
 101 TECH TIPS
For VB Developers For even more tricks and tips go to

 http://www.devx.com

WELCOME TO THE EIGHTH EDITION

OF THE VBPJ TECHNICAL TIPS

SUPPLEMENT!

These tips and tricks were submitted by profes-
sional developers—VBPJ readers—using Visual Ba-
sic 3.0, Visual Basic 4.0, Visual Basic 5.0, Visual
Basic 6.0, Visual Basic for Applications (VBA), and
Visual Basic Script (VBS). The editors at Visual
Basic Programmer’s Journal compiled the tips. In-
stead of typing the code published here, download
the tips from the free, Registered Level of The De-
velopment Exchange at http://www.devx.com.

If you’d like to submit a tip to Visual Basic
Programmer’s Journal, please send it to User Tips,
Fawcette Technical Publications, 209 Hamilton
Ave., Palo Alto, California, USA, 94301-2500. You can
also fax it to 650-853-0230 or send it electronically
to vbpjedit@fawcette.com. Please include a clear
explanation of what the technique does and why
it’s useful, and indicate if it’s for VBA, VBS, VB3,
VB4 16- or 32-bit, VB5, or VB6. Please limit code
length to 20 lines. Don’t forget to include your e-
mail and mailing address. If we publish your tip,
we’ll pay you your choice of $25 or a one-year ex-
tension of your VBPJ subscription.

VB5, VB6
Level: Beginning

PREVENT CHECKBOX CHANGES
You’ll often want to display a checkbox-style listbox to show
users the values they have selected in an underlying database.
However, you don’t want to allow users to change the selec-
tions—that is, to change which boxes they checked. You can’t
disable the listbox because that stops users from scrolling the
list to see which items they checked. You can’t use Locked, be-
cause the listbox doesn’t have a Locked property.

Here’s one solution: Paint a Command button with the cap-
tion “Click to toggle enabled property” and a listbox on a form,
then change the listbox style to 1-Checkbox. Add this code:

Option Explicit
Dim mbDisabled As Boolean
Private Sub Command1_Click()

mbDisabled = Not mbDisabled
End Sub
Private Sub List1_ItemCheck(Item As Integer)

If mbDisabled Then
List1.Selected(Item) = Not List1.Selected(Item)

End If
End Sub
Shttp://www.devx.com
When mbDisabled is set to True, the changes made by the
user to the listbox selections are immediately reversed. It will
appear as if the selections haven’t changed at all, and the list is
still scrollable.

—Ian Champ, received by e-mail

VB4 32, VB5, VB6
Level: Intermediate

ESTABLISH A DATA DICTIONARY
If your SQL looks like this, you need to ask yourself how much
code you’d have to inspect and revise if you decided to change
a database field or table name, as frequently happens during
development:

SQLString = "SELECT [first name], [last name], " & _
"[line preferences]" & _
" FROM [imaging users] WHERE [user code] = " & _
"'" & Trim(UCase(UserIDText.Text)) & "'"

ODBCstatus = SQLExecDirect(ODBChandle1, SQLString, _
Len(SQLString))

What happens if SQL command conventions (field name de-
limiters) change? Because a compile doesn’t reveal such name
misspellings or convention flaws, code in obscure procedures
can be in production before defects are detected.

Our group established a table and field dictionary in a mod-
ule used for a recent large project. This helped us ensure that
we correctly pasted table and field names into all SQL commands.
It also provided a repository that simplified maintenance.

As database resource names changed or new name-delimit-
ing conventions were required, we revised the dictionary be-
fore recompiling. We also used the dictionary to convey descrip-
tive information about tables and fields to developers. Our dic-
tionary looks like this:

'tables:
Public Const tblUsers As String = "[imaging users]"
'data fields:
Public Const fldFirstName As String = "[first name]"

'16 characters
Public Const fldLastName As String = "[last name]"

'16 characters
Public Const fldLinePreferences As String = _

"[line preferences]"
'20 characters

Public Const fldUserCode As String = "[user code]"
'10 characters

Our SQL looks like this:

SQLString = "SELECT " & fldFirstName & _
", " & fldLastName & ", " & fldLinePreferences & _
" FROM " & tblUsers & " WHERE " & fldUserCode & " = " & _
"'" & Trim(UCase(UserIDText.Text)) & "'"

ODBCstatus = SQLExecDirect(ODBChandle1, SQLString, _
Len(SQLString))

Programmers don’t have to know the actual names of data-
base components. They always use the constants that refer to
the database components. A clean compile ensures you’ll use
correct names and name-delimiting conventions in your SQL
statements.

—Doug Hagy, Greensburg, Pennsylvania
upplement to Visual Basic Programmer’s Journal FEBRUARY 1999 1

 101 TECH TIPS
For VB Developers
VB4 32, VB5, VB6
Level: Intermediate

CONTEXT-SENSITIVE HELP FOR
DISABLED CONTROLS
If you want a form to support context-sensitive help, set the
WhatsThisButton and WhatsThisHelp properties on the form to
True, and set the WhatsThisHelpID property to a corresponding
help-file topic ID for any control on that form for which you want
help to be displayed.

Unfortunately, the help isn’t shown if the control’s Enabled
property is set to False. To solve this problem, create a label
under the control with the same dimensions, and clear its cap-
tion to make it invisible. Set the WhatsThisHelpID property to
the same value as the disabled control’s property.

—Frank Addati, Melbourne, Australia

VB3, VB4 16/32, VB5, VB6
Level: Intermediate

IMPROVE ON THE BUBBLE SORT
A bubble sort’s execution time is a multiple of the square of the
number of elements. Because of this, the bubble sort is said to
be an n-squared algorithm. You can easily make improvements
to a bubble sort to speed it up.

One way is to reverse the direction of passes reading the ar-
ray, instead of always reading the array in the same direction.
This makes out-of-place elements travel quickly to their correct
position. This version of a bubble sort is called the shaker sort,
because it imparts a shaking motion to the array:

Public Sub Shaker(Item() As Variant)
Dim Exchange As Boolean
Dim Temp As Variant
Dim x As Integer
Do

Exchange = False
For x = (UBound(Item)) To (LBound(Item) + 1) Step -1

If Item(x - 1) > Item(x) Then
Temp = Item(x - 1)
Item(x - 1) = Item(x)
Item(x) = Temp
Exchange = True

End If
Next x
For x = (LBound(Item) + 1) To (UBound(Item))

If Item(x - 1) > Item(x) Then
Temp = Item(x - 1)
Item(x - 1) = Item(x)
Item(x) = Temp
Exchange = True

End If
Next x

Loop While Exchange
End Sub

Although the shaker sort improves the bubble sort, it still ex-
ecutes as an n-squared algorithm. However, because most program-
mers can code a bubble sort with their eyes closed, this is a nice
way to shave 25 to 33 percent off the required execution time with-
out having to dig out the algorithm books. Still, you don’t want to
use either a bubble or shaker sort for extremely large data sets.

—Tan Shing Ho, Kuala Lumpur, West Malaysia
2 FEBRUARY 1999 Supplement to Visual Basic Programmer’s Journal
VB4 32, VB5, VB6
Level: Intermediate

SLAM SELECTED ITEMS INTO AN ARRAY
Use this code to retrieve all selected list items in a multiselect-
style listbox in one API call. It’s a lot easier than iterating through
a large list using For…Next. This code works against both nor-
mal and checkbox-style lists:

Private Declare Function SendMessage Lib "user32" Alias _
"SendMessageA" (ByVal hWnd As Long, ByVal wMsg _
As Long, ByVal wParam As Long, lParam As Any) As Long

Private Const LB_GETSELCOUNT = &H190
Private Const LB_GETSELITEMS = &H191
Private Sub Command1_Click()

Dim numSelected As Long
Const LB_ERR = -1
Dim r As Long
Dim i As Integer
'get the number of items selected.
'If the listbox is single-select style,
'numSelected will return -1 (LB_ERR).
'If the listbox is multiselect style,
'and nothing is selected, numSelected
'returns 0. Otherwise, numSelected returns
'the number selected (ala List1.SelCount)
numSelected = SendMessage(List1.hWnd, LB_GETSELCOUNT, _

0&, ByVal 0&)
'debug ...
Debug.Print numSelected; " items selected:"
Debug.Print "index", "item"
If numSelected <> LB_ERR Then

'dim an array large enough to hold
'the indexes of the selected items
ReDim sSelected(1 To numSelected) As Long
'pass the array so SendMessage can fill
'it with the selected item indexes
Call SendMessage(List1.hWnd, LB_GETSELITEMS, _

numSelected, sSelected(1))
'debug ...
'print out the items selected
'note that their index is 0-based
For i = 1 To numSelected

Debug.Print List1.List(sSelected(i))
Next

End If
End Sub

—Randy Birch, East York, Ontario, Canada

VB5, VB6
Level: Intermediate

CALL UP WINDOWS SHELL FEATURES
Here’s a little routine that provides a quick and dirty way to call
up some of the more oddball features of the Windows shell. It
works by emulating user keystrokes, so you’ll need to modify
the keys for non-English versions. Simply paste this code into a
standard module and pass the Enum of choice:

Private Declare Sub keybd_event Lib "user32" (ByVal bVk As _
Byte, ByVal bScan As Byte, ByVal dwFlags As Long, _
ByVal dwExtraInfo As Long)

Public Enum SystemKeyShortcuts
ExplorerNew = &H45 ' Asc("E")
FindFiles = &H46 ' Asc("F")
MinimizeAll = &H4D ' Asc("M")
http://www.devx.com

 101 TECH TIPS
For VB Developers For even more tricks and tips go to

 http://www.devx.com

RunDialog = &H52 ' Asc("R")
StartMenu = &H5B ' Asc("[")
StandbyMode = &H5E ' Asc("^") -- Win98 only!

End Enum
Public Sub SystemAction(VkAction As SystemKeyShortcuts)

Const VK_LWIN = &H5B
Const KEYEVENTF_KEYUP = &H2
Call keybd_event(VK_LWIN, 0, 0, 0)
Call keybd_event(VkAction, 0, 0, 0)
Call keybd_event(VK_LWIN, 0, KEYEVENTF_KEYUP, 0)

End Sub
—Randy Birch, East York, Ontario, Canada

VB5, VB6
Level: Beginning

KEEP TRACK OF INDEX NUMBERS
When using control arrays, I find it difficult to keep track of the
index number of each control. Even if I use constants, I often
have to look up the constant name for each field. Now, instead
of using constants for each index number, I use this code. First,
I declare an enumerated type for the index numbers:

Enum FieldConstants
LastName = 0
FirstName = 1
Age = 2
Address = 3

End Enum

I then create a property wrapper for the control array. The
wrapper takes in an enumerated constant that represents the
index number and returns the control in the array:

Property Get Fields(ByVal FieldNum As FieldConstants) _
As TextBox
Set Fields = txtFields(FieldNum)

End Property

The advantage to this wrapper is that when you type the prop-
erty name, Fields, VB prompts you with the constant names listed
in the enumerated type. This way, you can refer to controls in
the array by name, and you never have to look up constant names
again. Also, it makes the code more legible:

Private Sub Form_Load()
Fields(LastName).Text = "Mojica"

End Sub
—Jose Mojica, Davie, Florida

VB5, VB6
Level: Beginning

INCLUDE CODE FOR DEBUGGING
VB supports conditional compilation, just like Visual C++. However,
Visual C++ has a predefined constant named _DEBUG that makes it
easy to include code only while debugging, as in this code:

#ifdef _DEBUG
MessageBox(NULL,"Begin Procedure", _

"Debug Message",MB_OK);
#endif

In VB, you can do the same thing, but you need to declare the
Shttp://www.devx.com
variable in the Conditional Compilation Arguments fields in the
Make tab of the Project properties dialog, then remember to re-
move it before shipping the executable. Using the Debug.Assert
command is an easier way to have statements executed only
while debugging and not when running a compiled program.

For example, this line displays a message box only when run-
ning the program in the design environment and not in a com-
piled program:

Debug.Assert MsgBox("Begin Form_Load")

This happens because Debug.Assert works only in the de-
sign environment. To evaluate the assertion, VB executes the
statement. However, when you compile the program, the com-
piler removes this line from the executable.

—Jose Mojica, Davie, Florida

VB4 32, VB5, VB6
Level: Intermediate

NIX THE X
Sometimes, you want to show a form that you don’t want users
to be able to cancel by clicking on the X—it might not make
sense for your app. The best VB solution is to cancel the unload
in the form’s QueryUnload event. However, this allows users to
do something wrong, for which you then have to handle and
scold them. If you do nothing, it looks as if the form has a bug
and won’t cancel. Add this routine to a standard BAS module:

Private Declare Function GetSystemMenu Lib "user32" _
(ByVal hWnd As Long, ByVal bRevert As Long) As Long

Private Declare Function RemoveMenu Lib "user32" _
(ByVal hMenu As Long, ByVal nPosition As Long, _
ByVal wFlags As Long) As Long

Private Const MF_BYPOSITION = &H400&

Public Sub RemoveCancelMenuItem(frm As Form)
Dim hSysMenu As Long
'get the system menu for this form
hSysMenu = GetSystemMenu(frm.hWnd, 0)
'remove the close item
Call RemoveMenu(hSysMenu, 6, MF_BYPOSITION)
'remove the separator that was over the close item
Call RemoveMenu(hSysMenu, 5, MF_BYPOSITION)

End Sub

Then call the routine from any form as it loads:

Private Sub Form_Load()
RemoveCancelMenuItem Me

End Sub

After this call, the Close menu item in the system menu and
the option to cancel [X] will be disabled. Note that if you’re do-
ing other things with the system menu, you might have to ad-
just the position number in the RemoveMenu call.

