForwardOnly)
If Not RS Is Nothing Then

Count = 0
'this count will be a unique key
'in the collection
Do While Not RS.EOF

FieldValue = RS.Fields(DataFieldName)
Results.Add FieldValue, CStr(Count)
Count = Count + 1
RS.MoveNext

Loop
RS.Close
Set RS = Nothing

End If
DB.Close
Set DB = Nothing
WS.Close
Set WS = Nothing
Set GetColumnData = Results
Set Results = Nothing

End Function

This procedure is great for filling unbound lists and combo
boxes or for driving other database processing based on the
returned list. Here’s a simple example:

' get a list of Social Security numbers
' for all employees over age 65
Dim lst As Collection

Dim i As Integer

Set lst = GetColumnData("employee.mdb", _
"tblEmployees", "SSNum", "Age>65")

If Not lst Is Nothing Then
For i = 1 To lst.Count

'do something with lst(i)
Next i
Set lst = Nothing

End If

In this code, efficiency is traded for ease of use. The proce-
dure opens a connection to the database each time it’s called,
which is an expensive operation, especially if used inside a loop.
As an alternative, you could pass an optional database object.
Another efficiency enhancement would be to declare the
GetColumnData function as Recordset. After the recordset is open,
simply Set GetColumnData = RS. By doing this, you can dispense
with the collection altogether. It would also save an iteration
through the recordset/collection within the GetColumnData func-
tion to assign it to the collection.

Also, note that duplicate values are allowed in the returned
collection. I left out error checking intentionally to keep the code
as short as possible.
—Allen Broadman, received by e-mail