—Josh Frank, Parsippany, New Jersey
upplement to Visual Basic Programmer’s Journal FEBRUARY 1999 3

 101 TECH TIPS
For VB Developers
VB3, VB4 16/32, VB5, VB6
Level: Beginning

COMPUTE CREDIT CARD CHECK DIGITS
The last digit in your credit card number is a check digit derived
from the other digits using the Luhn Formula as described in
ISO/IEC 7812-1:1993. Its primary purpose is to ensure accurate
entries of the credit card number during transactions. You can
apply the same technique to other applications such as employee
numbers or patient numbers. Using check digits for these num-
bers also ensures more accurate data entries:

Public Function CheckDigit(strNum As String) As Integer
Dim i As Integer
Dim iEven As Integer
Dim iOdd As Integer
Dim iTotal As Integer
Dim strOneChar As String
Dim iTemp As Integer
' Add digits in even ordinal positions
' starting from rightmost
For i = Len(strNum) - 1 To 2 Step -2

strOneChar = Mid$(strNum, i, 1)
If IsNumeric(strOneChar) Then

iEven = iEven + CInt(strOneChar)
End If

Next i
' Process digits in odd ordinal positions
' starting from rightmost
For i = Len(strNum) To 1 Step -2
strOneChar = Mid$(strNum, i, 1)

If IsNumeric(strOneChar) Then
' Double it
iTemp = CInt(strOneChar) * 2
If iTemp > 9 Then

' Break the digits (e.g., 19 becomes 1+9)
iOdd = iOdd + (iTemp \ 10) + (iTemp - 10)

Else
iOdd = iOdd + iTemp

End If
End If

Next i
' Add even and odd
iTotal = iEven + iOdd
' Return the 10's complement
CheckDigit = 10 - (iTotal Mod 10)

End Function

To test, pass your credit card number, excluding the last digit,
as a string parameter. The result should be the last digit of your
credit card number.

—Arnel J. Domingo, Hong Kong

VB4 32, VB5, VB6
Level: Advanced

USE THIS HIGHER-RESOLUTION
STOPWATCH
Use this code to create a class called HiResTimer:

'The number is codified as HighPart*2^32+LowPart
Private Type LARGE_INTEGER

LowPart As Long
HighPart As Long

End Type
4 FEBRUARY 1999 Supplement to Visual Basic Programmer’s Journal
Private Declare Function QueryPerformanceCounter Lib _
"kernel32" (lpPerformanceCount As LARGE_INTEGER) _
As Long

Private Declare Function QueryPerformanceFrequency Lib _
"kernel32" (lpFrequency As LARGE_INTEGER) As Long

Private m_TicksPerSecond As Double
Private m_LI0 As LARGE_INTEGER
Private m_LI1 As LARGE_INTEGER
Friend Sub Class_Initialize()

Dim LI As LARGE_INTEGER
If QueryPerformanceFrequency(LI) <> 0 Then

m_TicksPerSecond = LI2Double(LI)
Else

m_TicksPerSecond = -1
End If

End Sub
Friend Property Get Resolution() As Double

Resolution = 1# / m_TicksPerSecond
End Property
Friend Sub EnterBlock()

QueryPerformanceCounter m_LI0
End Sub
Friend Sub ExitBlock()

QueryPerformanceCounter m_LI1
End Sub
Friend Property Get ElapsedTime() As Double

Dim EnterTime As Double, ExitTime As Double
EnterTime = LI2Double(m_LI0) / m_TicksPerSecond
ExitTime = LI2Double(m_LI1) / m_TicksPerSecond
ElapsedTime = ExitTime - EnterTime

End Property
Friend Function LI2Double(LI As LARGE_INTEGER) As Double

Dim Low As Double
Const TWO_32 = 4# * 1024# * 1024# * 1024#
Low = LI.LowPart
If Low < 0 Then Low = Low + TWO_32

'Now Low is in the range 0...2^32-1
LI2Double = LI.HighPart * TWO_32 + Low

End Function

Here’s an example of the HiResTimer in use:

Dim hrt As HiResTimer, d As Double
Set hrt = New HiResTimer
Debug.Assert hrt.Resolution > 0
MsgBox "Resolution [usecs]:" & hrt.Resolution * 1000000#
hrt.EnterBlock
hrt.ExitBlock
MsgBox "Call overhead [usecs]:" & hrt.ElapsedTime * _

1000000#
hrt.EnterBlock
d = 355# / 113#
hrt.ExitBlock
MsgBox "Elapsed Time [usecs]:" & hrt.ElapsedTime * _

1000000#

Believe it or not, you can time even native-compiled code
division. For more information, look at the MSDN Library de-
scription of the kernel APIs used here. On x86 architectures, reso-
lution is better than 1 microsecond. Be careful, however, of trust-
ing single instance timings, as you’ll find the “resolution” of this
performance counter varies over time. In fact, the overhead of
simply calling QueryPerformanceCounter in VB is quite a mea-
surable time period itself.

Although you can time single operations, you’re still better
off averaging the time required for hundreds or thousands of
similar operations.

—Alessandro Coppo, Rapallo, Italy
http://www.devx.com

 101 TECH TIPS
For VB Developers For even more tricks and tips go to

 http://www.devx.com

VB4 32, VB5, VB6
Level: Intermediate

DRAW FRAMES ON FORM WITHOUT
CONTROL
The DrawEdge API provides a convenient way to draw a number
of interesting effects. You can change the EDGE_ constants to
give different border effects; the BF_ constants determine which
borders are drawn (for example, BF_BOTTOM):

Private Declare Function DrawEdge Lib "user32" (ByVal hDC _
As Long, qrc As RECT, ByVal edge As Long, ByVal _
grfFlags As Long) As Long

Private Declare Function GetClientRect Lib "user32" _
(ByVal hWnd As Long, lpRect As RECT) As Long

Private Type RECT
Left As Long
Top As Long
Right As Long
Bottom As Long

End Type
Const BDR_INNER = &HC
Const BDR_OUTER = &H3
Const BDR_RAISED = &H5
Const BDR_RAISEDINNER = &H4
Const BDR_RAISEDOUTER = &H1
Const BDR_SUNKEN = &HA
Const BDR_SUNKENINNER = &H8
Const BDR_SUNKENOUTER = &H2
Const BF_RIGHT = &H4
Const BF_LEFT = &H1
Const BF_TOP = &H2
Const BF_BOTTOM = &H8
Const EDGE_BUMP = (BDR_RAISEDOUTER Or BDR_SUNKENINNER)
Const EDGE_ETCHED = (BDR_SUNKENOUTER Or BDR_RAISEDINNER)
Const EDGE_RAISED = (BDR_RAISEDOUTER Or BDR_RAISEDINNER)
Const EDGE_SUNKEN = (BDR_SUNKENOUTER Or BDR_SUNKENINNER)
Const BF_RECT = (BF_LEFT Or BF_RIGHT Or BF_TOP Or BF_BOTTOM)

In the Form_Paint event, put this code where you wish to
draw the rectangle:

Private Sub Form_Paint()
Static Tmp As RECT
Static TmpL As Long
TmpL = GetClientRect(hWnd, Tmp)
TmpL = DrawEdge(hDC, Tmp, EDGE_SUNKEN, BF_RECT)

End Sub

If the rectangle doesn’t draw, do a Debug.Print on the TmpL
variable. It should read a nonzero value upon success.

—Jeff Shimano, Mississauga, Ontario, Canada

VB5, VB6
Level: Intermediate

QUICK TIMER CONTROL REPLACEMENT
Timer controls can be practical when you need to add a small de-
lay in program execution. However, if you need the delay in a class
module (instead of on a form), the actual control can be hard to get
at. Instead, use these functions in a single code module:

Option Explicit
Private Declare Function SetTimer Lib "user32" (ByVal _
Shttp://www.devx.com
hWnd As Long, ByVal nIDEvent As Long, ByVal uElapse _
As Long, ByVal lpTimerFunc As Long) As Long

Private Declare Function KillTimer Lib "user32" (ByVal _
hWnd As Long, ByVal nIDEvent As Long) As Long

Private m_cb As Object
Public Function timerSet(lTime As Long, cb As Object) _

As Long
Set m_cb = cb
timerSet = SetTimer(0, 0, lTime, AddressOf _

timerProcOnce)
End Function
Private Sub timerProcOnce(ByVal lHwnd As Long, ByVal _

lMsg As Long, ByVal lTimerID As Long, ByVal lTime _
As Long)
On Error Resume Next
Call KillTimer(0, lTimerID)
m_cb.cbTimer

End Sub

The class module then calls the function like this:

...
timerSet 10, Me
...

After 10 milliseconds, the code triggers the cbTimer method
in the class module:

Public Sub cbTimer()
' Do some stuff

End Sub

You can also use the function on forms instead of the intrin-
sic Timer control.

—Bo Larsson, Copenhagen, Denmark

VB4 32, VB5, VB6
Level: Intermediate

QUIRKS OF THE DIR$ FUNCTION
If you use the intrinsic VB Dir$ function to check for the exist-
ence of a certain file, then subsequently try to remove the direc-
tory where the file is found using the VB RMDir statement, you
get the error 75, “Path/File access error.” This error occurs even
if you kill the file prior to removing the directory.

You can see the problem if you manually create a directory
and file with the names C:\dummy\bla-bla.txt. Then try to go
step-by-step through this sample code to see what’s going on:

Private Sub Command1_Click()
If Dir$("C:\dummy\bla-bla.txt") = "" Then

'do nothing, file is not found
Else

'kill the file and remove the directory
Kill "C:\dummy\bla-bla.txt"
RmDir "C:\dummy"

End If
End Sub

The statement RmDir “C:\dummy” causes error 75 because
this directory is locked and cannot be removed.

To work around this problem, check for the existence of a
file by trying to open it for sequential/random/binary (anything
should work) access and close it immediately afterwards. If this
file exists, your routine will proceed with its code, where you
upplement to Visual Basic Programmer’s Journal FEBRUARY 1999 5

 101 TECH TIPS
For VB Developers
can kill the file and remove the directory. A trappable error 53,
“File not found,” indicates the file does not exist. After you trap
the error, you can redirect the execution of your code as required.
This code is a good example to start with:

Private Sub Command1_Click()
Dim FHandle As Long
Dim FileNAme As String
FileNAme = "C:\dummy\bla-bla.txt"
FH = FreeFile
On Error Goto ErrHadler
Open FileNAme For Input As FHandle
Close FHandle
Kill FileNAme
RmDir "C:\dummy"

CleanUp:
Exit Sub
ErrHadler:

Select case Err
Case 53 'File not found

Resume CleanUp
Case Else

'display error info
End Select

End Sub

You can’t use Sequential Access for Output or Append. If the
file does not exist, it is created automatically when the Open
statement executes, and all your code loses sense.

Also note that the RmDir statement causes error 75, “Path/
File access error,” if you try to remove a directory that’s not
empty. Kill all the files one by one prior to removing a directory,
or opt to use an API to do the job.

Of course, you would never want to go to this extreme unless
you find that there’s no alternative. This is an incredibly bizarre
behavior, and most apps would never be affected by it.

—Brian Hunter, Brooklyn, New York

VB5
Level: Intermediate

SETTING THE DESCRIPTION OF AN ADD-IN
When you use the Add-Ins project template to build your own
add-ins, the description of the add-in appearing in the Add-Ins
Manager window is always “My Addin.” It isn’t immediately clear
how you can change this string. At first, it seems the string cor-
responds to the project’s Description property, but it actually
corresponds to the Description property of the Connect class.

To change this property, press F2 to display the Object
Browser, then right-click on the class name and select the Prop-
erties menu item. Enter a description in the dialog box and also
a HelpContextID for the Class Module. The class description im-
mediately appears in the Object Browser when you click on the
class name in the left-most pane.

—Francesco Balena, Bari, Italy

VB3, VB4 16/32, VB5, VB6
Level: Beginning

KEEP MENU ITEMS IN SYNC WITH
ENABLED PROPERTY
How many times have you had to control the same processes
with both command buttons and corresponding menus? I ex-
6 FEBRUARY 1999 Supplement to Visual Basic Programmer’s Journal
pect you’d say “many,” which means you’ve had to set the En-
abled property of both the buttons and the menus, depending
on the availability of certain features, and you’ve had to keep
the status of the buttons and menus in sync in many places in
your code. This job can be tedious if conditions dictating the
Enabled status continuously change in your application. I’ll show
you how to cut your code in half.

You’ve probably noticed that if a main menu has submenus,
the user can use the main menu only to open a list of menu items.
However, the main menu’s Click event procedure is available to
you, the programmer. This procedure fires every time the user
opens the main menu, always before the user has a chance to
select a menu item. Use this event to check your Command but-
tons’ Enabled property that you set in other procedures of your
application, then set the Enabled property of the corresponding
menu items to the same value. This way, by the time the user
sees the menu item list, all menu items’ Enabled property is set
to the appropriate value.

For example, if you have a menu structure similar to this,
you can code your Edit menu Click event procedure:

Edit
Undo
Cut
Copy
Paste
Delete

Use this code in your Edit menu Click event procedure:

Private Sub mnuEdit_Click
mnuEditUndo.Enabled = cmdUndo.Enabled
mnuEditCut.Enabled = cmdCut.Enabled
mnuEditCopy.Enabled = cmdCopy.Enabled
mnuEditPaste.Enabled = cmdPaste.Enabled
mnuEditDelete.Enabled = cmdDelete.Enabled

End Sub

No matter how many times you change the Enabled property
of buttons, menu items will always be kept in sync.

—Serge Rodkopf, Brooklyn, New York

VB5, VB6
Level: Intermediate

ENUMERATE YOUR ERRORS
To keep a list of available error codes in your components, de-
clare a private enumeration:

Private Enum Errors
InvalidUserID = vbObjectError + 513
InvalidPassword
SearchNotFound

End Enum

Setting the first value sets the seed number for all subsequent
items in the list, each one incrementing by one. (Microsoft rec-
ommends starting at “512 plus 1” above vbObjectError.)

Now you won’t have to remember error numbers throughout
your code. Simply raise your errors like this:

Err.Raise Errors.InvalidUserID, "Login", "Invalid UserID"
http://www.devx.com

 101 TECH TIPS
For VB Developers For even more tricks and tips go to

 http://www.devx.com

When you type the enumeration name Errors, VB pops up a
list of available choices. Be careful, though, not to add new items
in the middle of the list, because the value of all entries below
the new item increases by one. This can cause the parent of the
object to handle errors incorrectly because the error numbers
will be different. You can avoid this by specifying exactly what
value you want for each Enum, instead of relying on the default
increment.

—Gregory Alekel, Portland, Oregon

VB4 32, VB5, VB6
Level: Intermediate

ALLOW MULTIPLE WINSOCK
CONNECTIONS TO ONE SERVER
The Winsock control allows you to make only one connection
between two computers. However, you can create multiple con-
nections (many computers to one) by creating multiple instances
of the Winsock control at run time.

Add a Winsock control to your form and set its index to 0,
then add this code into the server machine to allow multiple
connections to it:

Option Explicit
Public NumSockets As Integer
'//Public Variable to track number of Connections
Private Sub Form_Load()

Caption = Winsock1(0).LocalHostName & _
Winsock1(0).LocalIP

Winsock1(0).LocalPort = 1066
Print "Listening to " + Str(Winsock1(0).LocalPort)
Winsock1(0).Listen

End Sub
Private Sub Winsock1_Close(Index As Integer)

Print "Connection Closed :" & _
Winsock1(Index).RemoteHostIP

Winsock1(Index).Close
End Sub
Private Sub Winsock1_ConnectionRequest(Index As Integer, _

ByVal requestID As Long)
Print "Connection Request from : " & _

Winsock1(Index).RemoteHostIP
NumSockets = NumSockets + 1
'//Increase Number of Sockets by one.
Load Winsock1(NumSockets)
'//Load a New Winsock Object Nusockets as Index Value
Winsock1(NumSockets).Accept requestID
'//Accept the New Connection

End Sub
Private Sub Winsock1_DataArrival(Index As Integer, ByVal _

bytesTotal As Long)
Dim vtData As String
Winsock1(Index).GetData vtData, vbString
Print vtData

End Sub

You should now be able to continue to accept connections
from multiple sources.

—Stuart Snaith, Blyth, Northumberland, England
Shttp://www.devx.com
VB3, VB4 16/32, VB5, VB6
Level: Intermediate

VIEW SELECTED TEXT FROM THE
BEGINNING
Most professional and commercial applications exhibit a spe-
cific behavior when using dialog boxes with text fields: When
you tab to an input field, or hot-key (using some ALT-key combi-
nation), you fully select the existing text in the field. Any typing
then replaces the entire field. However, simply clicking on the
text field with the mouse just sets the focus without making any
text selection.

The VB Knowledge Base documents how to set this behavior
by capitalizing on the GetKeyState API call. However, the tech-
nique results in some inconvenience where the text itself is too
large for the field width. You wind up looking at the tail end of
the highlighted text, not the front end, so it can be difficult to
tell what the current text contains.

By combining the GetKeyState API with use of SendKeys and
the TextWidth method, you can define a complete subroutine
solution where a tab or hot-key to a large text field selects the
field, but leaves you looking at the text from the beginning, not
the end.

First, declare the GetKeyState API function, and add the
SelectWholeText routine, in your form:

Option Explicit
' Recall that in a form, you need "Private" on an API.
#If Win16 Then

Private Declare Function GetKeyState Lib "User" _
(ByVal iVirtKey As Integer) As Integer

#Else
Private Declare Function GetKeyState Lib "User32" _

(ByVal lVirtKey As Long) As Integer
#End If
' vbTab ' same as Chr$(&H9) - character constant
' vbKeyTab ' same as decimal 9 - key code constant
' vbKeyMenu ' same as decimal 18 (Alt key) - key code

' constant
Private Sub SelectWholeText(Ctl As Control)

' If you got to the "Ctl" field via either TAB or an
' Alt-Key, highlight the whole field. Otherwise select
' no text, since it must have received focus using a
' mouse-click.
' Note difference between vbTab (character) and vbKeyTab
' (numeric constant). If vbTab were used, we'd have to
' Asc() it to get a number as an argument.
' Use VB4/5's "With" to improve maintainability in case
' the parameter name changes.
With Ctl

If (GetKeyState(vbKeyTab) < 0) Or _
(GetKeyState(vbKeyMenu) < 0) Then
' We tabbed or used a hotkey - select all text. In
' the case of a long field, use Sendkeys so we
' see the beginning of the selected text.
' TextWidth Method tells how much width a string
' takes up to display (default target object is
' the Form).
If TextWidth(.Text) > .Width Then

SendKeys "{End}", True
SendKeys "+{Home}", True

Else
.SelStart = 0
.SelLength = Len(.Text)

End If
upplement to Visual Basic Programmer’s Journal FEBRUARY 1999 7

 101 TECH TIPS
For VB Developers
Else
.SelLength = 0

End If
End With

End Sub

Next, call the subroutine in the GotFocus event of any text field:

Private Sub txtPubID_GotFocus()
SelectWholeText txtPubID

End Sub
Private Sub txtTitle_GotFocus()

SelectWholeText txtTitle
End Sub

—Mark Cohen, Winnipeg, Manitoba, Canada

VB4 32, VB5, VB6
Level: Intermediate

DETERMINE WHICH SCROLLBARS ARE
VISIBLE
Sometimes, it’s useful to know whether a control is displaying
vertical scrollbars, horizontal scrollbars, both horizontal and
vertical, or no scrollbars at all. For instance, when determining
the amount of room inside a control, you might have to take into
account the space taken up by the scrollbars. This function,
written in VB5, returns an enumerated constant representing
the scrollbar state of the given control:

Private Declare Function GetWindowLong Lib "user32" Alias _
"GetWindowLongA" (ByVal hWnd As Long, ByVal nIndex _
As Long) As Long

'GetWindowLong Constants
Private Const GWL_STYLE = (-16)
Private Const WS_HSCROLL = &H100000
Private Const WS_VSCROLL = &H200000
'Used by VisibleScrollBars function
Enum Enum_VisibleScrollBars

vs_none = 0
vs_vertical = 1
vs_horizontal = 2
vs_both = 4

End Enum
Public Function VisibleScrollBars(ControlName As Control) _

As Enum_VisibleScrollBars
'
' Returns an enumerated type constant depicting the
' type(s) of scrollbars visible on the passed control.
'
Dim MyStyle As Long
MyStyle = GetWindowLong(ControlName.hWnd, GWL_STYLE)
'Use a bitwise comparison
If (MyStyle And (WS_VSCROLL Or WS_HSCROLL)) = _

(WS_VSCROLL Or WS_HSCROLL) Then
'Both are visible
Let VisibleScrollBars = vs_both

ElseIf (MyStyle And WS_VSCROLL) = WS_VSCROLL Then
'Only Vertical is visible
Let VisibleScrollBars = vs_vertical

ElseIf (MyStyle And WS_HSCROLL) = WS_HSCROLL Then
'Only Horizontal is visible
Let VisibleScrollBars = vs_horizontal

Else
'No scrollbars are visible
8 FEBRUARY 1999 Supplement to Visual Basic Programmer’s Journal
Let VisibleScrollBars = vs_none
End If

End Function

Hard-coding a scrollbar with a predetermined width or height
is not a good idea because these might vary depending on the
user’s display settings (accessibility options, desktop themes,
and so on). Call GetSystemMetrics to always ensure the proper
value for this metric.

—Michael B. Kurtz, McKees Rocks, Pennsylvania

VB4 32, VB5, VB6
Level: Intermediate

EASY CONFIRMATION
Sometimes you want to give your users the chance to confirm
that they wish to proceed with the closure of a form. Instead of
using a MsgBox function and a Select Case statement, put this
code in the Form_Unload event:

Private Sub Form_Unload(Cancel as Integer)
Cancel = (MsgBox("Quit now?", vbOKCancel Or _

vbQuestion, "Confirmation Demo") = vbCancel)
End Sub

Behind the Exit button and the Exit menu option, put a simple
Unload Me. Whenever users choose to exit, they will be asked
to confirm their action.

—Rae MacLeman, Peterborough, United Kingdom

VB4 32, VB5, VB6
Level: Beginning

USE MOUSEMOVE FOR EASY
STATUSBAR UPDATES
You can easily make your program show descriptive text on a
StatusBar control in response to mouse movement. Assign the
text to the appropriate panel in the MouseMove events of the
appropriate controls, then use the Form_MouseMove event to
clear text from the panel:

Private Sub txtAddress_MouseMove(Button As Integer, Shift _
As Integer, X As Single, Y As Single)
StatusBar1.Panels(1).Text = "Enter Address here."

End Sub
Private Sub txtName_MouseMove(Button As Integer, Shift _

As Integer, X As Single, Y As Single)
StatusBar1.Panels(1).Text = "Enter Name here."

End Sub
Private Sub Form_MouseMove(Button As Integer, Shift _

As Integer, X As Single, Y As Single)
StatusBar1.Panels(1).Text = ""

End Sub
—Ron Schwarz, Mt. Pleasant, Michigan
http://www.devx.com

 101 TECH TIPS
For VB Developers For even more tricks and tips go to

 http://www.devx.com

VB5, VB6
Level: Advanced

PROVIDE A HORIZONTAL SCROLL
EVENT FOR A LISTBOX
Subclassing a listbox allows you to monitor horizontal scrolling.
To subclass a listbox, you store the original WndProc in the
UserData area of the listbox, allowing a single replacement of
WndProc to work for all ListBox controls. WndProc notifies your
form of a horizontal scroll message by sending a
WM_MOUSEMOVE message with negative coordinates. The
MouseMove event receives negative X and Y values, plus a But-
ton value when horizontally scrolled, which is impossible under
normal operation. Be sure to restore the original WndProc in
the Form_Unload event:

'--- Form code
Private Sub Form_Load()

SetWindowLong List1.hwnd, GWL_USERDATA, _
SetWindowLong(List1.hwnd,GWL_WNDPROC, _
AddressOf WndProc)

SetWindowLong List2.hwnd, GWL_USERDATA, _
SetWindowLong(List2.hwnd, GWL_WNDPROC, _
AddressOf WndProc)

End Sub
Private Sub Form_Unload(Cancel As Integer)

SetWindowLong List1.hwnd, GWL_WNDPROC, _
GetWindowLong(List1.hwnd, GWL_USERDATA)

SetWindowLong List2.hwnd, GWL_WNDPROC, _
GetWindowLong(List2.hwnd, GWL_USERDATA)

End Sub
Private Sub List1_MouseMove(Button As Integer, Shift _

As Integer, X As Single, Y As Single)
If Button > 0 And X < 0 And Y < 0 Then Debug.Print _

"List1 Horizontal Scroll"
End Sub
Private Sub List2_MouseMove(Button As Integer, Shift _

As Integer, X As Single, Y As Single)
If Button > 0 And X < 0 And Y < 0 Then Debug.Print _

"List2 Horizontal Scroll"
End Sub
'--- Module code
Public Declare Function CallWindowProc Lib "user32" Alias _

"CallWindowProcA" (ByVal lpPrevWndFunc As Long, ByVal _
hwnd As Long, ByVal Msg As Long, ByVal wParam As Long, _
ByVal lParam As Long) As Long

Public Declare Function GetWindowLong Lib "user32" Alias _
"GetWindowLongA" (ByVal hwnd As Long, ByVal nIndex _
As Long) As Long

Public Declare Function SendMessage Lib "user32" Alias _
"SendMessageA" (ByVal hwnd As Long, ByVal wMsg As _
Long, ByVal wParam As Long, lParam As Any) As Long

Public Declare Function SetWindowLong Lib "user32" Alias _
"SetWindowLongA" (ByVal hwnd As Long, ByVal nIndex As _
Long, ByVal dwNewLong As Long) As Long

Public Const GWL_WNDPROC = (-4)
Public Const GWL_USERDATA = (-21)
Public Const WM_HSCROLL = &H114
Public Const WM_MOUSEMOVE = &H200
Public Function WndProc(ByVal hwnd As Long, ByVal Msg As _

Long, ByVal wParam As Long, ByVal lParam As Long) _
As Long
If Msg = WM_HSCROLL Then SendMessage hwnd, _

WM_MOUSEMOVE, 1, ByVal &HFFFF
WndProc = CallWindowProc(GetWindowLong(hwnd, _

GWL_USERDATA), hwnd, Msg, wParam, lParam)
http://www.devx.com
End Function

For brevity, this example omits the code that would add hori-
zontal scrollbars to the List1 and List2 controls, but it is readily
available in the Knowledge Base (Q192184).

—Matt Hart, Tulsa, Oklahoma

VB5, VB6
Level: Intermediate

SHOW DATA WITH OUTLOOK GRID
You can easily create a calendar grid similar to the one in Out-
look to show data. First, start a VB project, then place an
MSFlexGrid on the form, with two textboxes to set the start and
end dates and a command button to populate the grid. Paste
this code in the Form1 code pane:

Private Sub Command1_Click()
Dim ldBegDate As Date
Dim ldEndDate As Date
Dim lsMonth As String
Dim li, lsStr, lsStartDate, lsEndDate, liStartRow, _

liEndRow, liCnt, lsDate, liX
ldBegDate = Format(Text1, "mm/dd/yyyy")
ldEndDate = Format(Text2, "mm/dd/yyyy")
MSFlexGrid1.Clear: MSFlexGrid1.Cols = 5: _

MSFlexGrid1.Rows = 1: MSFlexGrid1.RowHeightMin _
= 800

For li = 0 To DateDiff("M", ldBegDate, ldEndDate)
lsMonth = Format(DateAdd("m", _

li, ldBegDate), "mmmyyyy")
'== check what month is being processed
lsStartDate = "": lsEndDate = ""
'== Starting Month
If InStr(1, lsMonth, Format(ldBegDate, "mmmyyyy")) _

Then lsStartDate = ldBegDate
'== Ending Month
If InStr(1, lsMonth, Format(ldEndDate, "mmmyyyy")) _

Then lsEndDate = ldEndDate
'== Neither Starting or Ending Month
If lsStartDate = "" Then lsStartDate = _

Format(DateAdd("m", li, ldBegDate), "mm/01/yyyy")
If lsEndDate = "" Then lsEndDate = _

Format(DateAdd("m", 1, Format(lsStartDate, _
"mm/01/yyyy")) - 1, "mm/dd/yyyy")

liStartRow = MSFlexGrid1.Rows
liEndRow = liStartRow + DateDiff("d", lsStartDate, _

lsEndDate)
MSFlexGrid1.Rows = MSFlexGrid1.Rows + _

liEndRow - liStartRow + 1
MSFlexGrid1.Col = 0
'== Put Dates in grid
For liCnt = 0 To DateDiff("d", _

lsStartDate, lsEndDate)
lsDate = DateAdd("d", liCnt, lsStartDate)
MSFlexGrid1.Row = liStartRow + liCnt
MSFlexGrid1.Text = lsDate
MSFlexGrid1.CellFontSize = 10: _

MSFlexGrid1.CellFontBold = True
MSFlexGrid1.CellAlignment = _

flexAlignCenterCenter
If WeekDay(lsDate, vbMonday) > 5 Then

For liX = 1 To MSFlexGrid1.Cols - 1
MSFlexGrid1.Col = liX
MSFlexGrid1.CellBackColor = _

&HC0C0C0: MSFlexGrid1.CellForeColor _
= &H80000015
Supplement to Visual Basic Programmer’s Journal FEBRUARY 1999 9

 101 TECH TIPS
For VB Developers
Next
MSFlexGrid1.Col = 0

End If
Next

Next '== li..Start to End Date

End Sub
—Danny Patel, Duluth, Georgia

VB3, VB4 16/32, VB5, VB6
Level: Beginning

AVOIDING HARD-CODED PATH FOR
DATA CONTROL TARGETS
You can easily create simple database projects in design mode
by assigning a set of database properties to the Data control.
Once you assign a database and record source, you can bind
controls to the available fields. However, when you assign a da-
tabase name, VB inserts an explicit path to the location where it
resides on your machine, such as, “D:\Program Files\Microsoft
Visual Studio\VB98\Tips Fall 98\NWIND.MDB”. If you compile
the application and send it to other people, it doesn’t run unless
their database is in the same location on their machines. You
can assign the properties in code and have them take effect at
run time. However, this prevents you from linking the bound
controls at design time. You can easily work around this by de-
signing the project on your machine, letting VB insert whatever
path information it wants, and reassigning the DatabaseName
property at run time:

Private Sub Form_Load()
Data1.DatabaseName = App.Path & "\NWIND.MDB"

End Sub

In this code, the database resides in the same directory as
the application itself. If you place it in a different directory, use
the appropriate path name.

—Ron Schwarz, Mt. Pleasant, Michigan

VB5, VB6
Level: Advanced

PROVIDE STATUS MESSAGES FOR MENUS
Subclassing a form lets you give a helpful message whenever a
user highlights a menu item. Use the Caption property to iden-
tify the menu item, then display the help message in a label
(lblStatus), which is on the form:

' --- Form code
Private Sub Form_Load()

origWndProc = SetWindowLong(hwnd, GWL_WNDPROC, _
AddressOf AppWndProc)

End Sub
Private Sub Form_Resize()

lblStatus.Move 0, ScaleHeight - lblStatus.Height, _
ScaleWidth

End Sub
Private Sub Form_Unload(Cancel As Integer)

SetWindowLong hwnd, GWL_WNDPROC, origWndProc
End Sub
'--- Module code
Type MENUITEMINFO
10 FEBRUARY 1999 Supplement to Visual Basic Programmer’s Journal
cbSize As Long
fMask As Long
fType As Long
fState As Long
wID As Long
hSubMenu As Long
hbmpChecked As Long
hbmpUnchecked As Long
dwItemData As Long
dwTypeData As String
cch As Long

End Type
Public Declare Function CallWindowProc Lib "user32" Alias _

"CallWindowProcA" (ByVal lpPrevWndFunc As Long, ByVal _
hwnd As Long, ByVal Msg As Long, ByVal wParam As Long, _
ByVal lParam As Long) As Long

Public Declare Sub CopyMemory Lib "kernel32" Alias _
"RtlMoveMemory" (hpvDest As Any, hpvSource As Any, _
ByVal cbCopy As Long)

Public Declare Function GetMenuItemInfo Lib "user32" Alias _
"GetMenuItemInfoA" (ByVal hMenu As Long, ByVal un As _
Long, ByVal b As Boolean, lpMenuItemInfo As _
MENUITEMINFO) As Long

Public Declare Function SetWindowLong Lib "user32" Alias _
"SetWindowLongA" (ByVal hwnd As Long, ByVal nIndex As _
Long, ByVal dwNewLong As Long) As Long

Public Const GWL_WNDPROC = (-4)
Public Const WM_MENUSELECT = &H11F
Public Const MF_SYSMENU = &H2000&
Public Const MIIM_TYPE = &H10
Public Const MIIM_DATA = &H20
Public origWndProc As Long
Public Function AppWndProc(ByVal hwnd As Long, ByVal Msg _

As Long, ByVal wParam As Long, ByVal lParam As Long) _
As Long
Dim iHi As Integer, iLo As Integer
Select Case Msg

Case WM_MENUSELECT
Form1.lblStatus.Caption = ""
CopyMemory iLo, wParam, 2
CopyMemory iHi, ByVal VarPtr(wParam) + 2, 2
If (iHi And MF_SYSMENU) = 0 Then

Dim m As MENUITEMINFO, aCap As String
m.dwTypeData = Space$(64)
m.cbSize = Len(m)
m.cch = 64
m.fMask = MIIM_DATA Or MIIM_TYPE
If GetMenuItemInfo(lParam, CLng(iLo), _

False, m) Then
aCap = m.dwTypeData & Chr$(0)
aCap = Left$(aCap, _

InStr(aCap, Chr$(0)) - 1)
Select Case aCap

Case "&Open": _
Form1.lblStatus.Caption = _
"Open a file"

Case "&Save": _
Form1.lblStatus.Caption = _
"Save a file"

End Select
End If

End If
End Select
AppWndProc = CallWindowProc(origWndProc, hwnd, Msg, _

wParam, lParam)
End Function

—Matt Hart, Tulsa, Oklahoma
http://www.devx.com

 101 TECH TIPS
For VB Developers For even more tricks and tips go to

 http://www.devx.com

VB5, VB6
Level: Intermediate

EXTEND INTRINSICS IN USERCONTROL
WRAPPERS
Sometimes you might want to create autoselecting combo boxes,
like those in Intuit Quicken or Microsoft Access, where items in
the list are selected as you type. Typically, techniques to do this
require code in the KeyPress and KeyDown events, which select
the items from the list. I’ll show you how to create a more intui-
tive user-interface design than using a standard combo box.

Instead of repeating this code (or calls to a generic function)
in the KeyPress event of every combo box in every project, cre-
ate your own combo box control with this functionality built in.
Create a new UserControl, add a combo box, and use the ActiveX
Control Interface Wizard to create Property Let and Get proce-
dures to set and retrieve the combo box’s standard properties.
Add this code to make sure the combo box always sizes to the
same size as the control:

Private Sub UserControl_Resize()
cbo.Move 0, 0, ScaleWidth
' The Combo Box height determines the height
' of the control
UserControl.Height = Screen.TwipsPerPixelY * cbo.Height

End Sub

Add an AutoSelect property as a Boolean value, so the devel-
oper can decide when to use the autoselecting functionality. The
Property Let procedure sets the value of the module-level Bool-
ean variable mfAutoSelect. Check the value of mfAutoSelect in
the KeyPress event:

Private Sub cbo_KeyPress (KeyAscii as Integer)
If mfAutoSelect Then

' Call generic function to select the first matching
' value in the list.
Call ComboBox_AutoSelect(cbo, KeyAscii)

End if
End Sub

You should also make a number of simple but useful improve-
ments to the standard combo box control. First, add a variant
ItemData property, create a LimitToList property similar to
combo boxes in Access, and select the text in the GotFocus event.
If you set the Appearance property to Flat, the combo box still
appears in 3-D, so work around this bug. By wrapping this code
in an ActiveX control, you reduce the code in your applications.

—Craig Randall, Wilmington, Massachusetts

VB4 32, VB5, VB6
Level: Beginning

ACCESS PROPERTIES ONLY THROUGH
THE OBJECT BROWSER
You can access certain properties of forms, modules, classes,
and events within them only through the Object Browser. To see
and update the properties, right-click on the element and select
Properties. The actual properties, as well as the fine points of
the update window, vary according to your version of VB, as
well as the type of object you’re editing.

—Ron Schwarz, Mt. Pleasant, Michigan
Suhttp://www.devx.com
VB4 32, VB5, VB6
Level: Intermediate

CREATE AUTOMATIC HOURGLASS
CURSORS
If you create an ActiveX control that uses a custom MousePointer
property, place the control on a form, and at run time change
the Screen.MousePointer property to an hourglass. You’ll see
that the mouse pointer reverts to the ActiveX control’s custom
cursor while over the control.

I discovered this when I created an ActiveX control that ap-
peared as a hyperlink and could be placed on a VB form. I
changed the MousePointer for the control to a pointing hand
cursor, similar to the cursor in Internet Explorer. When I used
the control in a project, the control’s Click event changed the
screen’s MousePointer to an hourglass, but this had no effect
while the mouse was over the ActiveX control.

To prevent this inconsistency, disable the form when you
show the hourglass, but enable it when the hourglass is turned
off. While the form is disabled, the MousePointer property of
the ActiveX control no longer takes precedence over the
Screen.MousePointer property. Use this generic clsHourglass
class module to change the mouse pointer and disable the cur-
rent window:

<clsHourglass>
Option Explicit

Private mintOldPointer As Integer
Private mlngHwnd As Long
Private Declare Function EnableWindow Lib "user32" _

(ByVal hWnd As Long, ByVal fEnable As Long) As Long
Private Sub Class_Initialize()

On Error Resume Next
' Save current mouse pointer
mintOldPointer = Screen.MousePointer
' Change to hourglass
Screen.MousePointer = vbHourglass
' Save the window handle and disable the
' current window.
mlngHwnd = Screen.ActiveForm.hWnd
EnableWindow mlngHwnd, 0
DoEvents

End Sub
Private Sub Class_Terminate()

On Error Resume Next
' Set pointer to old pointer
Screen.MousePointer = mintOldPointer
' Enable the previously visible window
EnableWindow mlngHwnd, 1

End Sub

Now, instead of explicitly changing the mouse pointer to an
hourglass and back and manually disabling and re-enabling
forms, use this code at the beginning of your event procedures:

Dim objHourglass as clsHourglass
Set objHourglass = New clsHourglass

With this approach, the Initialize event changes the mouse
pointer to an hourglass and disables the current form when the
procedure creates the objHourglass. The hourglass can’t acciden-
tally be left on because when the objHourglass variable loses
scope, the Terminate event fires, which returns the mouse pointer
to its original state and re-enables the form if it’s still loaded.

By using the EnableWindow API call, you can’t reload a form
pplement to Visual Basic Programmer’s Journal FEBRUARY 1999 11

 101 TECH TIPS
For VB Developers
accidentally if it was unloaded during the time the objHourglass
object had life. That could happen if you used the syntax
“frmCurrent.Enabled = True”. Multiple instances of objHourglass
won’t cause the mouse pointer to flicker, because the mouse
pointer’s current state is checked and saved before setting it to
an hourglass.

If the user keeps clicking on the form while the hourglass is
shown, the extra clicks are discarded because the form isn’t
enabled. And unlike earlier versions of VB, a form doesn’t deac-
tivate when disabled, so the title bar doesn’t flicker.

—Craig Randall, Wilmington, Massachusetts

VB3, VB4 16/32, VB5, VB6
Level: Beginning

TRANSLATE COLOR VALUES
With the RGB function, VB provides a neat and valuable tool for
converting separate Red, Green, and Blue values into a single
Long color value. However, VB won’t let you translate back from
this color value to its constituent RGB values. But, you can pick
the individual colors out of a hexadecimal representation of the
Long value produced by RGB. The colors fall in “BBGGRR” or-
der. Put this code in a module:

Type RGB_Type
R As Long
G As Long
B As Long

End Type
Function ToRGB(ByVal Color As Long) As RGB_Type

Dim ColorStr As String
ColorStr = Right$("000000" & Hex$(Color), 6)
With ToRGB
.R = Val("&h" & Right$(ColorStr, 2))
.G = Val("&h" & Mid$(ColorStr, 3, 2))
.B = Val("&h" & Left$(ColorStr, 2))
End With

End Function

To use this function, put a picture in a form’s Picture prop-
erty, and insert this code in that form:

Private Sub Form_MouseUp(Button As Integer, Shift _
As Integer, X As Single, Y As Single)
Dim RGB_Point As RGB_Type
RGB_Point = ToRGB(Point(X, Y))
Caption = RGB_Point.R & " " & RGB_Point.G & " " & _

RGB_Point.B
End Sub

Click on different places on the picture. VB3 users must re-
turn the values differently, because VB didn’t support the re-
turn of a user-defined type until VB4.

—Brian Donovan, Bakersfield, California

VB5, VB6
Level: Intermediate

DELEGATE GENERIC EVENT HANDLING
It can be useful to create generic controls of similar properties.
For example, if a project has 10 textboxes on different forms
that need to accept numeric input only, instead of repeating the
same code in every textbox, you can create a class called
12 FEBRUARY 1999 Supplement to Visual Basic Programmer’s Journal
clsGeneric and declare the control using WithEvents. You can
then trap the events in one place.

Create a collection of the clsGeneric class and keep adding
controls to the collection. When you end the app, set the Collec-
tion object to Nothing. You can use control arrays, but if you’re
using them across the forms, you don’t have to repeat the code:

' --- Save the following code in clsGeneric.cls
Option Explicit
Public WithEvents txtAny As TextBox
Private Sub txtAny_GotFocus()

If Len(Trim$(txtAny)) > 0 Then
txtAny.SelStart = 0
txtAny.SelLength = Len(txtAny)

End If
End Sub
' -- Save the following code in clsGenerics.cls
Option Explicit
Private mColGenerics As New Collection
Public Function Add(ByVal txtAny As TextBox, Optional _

ByVal Key As String = "") As clsGeneric
Dim clsAny As New clsGeneric
Set clsAny.txtAny = txtAny
If Key = "" Then

mColGenerics.Add clsAny
Else

mColGenerics.Add clsAny, Key
End If
Set Add = clsAny ' Return a reference to the new textbox

End Function
Public Function Count() As Long

Count = mColGenerics.Count
End Function
Public Sub Delete(ByVal Index As Variant)

mColGenerics.Remove Index
End Sub
Public Function Item(ByVal Index As Variant) As clsGeneric

Set Item = mColGenerics.Item(Index)
End Function
Public Function NewEnum() As IUnknown

Set NewEnum = mColGenerics.[_NewEnum]
End Function
' -- In any form or global module where you want to have
' -- this generic textboxes
Private clsTexts As New clsGenerics
' In form load add the controls to the collection like this.

clsTexts.Add Text1
clsTexts.Add Text2
clsTexts.Add Text3

' You can even declare clsTexts globally and keep adding
' controls in whatever forms needed.

—Badari Syam Mysore, Scotch Plains, New Jersey

VB3, VB4 16/32, VB5, VB6
Level: Beginning

EASILY DETERMINE WHETHER A
RECORDSET IS EMPTY
Use this quick and dirty routine to help find empty recordsets:

Public Function IsEmptyRecordset(rs As Recordset) As Boolean
IsEmptyRecordset = ((rs.BOF = True) And (rs.EOF = True))

End Function
—Badari Syam Mysore, Scotch Plains, New Jersey
http://www.devx.com

 101 TECH TIPS
For VB Developers For even more tricks and tips go to

 http://www.devx.com

VB3, VB4 16/32, VB5, VB6
Level: Beginning

REMOVE UNWANTED CHARACTERS
When working with or fixing Access databases and Excel spread-
sheets created by users at my company, I often have to use their
strings from the table or spreadsheet to save the resultant fixed
file. The problem is that the strings they use often contain ille-
gal file-name characters. This function strips away the illegal
characters and replaces them with an underscore character. To
use the character, call the function, passing the string you want
checked and stripped:

Public Function fConvert(ByVal sStr As String) As String
Dim i As Integer
Dim sBadChar As String
' List all illegal/unwanted characters
sBadChar = "/<>?\|*:'"
' Loop through all the characters of the string
' checking whether each is an illegal character
For i = 1 To Len(sStr)

If InStr(sBadChar, Mid(sStr, i, 1)) Then
Mid(sStr, i, 1) = "_"

End If
Next I
fConvert = sStr

End Function
—Grant Porteous, St. Cloud, Minnesota

VB4 32, VB5, VB6
Level: Beginning

USE UNADVERTISED CONTROLS
When you open VB5’s Components list, you’ll see many controls
and libraries not available for your development. Some are con-
trols you downloaded from Web pages; others come from who
knows where.

If you’ve ever tried adding an unknown control to your IDE,
you probably saw an icon added to your control’s palette. How-
ever, since you couldn’t use the control, you probably just ig-
nored them all and selected the controls that you’re positive
came with your copy of VB.

Wait! Open that Component list again and select these items:

Wang Image Admin Control
Wang Image Scan Control
Wang Image Edit Control
Wang Image Thumbnail Control

Under Windows 98, the name “Kodak” is used, rather than
“Wang.” Add these items to your palette, then add them to a
form. Select the control and press F1. Up pops the developer’s
help on using the controls in your projects.

These may not be the final word on imaging controls, but with
all their properties and methods for image manipulation, conver-
sions, displays, and more, they’re leaps and bounds beyond pic-
ture and image controls, and they’re free—with Windows 95/OSR2,
Windows 98, and NT4. The one restriction you need to be aware of
is that these controls are not redistributable, and Windows 95 us-
ers must download them (from http://www.eastmansoftware.com)
and perform the separate install themselves.

—Robert Smith, San Francisco, California
Suhttp://www.devx.com
VB4 32, VB5, VB6
Level: Beginning

ACTIVATE SINGLE CONTROL ON ALL TABS
A single object, employing a single set of event routines, may be
used across all pages in the SSTab control. Draw the object on
the form that contains the SSTab and drag it on any page on
SSTab. The object appears in the same location on all pages and
can be operated from any page, because it occupies a higher
position in the ZOrder. I’ve found this useful for items such as a
command button to exit the program from any page.

You can also use this technique for textboxes, listboxes, and
combo boxes. Information entered on one page appears on all
others and can be changed on any page. If you don’t want the
control to appear on certain pages, then code the click event for
SSTab, like this:

Private Sub SSTab1_Click(PreviousTab As Integer)
If SSTab1.Tab = 1 or SSTab1.Tab = 3 Then

cmdQuit.Visible = False
Else

cmdQuit.Visible = True
End If

End Sub

You can use similar coding to change other properties on
different pages, such as repositioning by setting up a Select Case
block on SSTab1.Tab for more complex instructions.

—Marvin Boehm, Skokie, Illinois

VB3, VB4 16/32, VB5, VB6
Level: Beginning

PERFORM LOOK-AHEAD TYPING
This subroutine lets the user perform look-ahead typing, as in
Netscape Navigator, Microsoft Internet Explorer, and other apps.
The sub takes an array of strings and a TextBox control as pa-
rameters. You can easily change the subroutine to accept a
ListBox control instead of an array of strings. You can call this
sub from the TextBox’s KeyUp event:

Public Sub DoLookAhead(strArray() As String, ctlText _
As TextBox)
Dim strText As String
Dim strLength As Integer
Dim x As Integer
strText = LCase$(ctlText.Text)
strLength = Len(strText)
If strLength > 0 Then

For x = LBound(strArray) To UBound(strArray)
If strText = LCase$(Left$(strArray(x), strLength)) Then

'we found something
If Len(strArray(x)) > strLength Then

ctlText.Text = ctlText.Text + _
Mid$(strArray(x), strLength + 1)

ctlText.SelStart = strLength
ctlText.SelLength = Len(strArray(x)) - _

strLength
End If
Exit For

End If
Next

End If
End Sub

—Robert Gelb, Huntington Beach, California
pplement to Visual Basic Programmer’s Journal FEBRUARY 1999 13

 101 TECH TIPS
For VB Developers
VB3, VB4 16/32, VB5, VB6
Level: Beginning

DO YOU KNOW ABOUT DATE LITERALS?
Using a Date literal is about 12 times faster—according to
NuMega TrueTime—than using the CDate function and convert-
ing a string literal. Here’s an example:

Dim TestDate as Date
'The following 2 lines produce the same results
TestDate = #7/1/98#
TestDate = CDate("7/1/98")

Just as you enclose a string literal with quotes (“Hello”), you
can enclose Date literals with pound signs (#07/07/1998#). So,
these are all valid Date literals: #July 7, 1998#, #7-JUL-98#, and
#07/07/1998#.

—James Bragg, received by e-mail

VB5, VB6
Level: Beginning

KEEP TRACK OF GLOBAL VARIABLES
Forgetting the names of global variables is easy to do. You can
solve this problem by letting VB remember the variables for you
by making the variables into fields of a type definition:

Private Type GlobalVars
INIFilePath As String

SqlServerConnection As rdoConnection
UserName As String
Password As String
DSN As String

End Type
Public Globals As GlobalVars

With this code included in a code module, you need to type
only “Globals” and VB lists them all.

—Bennett Sy, Toronto, Ontario, Canada

VB5, VB6
Level: Beginning

IS THE ARRAY DIMENSIONED?
Use this function to determine whether a dynamic array has been
dimensioned. I use dynamic arrays to store small, foreign key
tables locally for fast lookups. Not wanting to load all the arrays
initially, I load them only when needed and only once.

I wanted to exploit the fact that the array hasn’t yet been
dimensioned as the indicator to load, instead of a Boolean vari-
able, but I ran into complications with the standard tests in VB.
My function returns True if the dynamic array passed to it has
yet to be ReDim’d:

Public Function IsArrayEmpty(aArray As Variant) As Boolean
On Error Resume Next
IsArrayEmpty = UBound(aArray)
IsArrayEmpty = Err ' Error 9 (Subscript out of range)

End Function

Use this test code:
14 FEBRUARY 1999 Supplement to Visual Basic Programmer’s Journal
Option Explicit
Private Sub cmdTest_Click()

Dim aDynamic() As Integer
MsgBox IsArrayEmpty(aDynamic)
ReDim aDynamic(8)
MsgBox IsArrayEmpty(aDynamic)

End Sub
—Richard Hundhausen, Boise, Idaho

VB4 16/32, VB5, VB6
Level: Beginning

QUICK CHECK ON COLLECTION KEY
You might need to determine whether a certain key is in a collec-
tion. The Collection object doesn’t provide a method to retrieve a
key after you add an object to the collection. Instead of keeping a
separate list of the keys in the collection, use this function:

Public Function IsKeyInCollection(col As Collection, sKey _
As String) As Boolean
On Error Resume Next
col (sKey)
' this will cause an error if key is not in collection
IsKeyInCollection = (Err.Number = 0)

End Function

You can easily modify this function to make it a property of a Collection
class.

—Alan Borowski, Cudahy, Wisconsin

VB5, VB6
Level: Intermediate

SET THE WIDTH OF A LISTVIEW COLUMN
The ListView Windows control has some additional features that
haven’t been exposed in the OCX provided with VB. One feature
can shrink or enlarge columns automatically to ensure that data
in each column is visible and that no screen space is wasted.
Use this function to make an API call:

Public Declare Function SendMessage Lib "user32" Alias _
"SendMessageA" (ByVal hwnd As Long, ByVal wMsg As _
Long, ByVal wParam As Long, lParam As Any) As Long

Const LVM_SETCOLUMNWIDTH = &H1000 + 30
Const LVSCW_AUTOSIZE = -1
Const LVSCW_AUTOSIZE_USEHEADER = -2

Sub AdjustColumnWidth(LV As ListView, AccountForHeaders _
As Boolean)
Dim col As Integer, lParam As Long
If AccountForHeaders Then

lParam = LVSCW_AUTOSIZE_USEHEADER
Else

lParam = LVSCW_AUTOSIZE
End If
' Send the message to all the columns
For col = 0 To LV.ColumnHeaders.Count - 1

SendMessage LV.hwnd, LVM_SETCOLUMNWIDTH, col, _
ByVal lParam

Next
End Sub

You can resize all columns, taking the text in column headers
into account by passing True as the second argument:
http://www.devx.com

 101 TECH TIPS
For VB Developers For even more tricks and tips go to

 http://www.devx.com

AdjustColumnWidth ListView1, True

If you pass False as the second argument, the text in column
headers is ignored in determining the correct width.

—Marco Losavio, Gioia del Colle, Italy

VB4 32, VB5, VB6
Level: Beginning

DON’T DUPLICATE IMAGELIST CONTROLS
A common control, such as a TreeView or a ListView, can use an
ImageList control placed on a form different from the current
one. This is useful when many forms in your application contain
an ImageList control with the same images.

Instead of using multiple ImageList controls, you can gather
all your images into one ImageList control placed (if possible)
on a form that’s always loaded, such as the main form in your
application. Assign that ImageList control at run time to the
ImageList property of other controls:

Private Sub Form_Load()
Set TreeView1.ImageList = frmMain.ImageList1
Set ListView1.ImageList = frmMain.ImageList1

End Sub

This approach lets you save some space in the compiled EXE
file and use fewer resources at run time.

—Francesco Balena, Bari, Italy

VB6
Level: Beginning

INSTALL THE TOOLBAR WIZARD
VB6 comes with a Toolbar Wizard that lets you easily create a
Toolbar control and the code that responds when users click on
its buttons. However, how you install this wizard is unclear, be-
cause it doesn’t appear in the list displayed in the Add-Ins Man-
ager dialog box. You have to install the VB6 Application Wizard,
which also contains the Toolbar Wizard. You can then activate
the Toolbar Wizard from the Add-Ins menu or automatically when
you drop a Toolbar control on a form.

—Francesco Balena, Bari, Italy

VB4 32, VB5, VB6
Level: Beginning

USE MAXFILESIZE WITH OPENFILE
COMMON DIALOGS
When working with OpenFile common dialogs, set a large value
for the MaxFileSize property, which affects the maximum length
of the string returned in the FileName property. This is the string
containing the names of all the files selected by the user. For
example, you can reserve 10 kilobytes for this string by execut-
ing this statement before showing the dialog:

CommonDialog1.MaxFileSize = 10240

The returned string’s format depends on how many files the
user selects. If the user selects only one file, the string returns in
Suhttp://www.devx.com
the FileName property that contains the complete name of this
file (path + name). If the user selects multiple files, the returned
value contains the directory name, followed by all the names
without the path. If you use the cdlOFNExplorer flag, the separa-
tor character is the Null character. If you’re using VB6, you can
use the Split function to quickly parse the returned value:

CommonDialog1.Filter = "All files (*.*)|*.*"
CommonDialog1.FilterIndex = 1
CommonDialog1.Flags = cdlOFNAllowMultiselect Or _

cdlOFNFileMustExist Or cdlOFNExplorer
CommonDialog1.MaxFileSize = 10240
CommonDialog1.CancelError = True
CommonDialog1.Filename = ""
CommonDialog1.ShowOpen
If Err = 0 Then

' Parse the result into an array of strings
Dim names() As String, i As Integer
names() = Split(CommonDialog1.Filename, vbNullChar)
' Print file names, including path
If UBound(names) = 0 Then

' only one file was selected
Print names(0)

Else
' multiple files were selected
For i = 1 To UBound(names)

Print names(0) & "\" & names(i)
Next

End If
End If

—Francesco Balena, Bari, Italy

VB5, VB6
Level: Beginning

HANDLING THE SYSINFO CONTROL
You can use the SysInfo control, distributed with VB5 and VB6,
to write applications that can sport the Windows logo and that
can behave intelligently when a system setting changes. The
control fires the DisplayChanged event when the screen resolu-
tion changes, and it fires the SysColorChange event when the
user modifies one or more system colors in the Control Panel.

For example, when you have a maximized form and the user
switches to a higher screen resolution, VB correctly resizes the
form to occupy a larger screen area. However, when the user
switches to a lower resolution, VB doesn’t resize the form ac-
cordingly. This code does the trick:

Private Sub SysInfo1_DisplayChanged()
' If the form is maximized, restore it and
' maximize it again
With Me

If .WindowState = vbMaximized Then
.Visible = False
.WindowState = vbNormal
.WindowState = vbMaximized
.Visible = True

End If
End With

End Sub

For more information on this topic, look in VB’s Help file under
“SysInfo.”

—Francesco Balena, Bari, Italy
pplement to Visual Basic Programmer’s Journal FEBRUARY 1999 15

 101 TECH TIPS
For VB Developers
VB5, VB6
Level: Beginning

TAKE TASKBAR INTO ACCOUNT WHEN
RESIZING FORMS
The SysInfo control lets you resize your forms to take any taskbar
into account. For example, you might want to move and resize
your form so it always appears at the bottom of the work area—
that is, the area not taken by the Windows or Office taskbar or
any other taskbar currently visible:

Private Sub Form_Load()
MoveForm

End Sub
' this form is 1000 twips tall, and is located
' near the bottom border of the workarea
Sub MoveForm()

With SysInfo1
Me.Move .WorkAreaLeft, _

.WorkAreaTop + .WorkAreaHeight _
- 1000, .WorkAreaWidth, 1000

End With
End Sub

To move and resize the form automatically when the user
moves the taskbars, creates new taskbars, or hides them, you
have to trap the SysInfo control’s SettingChanged event:

Private Sub SysInfo1_SettingChanged(ByVal Item As Integer)
Const SPI_SETWORKAREA = 47
If Item = SPI_SETWORKAREA Then

MoveForm
End If

End Sub

For more information on this topic, look in VB’s Help file under
“SysInfo.”

—Francesco Balena, Bari, Italy

VB4 16/32, VB5, VB6
Level: Beginning

USE TYPENAME INSTEAD OF
TYPEOF…IS
To write reusable routines that work with multiple types of con-
trols, test the control type using the TypeName function in place
of the TypeOf…Is statement. For example, take a look at this
routine—you can reuse it in another project only if you also add
the RichTextBox control to the Components list:

' save the selected text to an open file
' works with TextBox and RichTextBox controls
Sub SaveSelectedText(ctrl As Control, filenum As Integer)

If TypeOf ctrl Is TextBox Then
Print #filenum, ctrl.SelText

ElseIf TypeOf ctrl Is RichTextBox Then
Print #filenum, RichTextBox1.SelRTF

End If
End Sub

To avoid this problem and gain additional benefits such as
the ability to use a Select Case block, use the TypeName func-
tion instead:

Sub SaveSelectedText(ctrl As Control, filenum As Integer)
Select Case TypeName(ctrl)
16 FEBRUARY 1999 Supplement to Visual Basic Programmer’s Journal
Case "TextBox"
Print #filenum, ctrl.SelText

Case "RichTextBox"
Print #filenum, RichTextBox1.SelRTF

End Select
End Sub

—Francesco Balena, Bari, Italy

VB4 16/32, VB5, VB6
Level: Beginning

DON’T USE VARTYPE TO TEST FOR
OBJECTS
To test whether an argument passed to a procedure is an object
or something else, use the IsObject function in place of the
VarType function. Consider this routine:

Sub TestType(arg As Variant)
If VarType(arg) = vbObject Then

Print "It's an object"
ElseIf VarType(arg) = vbString Then

Print "It's a string"
End If

End Sub

If you pass a control or an object that exposes a default prop-
erty, the routine incorrectly reports the default property type:

TestType Text1 ' displays "It's a string"

This is the correct way to test for an object:

If IsObject(arg) Then
Print "It's an object"

ElseIf VarType(arg) = vbString Then
Print "It's a string"

End If

For more information on this topic, look in VB’s Help file under
“VarType.”

—Francesco Balena, Bari, Italy

VB5, VB6
Level: Intermediate

READ THE SERIAL NUMBER OF A DISK
The new Microsoft Scripting Runtime library includes a
FileSystemObject hierarchy containing several objects that let you
obtain information about your drives, folders, and files. For ex-
ample, you can retrieve the serial number of a disk using this code:

' Get the serial number of drive C:
Dim fso As New Scripting.FileSystemObject
Dim dr As Scripting.Drive
' Get a reference to the Drive object
Set dr = fso.GetDrive("C")
Print Hex$(dr.SerialNumber)

You can also easily check whether a drive has enough free
space on it, using the Drive object’s FreeSpace property:

Print "Drive C: has " & dr.FreeSpace " bytes free."

For more information, look in VB’s Help file under “Dictionary”
and “FileSystemObject.”

—Francesco Balena, Bari, Italy
http://www.devx.com

 101 TECH TIPS
For VB Developers For even more tricks and tips go to

 http://www.devx.com

VB3, VB4 16/32, VB5, VB6
Level: Beginning

CHECK INEQUALITY OF DATABASE
FIELD VALUES
Conventional wisdom suggests this code works fine when check-
ing a field in a database—or any Variant, for that matter—for
inequality to some other value:

If ![Name] <> "abc" Then
Debug.Print "<>"

Else
Debug.Print "="

End If

In reality, however, this isn’t always the case. For example, if
the field you’re checking is of value Null, then the test also re-
turns Null, invoking the Else clause. A quick, though perhaps
obscure solution, is to check for equality instead:

If ![Name] = "abc" Then
Debug.Print "="

Else
Debug.Print "<>"

End If
—Andrew L. Ayers, Phoenix, Arizona

VB3, VB4 16/32, VB5, VB6
Level: Beginning

MAKE THE ANTS MARCH
To implement a quick and easy version of the old “marching ants”
line around a control, place two CommandButtons, a Shape, and
a Timer control on a form. Then insert this code into the form:

Private Sub Command1_Click()
StartMarchingAnts

End Sub
Private Sub Command2_Click()

StopMarchingAnts
End Sub
Private Sub StartMarchingAnts()

Timer1.Interval = 200
Timer1.Enabled = True
Shape1.Visible = True

End Sub
Private Sub StopMarchingAnts()

Timer1.Enabled = False
Shape1.Visible = False

End Sub
Private Sub Timer1_Timer()

If Shape1.BorderStyle = vbBSDot Then
Shape1.BorderStyle = vbBSDashDot

Else
Shape1.BorderStyle = vbBSDot

End If

V
L

E
A
f
a
s
l

c
m

P

E
P

E

V
L

I
I
D
w
d
M
t
h
g
Y

Suhttp://www.devx.com

End Sub

Pressing Command1 starts the animation; Command2 stops
it. This works for all shape types.

—George Hughen, Hamilton, Massachusetts
B3, VB4 16/32, VB5, VB6
evel: Beginning

NSURE FOOLPROOF DATA ENTRY TIMES
sking users to enter time values can often lead to problems

ormatting what the user enters. I use this piece of code to cre-
te a drop-down list of hours, minutes, and AM/PM, which en-
ures the user specifies the proper time and eliminates prob-
ems manipulating the time later in the program.

To use this example, create a combo-box array with three
ombo boxes: lower bound = 0; upper bound = 2; and a com-
and button. Use this code:

rivate Sub Form_Load()
Dim i As Integer, strTemp As String
'Fill hour combo box
For i = 12 To 1 Step -1

Combo1(0).AddItem i
Next i
'Fill minutes combo box
For i = 0 To 59

strTemp = i
If Len(strTemp) = 1 Then strTemp = "0" & i
Combo1(1).AddItem ":" & strTemp

Next i
'Fill AM/PM combo box
Combo1(2).AddItem "AM"
Combo1(2).AddItem "PM"
'First item in each combo box is displayed
For i = Combo1.LBound To Combo1.UBound

Combo1(i).ListIndex = 0
Next i

nd Sub
rivate Sub Command1_Click()

Dim sTime
'Format the time VB style
sTime = "#" & Combo1(0) & Combo1(1) & ":00 " _

& Combo1(2) & "#"
MsgBox sTime

nd Sub
—Jason Natale, Mississauga, Ontario, Canada

B4 32, VB5, VB6
evel: Intermediate

MPLEMENT A LISTVIEW
TEMDOUBLECLICK EVENT
ouble-clicking an icon or file name in Explorer is the standard
ay of launching an application in Windows. However, if you’re
eveloping an app that uses the ListView control from the
icrosoft Windows Common Controls library (COMCTL32.ocx),

his functionality is not directly exposed through an event. You
ave a DoubleClick event for the ListView control, but this event
ets raised when a user double-clicks anywhere on the control.
ou also have an ItemClick event, but this event is only fired for

a single-click on a ListItem object. Wouldn’t it be nice to have an
ItemDoubleClick event?

Use the ListView’s MouseUp event to trap the X and Y coor-
dinates of where the user last clicked the mouse. Here’s a way to
implement this functionality in your code:

Option Explicit
Private sngListViewX As Single
Private sngListViewY As Single
Private Sub ListView1_MouseUp(Button As Integer, Shift As _

Integer, x As Single, y As Single)
pplement to Visual Basic Programmer’s Journal FEBRUARY 1999 17

 101 TECH TIPS
For VB Developers
sngListViewX = x
sngListViewY = y

End Sub

After trapping these coordinates, pass them to the HitTest
method of the ListView control during the DoubleClick event to
determine whether a user has double-clicked on a particular
ListItem object:

Private Sub ListView1_DblClick()
Dim lListItem As ListItem
Set lListItem = ListView1.HitTest(sngListViewX, _

sngListViewY)
If (lListItem Is Nothing) Then

MsgBox "You did not double-click on a ListItem."
Else

MsgBox "You double-clicked on ListItem=" & _
lListItem.Text

End If
Set lListItem = Nothing

End Sub
—Dwayne Bradley, Mooresville, North Carolina

VB4 16/32, VB5, VB6
Level: Intermediate

USE CUSTOM FORM PROPERTIES
You can easily find out whether your user clicked on OK or on
Cancel on a modal dialog. This example also prevents the user
from unloading the form, and thereby prevents you from inad-
vertently reloading the form when you reference the properties
of controls on the form:

Option Explicit
Private mUserHitOK As Boolean
Public Property Get UserHitOK() As Boolean

UserHitOK = mUserHitOK
End Property
Private Sub cmdCancel_Click()

mUserHitOK = False
Call Hide

End Sub
Private Sub cmdOK_Click()

mUserHitOK = True
Call Hide

End Sub
Private Sub Form_QueryUnload(Cancel As Integer, UnloadMode _

As Integer)
If UnloadMode = vbFormControlMenu Then

Cancel = True
cmdCancel.Value = True

End If
End Sub

You only need this code to check the user action:

Call frmModalDialog.Show(vbModal)
If frmModalDialog.UserHitOK Then

' Do Something Here
Else

' Do Something Else Here
End If
Call Unload(frmModalDialog)
Set frmModalDialog = Nothing

—Thomas Weiss, received by e-mail
18 FEBRUARY 1999 Supplement to Visual Basic Programmer’s Journa
VB4 32, VB5, VB6
Level: Intermediate

RETRIEVING A CONTROL FROM THE
CONTROLS COLLECTION WITH AN HWND
The GetDlgCtrlID API, when passed a valid hWnd, returns a value
that directly corresponds to the Index property of the Controls
collection:

Private Declare Function GetDlgCtrlID Lib "user32" _
(ByVal hWnd As Long) As Long

Private Sub Form_Load()
Dim i As Long
On Error Resume Next
For i = 0 To Controls.Count - 1

Debug.Print Controls(i).Name,
Debug.Print _
␣ ␣ Controls(GetDlgCtrlID(Controls(i).hWnd) - 1).Name

Next i
End Sub

This loop, located in the Form_Load event of a form with a
number of controls on it, loops through all the controls and prints
the name of each windowed control twice, demonstrating that it
has correctly located the control without looping through the
control collection.

—Jeremy Adams, Tiverton, Devon, United Kingdom

VB4 32, VB5, VB6
Level: Advanced

CREATE SEE-THROUGH CONTROLS
Most standard controls send WM_CTLCOLORXXXXX messages
to their parent when they’re about to draw themselves. VB nor-
mally handles these messages and responds appropriately with
the ForeColor and BackColor properties that you have set for
the control. However, it’s possible to override the standard be-
havior and achieve a transparent background with several ba-
sic control types. This example uses the ubiquitous MsgHook
for subclassing, but you can use whichever method you prefer.
You must ensure that ClipControls is set to False for the form;
otherwise, you’ll see whatever is below your form as the back-
ground for the controls instead of the background bitmap:

Option Explicit
Private Declare Function SetBkMode Lib "gdi32" (ByVal hdc _

As Long, ByVal nBkMode As Long) As Long
Private Declare Function SetTextColor Lib "gdi32" _

(ByVal hdc As Long, ByVal crColor As Long) As Long
Private Declare Function GetStockObject Lib "gdi32" _

(ByVal nIndex As Long) As Long
Private Const WM_CTLCOLORSTATIC = &H138
Private Const TRANSPARENT = 1
Private Const NULL_BRUSH = 5
Private Sub Form_Load()

' Me.ClipControls = False
' Must be set at design-time!
Msghook1.HwndHook = Me.hWnd
Msghook1.Message(WM_CTLCOLORSTATIC) = True

End Sub
Private Sub Msghook1_Message(ByVal msg As Long, ByVal wp _

As Long, ByVal lp As Long, result As Long)
Select Case msg

Case WM_CTLCOLORSTATIC
' Call the original windowproc to handle the
l http://www.devx.com

 101 TECH TIPS
For VB Developers For even more tricks and tips go to

 http://www.devx.com

' foreground color for the Controls etc.
Call Msghook1.InvokeWindowProc(msg, wp, lp)
' Set the background mode to transparent
Call SetBkMode(wp, TRANSPARENT)
' Get the stock null brush and return it
' The brush does nothing when the control
' paints using it, hence giving the
' transparency effect
result = GetStockObject(NULL_BRUSH)

Case Else
' [Replace this line with your own code
' to call the original windowproc]
result = Msghook1.InvokeWindowProc(msg, wp, lp)

End Select
End Sub

This code works for option buttons and checkboxes. I haven’t
found any side effects yet. You can make other controls trans-
parent in a similar way, but some of them—including textboxes
and listboxes—don’t work correctly because the background
doesn’t get erased. You can probably get them to work correctly
with additional code. Frames are even harder to get to work cor-
rectly; I resorted to using a button created using CreateWindowEx
with the BS_GROUPBOX style. Even then, I had to return a brush
of approximately the color of the background image; otherwise,
you could see the line under the text for the frame.

—Jeremy Adams, Tiverton, Devon, United Kingdom

VB4 16/32, VB5, VB6
Level: Beginning

LOOP ON NON-NUMERIC INDICES
You might occasionally need to execute a group of statements
with different and unrelated values of a variable. For example,
say you need to verify that a number isn’t a multiple of 2, 3, 5, 7,
or 11. In these circumstances, you can’t use a regular For…Next
loop, unless you store these values in a temporary array. Here’s
a more concise solution:

Dim n As Variant
For Each n In Array(2, 3, 5, 7, 11)

If (TestNumber Mod n) = 0 Then
Print "Not prime"
Exit For

End If
Next

You can use the same technique to iterate on non-numeric
values:

' check if a string embeds a shortened weekday name
Dim d As Variant
For Each d In Array("Sun", "Mon", "Tue", "Wed", "Thu", _

"Fri", "Sat")
If Instr(1, TestString, d, vbTextCompare) Then

Print "Weekday = " & d
Exit For

End If
Next

—Francesco Balena, Bari, Italy
Suhttp://www.devx.com
VB6
Level: Beginning

MAKE SURE DATA IS UPDATED
When using bound controls, data is updated automatically when
you Move to a different record. Data is not updated when you
close the form. To ensure that data is saved when you close, per-
form a Move 0. This saves the changes before unloading the form.

—Deborah Kurata, Pleasanton, California

VB4 32, VB5, VB6
Level: Advanced

IS THE ACTIVE DESKTOP ACTIVE?
Sometimes you want to know if the desktop is in Active Desktop
mode—for example, to set an HTML wallpaper. I couldn’t find a
function to accomplish this, but this hack works on all Windows
95/98 and NT4 desktops that I’ve tested it on:

Private Declare Function FindWindow& Lib "user32" Alias _
"FindWindowA" (ByVal lpClassName$, ByVal lpWindowName$)

Private Declare Function FindWindowEx& Lib "user32" Alias _
"FindWindowExA" (ByVal hWndParent&, ByVal _
hWndChildAfter&, ByVal lpClassName$, ByVal _
lpWindowName$)

Public Function IE4ActiveDesktop() As Boolean
Dim Templong&
Templong = FindWindow("Progman", vbNullString)
Templong = FindWindowEx(Templong, 0&, _

"SHELLDLL_DefView", vbNullString)
Templong = FindWindowEx(Templong, 0&, _

"Internet Explorer_Server", vbNullString)
If Templong > 0 Then

IE4ActiveDesktop = True
Else

IE4ActiveDesktop = False
End If

End Function
—Don Bradner, Arcata, California

VB4 32, VB5, VB6
Level: Advanced

IS THE NT SCREEN SAVER RUNNING?
Use this code to determine whether NT is running on its screen
saver desktop. NT5 has an SPI function, but this code should
work on any NT version:

Private Declare Function OpenDesktop& Lib "user32" Alias _
"OpenDesktopA" (ByVal lpszDesktop$, ByVal dwFlags$, _
ByVal fInherit&, ByVal dwDesiredAccess&)

Private Declare Function CloseDesktop& Lib "user32" _
(ByVal hDesktop&)

Public Function NTSaverRunning() As Boolean
Dim hDesktop As Long
Const MAXIMUM_ALLOWED = &H2000000
If winOS <> WinNT Then
'Make your OS determination elsewhere

NTSaverRunning = False
Exit Function

End If
NTSaverRunning = False
pplement to Visual Basic Programmer’s Journal FEBRUARY 1999 19

 101 TECH TIPS
For VB Developers
hDesktop = OpenDesktop("screen-saver", 0&, 0&, _
MAXIMUM_ALLOWED)

If hDesktop = 0 Then
If Err.LastDllError = 5 Then

NTSaverRunning = True
End If

Else
Templong = CloseDesktop(hDesktop)
NTSaverRunning = True

End If
End Function

—Don Bradner, Arcata, California

VB4 32, VB5, VB6
Level: Intermediate

GRAB SYSTEM FONTS EASILY
At times, you might want to retrieve the current system font
settings, such as the font being used for window title bars, or
the menu or message box font. You could delve into the Regis-
try, but why go to the trouble if the SystemParametersInfo API
does it for you? Here’s how:

Private Declare Function SystemParametersInfo Lib "user32" _
Alias "SystemParametersInfoA" (ByVal uAction As Long, _
ByVal uParam As Long, lpvParam As Any, ByVal fuWinIni _
As Long) As Long
Private Type LOGFONT

lfHeight As Long
lfWidth As Long
lfEscapement As Long
lfOrientation As Long
lfWeight As Long
lfItalic As Byte
lfUnderline As Byte
lfStrikeOut As Byte
lfCharSet As Byte
lfOutPrecision As Byte
lfClipPrecision As Byte
lfQuality As Byte
lfPitchAndFamily As Byte
lfFaceName As String * 32

End Type
Private Type NONCLIENTMETRICS

cbSize As Long
iBorderWidth As Long
iScrollWidth As Long
iScrollHeight As Long
iCaptionWidth As Long
iCaptionHeight As Long
lfCaptionFont As LOGFONT
iSMCaptionWidth As Long
iSMCaptionHeight As Long
lfSMCaptionFont As LOGFONT
iMenuWidth As Long
iMenuHeight As Long
lfMenuFont As LOGFONT
lfStatusFont As LOGFONT

lfMessageFont As LOGFONT
End Type
Private Const SPI_GETNONCLIENTMETRICS = 41
Public Function GetCaptionFont() As String

Dim NCM As NONCLIENTMETRICS
NCM.cbSize = Len(NCM)
Call SystemParametersInfo(SPI_GETNONCLIENTMETRICS, _

0, NCM, 0)
If InStr(NCM.lfCaptionFont.lfFaceName, Chr$(0)) _

> 0 Then
GetCaptionFont = _
20 FEBRUARY 1999 Supplement to Visual Basic Programmer’s Journal
Left$(NCM.lfCaptionFont.lfFaceName, _
InStr(NCM.lfCaptionFont.lfFaceName, _
Chr$(0)) - 1)

Else
GetCaptionFont = NCM.lfCaptionFont.lfFaceName

End If
End Function

Keep in mind this function—GetCaptionFont—returns only
the name of the font. However, all the other font information is
there in the LOGFONT structures as well.

—Ben Baird, Twin Falls, Idaho

VB6
Level: Intermediate

FAST STRING ARRAY LOAD AND SAVE
VB6 offers a couple new string functions that work with string
arrays. One of these new string functions, Join, concatenates all
the items of an array into an individual string using the delim-
iter string of choice. This builds a routine that quickly saves the
contents of a string array to disk without iterating on individual
array items:

Sub StringArraySave(Filename As String, Text() As String)
Dim f As Integer
f = FreeFile
Open Filename For Output As #f
Print #f, Join(Text, vbCrLf);
Close #f

End Sub

The Split function does the opposite, first splitting a longer
string into individual components delimited by the selected sepa-
rator, then loading the components into a string array. If you
couple this feature with a VB6 function to return an array, you
can easily build a routine that loads a text file into a string array:

Function StringArrayLoad(Filename As String) As String()
Dim f As Integer
f = FreeFile
Open Filename For Input As #f
StringArrayLoad = Split(Input$(LOF(f), f), vbCrLf)
Close #f

End Function

Use this function like this:

Dim Text() As String
Text = StringArrayLoad("c:\autoexec.bat")

—Francesco Balena, Bari, Italy

VB3, VB4 16/32, VB5, VB6
Level: Intermediate

ENCRYPT A STRING EASILY
This quick and dirty encryption/decryption function takes what-
ever string you pass it, assigns it to a byte array, Xor’s each byte
by a constant, then returns the string. The offsetting done on
every other character adds just a little to the confusion. Passing
a string through the function once encrypts it; passing it through
a second time decrypts it.

This function won’t fool anyone from the National Security
http://www.devx.com

 101 TECH TIPS
For VB Developers For even more tricks and tips go to

 http://www.devx.com

Agency, but it does protect the data from 99 percent of prying
eyes, which is good enough for everything I ever need to do. It’s
only a few lines of code, but it encrypts as much data as you can
fit into a string, and does so quickly:

Private Sub Form_Click()
Dim szTest As String
szTest = "My dog has fleas."
''' Passing the string through the function once
''' encrypts it.
szTest = szEncryptDecrypt(szTest)
Debug.Print szTest

''' Passing the string through the function again
''' decrypts it.
szTest = szEncryptDecrypt(szTest)
Debug.Print szTest

End Sub
Function szEncryptDecrypt(ByVal szData As String) As String

''' This key value can be changed to alter the
''' encryption, but it must be the same for both
''' encryption and decryption.
Const KEY_TEXT As String = "ScratchItYouFool"
''' The KEY_OFFSET is optional, and may be any
''' value 0-64.
''' Likewise, it needs to be the same coming/going.
Const KEY_OFFSET As Long = 38
Dim bytKey() As Byte
Dim bytData() As Byte
Dim lNum As Long
Dim szKey As String
For lNum = 1 To ((Len(szData) \ Len(KEY_TEXT)) + 1)

szKey = szKey & KEY_TEXT
Next lNum
bytKey = Left$(szKey, Len(szData))
bytData = szData
For lNum = LBound(bytData) To UBound(bytData)

If lNum Mod 2 Then
bytData(lNum) = bytData(lNum) Xor (bytKey(lNum) _

+ KEY_OFFSET)
Else

bytData(lNum) = bytData(lNum) Xor (bytKey(lNum) _
- KEY_OFFSET)

End If
Next lNum
szEncryptDecrypt = bytData

End Function
—Rob Bovey, Edmonds, Washington

VB6
Level: Beginning

COUNTING THE OCCURRENCES OF A
SUBSTRING
VB6 has introduced the Replace function, which replaces all
occurrences of a substring with another substring. Although this
function is useful in itself, you can also use it in unorthodox ways.
For instance, you can use it to count how many times a substring
appears inside another string:

Function InstrCount(Source As String, Search As String) _
As Long
InstrCount = Len(Source) – Len(Replace(Source, Search, _

Mid$(Search, 2)))
End Function
Suhttp://www.devx.com
This code uses the Replace function to replace the searched
substring with another substring one character shorter. This
means the difference between the original string and the string
returned by the Replace function is equal to the number of oc-
currences of the substring.

—Francesco Balena, Bari, Italy

VB4 32, VB5, VB6
Level: Advanced

FLY THE FLAG
The clock applet that comes with Microsoft Plus! has an inter-
esting feature: Its window is round instead of rectangular. Sur-
prisingly, giving your form an odd shape is easy. Add this code
to a new form to give your window the shape of the Microsoft
Windows logo:

Private Type RECT
Left As Long
Top As Long
Right As Long
Bottom As Long

End Type
Private Declare Function BeginPath Lib "gdi32" _

(ByVal hdc As Long) As Long
Private Declare Function TextOut Lib "gdi32" _

Alias "TextOutA" (ByVal hdc As Long, _
ByVal X As Long, ByVal Y As Long, _
ByVal lpString As String, _
ByVal nCount As Long) As Long

Private Declare Function EndPath Lib "gdi32" _
(ByVal hdc As Long) As Long

Private Declare Function PathToRegion Lib "gdi32" _
(ByVal hdc As Long) As Long

Private Declare Function GetRgnBox Lib "gdi32" _
(ByVal hRgn As Long, lpRect As RECT) As Long

Private Declare Function CreateRectRgnIndirect Lib "gdi32" _
(lpRect As RECT) As Long

Private Declare Function CombineRgn Lib "gdi32" _
(ByVal hDestRgn As Long, ByVal hSrcRgn1 As Long, _
ByVal hSrcRgn2 As Long, _
ByVal nCombineMode As Long) As Long

Private Const RGN_AND = 1
Private Declare Function DeleteObject Lib "gdi32" _

(ByVal hObject As Long) As Long
Private Declare Function SetWindowRgn Lib "user32" _

(ByVal hwnd As Long, ByVal hRgn As Long, _
ByVal bRedraw As Boolean) As Long

Private Declare Function ReleaseCapture Lib "user32" _
() As Long

Private Declare Function SendMessage Lib "user32" _
Alias "SendMessageA" (ByVal hwnd As Long, _
ByVal wMsg As Long, ByVal wParam As Long, _
lParam As Any) As Long

Private Const WM_NCLBUTTONDOWN = &HA1
Private Const HTCAPTION = 2
Private Function GetTextRgn() As Long

Dim hRgn1 As Long, hRgn2 As Long
Dim rct As RECT
'Create a path for the window's shape
BeginPath hdc
TextOut hdc, 10, 10, Chr$(255), 1
EndPath hdc
'... Convert the path to a region...
hRgn1 = PathToRegion(hdc)
GetRgnBox hRgn1, rct
hRgn2 = CreateRectRgnIndirect(rct)
pplement to Visual Basic Programmer’s Journal FEBRUARY 1999 21

 101 TECH TIPS
For VB Developers
CombineRgn hRgn2, hRgn2, hRgn1, RGN_AND
'Return the region handle
DeleteObject hRgn1
GetTextRgn = hRgn2

End Function
Private Sub Form_DblClick()

'Need to be able to close the form
Unload Me

End Sub
Private Sub Form_Load()

Dim hRgn As Long
Me.Font.Name = "Wingdings"
Me.Font.Size = 200
hRgn = GetTextRgn()
SetWindowRgn hwnd, hRgn, 1

End Sub
Private Sub Form_MouseDown(Button As Integer, Shift _

As Integer, X As Single, Y As Single)
'Give us some way to move the form
ReleaseCapture
SendMessage hwnd, WM_NCLBUTTONDOWN, HTCAPTION, ByVal 0&

End Sub

While this is a sort of novelty shape for a form, you can give
a form any shape you want, provided you have a way to create
the shape of the region. Look at the various region-related API
calls to find methods of creating regions other than using font
characters.

—Ben Baird, Twin Falls, Idaho

VB6
Level: Beginning

DICTIONARY HAS ADVANTAGES OVER
COLLECTIONS
The Dictionary object can contain items, which can be any form
of data, just like a collection. However, the Dictionary object has
many advantages over a collection. It allows retrieval of the key
using the keys(index) syntax. It features an Exists property that
determines whether a particular key exists. It allows for the
changing of a key, as well as the changing of a value associated
with a key. The Dictionary object is zero-based, and does not
provide an enumerator.

Also, note that to use the Dictionary object, you must set a
reference to the Microsoft Scripting Runtime.

For more information, look in VB’s Help file under “Dictio-
nary” and “FileSystemObject.”

—Deborah Kurata, Pleasanton, California

VB3, VB4 16/32, VB5, VB6
Level: Beginning

WATCH THE PARENS
If you want to pass a parameter to a subroutine, use this code:

Call doFormat(txtPerson)

You can also call the subroutine without the Call statement.
However, if you don’t include the Call statement, you can’t in-
clude parentheses:

doFormat (txtPerson)
22 FEBRUARY 1999 Supplement to Visual Basic Programmer’s Journal
In VB, expressions in parentheses are evaluated before they’re
processed. So by putting parentheses around the control name,
you’re telling it to evaluate it. Because a control can’t be evalu-
ated, it gives you the value of the default property. This code
actually passes the Text string value—because Text is the de-
fault property—to the subroutine instead of passing the con-
trol. Because the routine expects a textbox and not a string, it
generates the type mismatch.

—Deborah Kurata, Pleasanton, California

VB4 16/32, VB5, VB6
Level: Intermediate

DISPLAY TWO FIELDS
Let’s say you want to bind your listbox to a recordset, but you
also want to display two fields concatenated together, such as
“Jones, Barbara.” You can do this by using a calculated expres-
sion in the SQL statement of the query:

SELECT PersonID, LastName, FirstName, LastName + ', ' _
+ FirstName AS FullName FROM Person ORDER BY _
LastName, FirstName

—Deborah Kurata, Pleasanton, California

VB3, VB4 16/32, VB5, VB6
Level: Beginning

USE SELECT CASE TO EVALUATE
DIFFERENT EXPRESSIONS
Select Case is commonly used to check different values of a spe-
cific variable or expression. You can also use Select Case to evalu-
ate multiple expressions, by starting out with “Select Case True”
and listing each expression as a separate “Case”:

Select Case True
Case Option1(0).Value

'Do something
Case Option1(1).Value

'Do something
Case Option1(2).Value

'Do something
End Select

—Russell Davis, Garden Grove, California

VB6
Level: Beginning

COMPARE FLOATING POINT VALUES
USING THE ROUND FUNCTION
When you have to compare the results of floating point expres-
sions, you can’t rely on the “=” operator due to the finite preci-
sion of Single or Double variables. To see this concept demon-
strated, use this code:

Dim i As Integer, d As Double
For i = 1 To 10

d = d + CDbl(0.1)
Next
MsgBox (d = 1) ' displays "False"
http://www.devx.com

 101 TECH TIPS
For VB Developers For even more tricks and tips go to

 http://www.devx.com

To more easily compare two floating numbers, use the new VB6
Round function, which rounds a number to the desired number
of decimal digits. For example, you can rewrite the previous test
like this:

' the difference is less than 1E-12
MsgBox (Round(d, 12) = 1) ' displays "True"

You can also use this method to check whether A and B vari-
ables contain values that match up to their 12th decimal digit:

If Round(A – B, 12) = 0 Then Print "Equal"
—Francesco Balena, Bari, Italy

VB4 32, VB5, VB6
Level: Beginning

JOIN TWO FILES TOGETHER
The DOS Copy command allows you to take the contents of two
different files and put them one after the other into a third file.
You can do the same thing in VB with this subroutine:

Public Sub JoinFiles(Source1 As String, Source2 As String, _
Dest As String)
Dim Buffer() As Byte
Open Source1 For Binary Access Read As #1
Open Source2 For Binary Access Read As #2
Open Dest For Binary Access Write As #3
ReDim Buffer(1 To LOF(1))
Get #1, , Buffer
Put #3, , Buffer
ReDim Buffer(1 To LOF(2))
Get #2, , Buffer
Put #3, , Buffer
Close #1, #2, #3

End Sub

In a production app, use FreeFile rather than hard-code the
file handles.

—Russell Davis, Garden Grove, California

VB5, VB6
Level: Advanced

SUBCLASS GRID CONTROLS
Sometimes a class needs to communicate with the object that
created it. For example, I use a class to subclass grid controls so
I can handle things such as tabbing between columns and un-
bound population automatically. The class has a SubclassGrid
method that makes the subclassing mechanism work, and at the
same time saves a copy of the creator object:

Dim WithEvents m_InternalGrid As DBGrid
Dim m_ParentForm As Form
Public Sub SubclassGrid(AnyGrid As DBGrid)

Set m_InternalGrid = AnyGrid
Set m_ParentForm = AnyGrid.Parent

End Sub

In some instances, the class needs to get information from
the form using the class. To get information from the form, the
class can fire an event, or the form can have a Public property,
function, or method that the class can call. However, both mecha-
Suhttp://www.devx.com
nisms are optional. The creator of the form can forget to write
code to handle the events, or forget to add a public function, or
even name it differently from what the class expects. To prevent
this, I write an IGridCallback interface definition:

IGridCallback
Public Function GetTableName() As String
End Function

I change my SubclassGrid function in the class to look like this:

Dim WithEvents m_InternalGrid As DBGrid
Dim m_ParentForm As Form
Public Sub SubclassGrid(AnyGrid As DBGrid)

Dim pIGridCallback As IGridCallback
Set m_InternalGrid = AnyGrid
Set m_ParentForm = AnyGrid.Parent
On Error Resume Next
Set pIGridCallback = m_ParentForm
If Err.Number <> 0 Then

MsgBox "Your form must implement the " & _
"IGridCallback interface in order to " & _
"use the SubclassGrid class”

End If
End Sub

The SubclassGrid routine displays an error message box if it
doesn’t find the IGridCallback interface in the form using it. This
mechanism guarantees that everyone using the SubclassGrid
class must implement the IGridCallback interface. Because imple-
menting the interface means you must support each method in
the interface, it also means everyone using the class has the
correct functions.

—Jose Mojica, Davie, Florida

VB4 32, VB5, VB6
Level: Intermediate

ACCESS THE TREEVIEW CONTROL’S
CURRENT NODE PROPERTIES
The TreeView control reports its current node—the selected
node—only in its NodeClick event’s Node parameter. If you need
to access the Node’s properties—such as Key or Text—outside
this event, you need to declare a Node variable with scope ap-
propriate to your intended usage. To share within a form, in-
clude a variable declaration in the Declarations section:

Option Explicit
Private CurrentNode As node

Set your variable—in this illustration, CurrentNode—to the
node passed in the event:

Private Sub tvwDB_NodeClick(ByVal node As node)
Set CurrentNode = node

You can now access CurrentNode’s properties from anywhere
on the form:

Debug.Print CurrentNode.Key
Debug.Print CurrentNode.Text

—Ron Schwarz, Mt. Pleasant, Michigan
pplement to Visual Basic Programmer’s Journal FEBRUARY 1999 23

 101 TECH TIPS
For VB Developers
VB3, VB4 16/32, VB5, VB6
Level: Beginning

AVOID UNWANTED RECURSION FROM
EVENT CASCADES
Sometimes, an event might fire while it’s already executing from
a prior invocation. To prevent this unwanted behavior, assign a
static variable within the procedure, and test it before allowing
any more code in the procedure to execute. Then set the vari-
able to True at the start of the main block of the procedure code.
When your code finishes, set it to False. This prevents a new
instance of the procedure from being invoked while it’s already
executing. You might want to add additional code in the test
block to deal with situations where you need to do more than
simply cancel the execution:

Private Sub Form_Resize()
Static Executing As Boolean
If Executing Then

Exit Sub
End If
Executing = True
If Width > 6000 Then

Width = 6000
GoDoSomeStuff

End If
Executing = False

End Sub
—Ron Schwarz, Mt. Pleasant, Michigan

VB4 32, VB5, VB6
Level: Beginning

CLEAN UP PROJECT FILE PATHS
BEFORE SHARING SOURCE CODE
As you work with a VB project, the project file—VBP—can be-
come littered with relative path references such as
“..\..\..\..\myfolder\myform.frm”. The project loads, but only on
your machine. If you send the project to someone else, or move
it to another path on your own machine, you need to edit the
project file to remove the ambiguous entries. You can avoid this
by ensuring that all the needed files are indeed in the same di-
rectory as the project file. It’s not uncommon to load a file from
a different directory, in which case VB does not automatically
move it into your project directory. Load the project file into
Notepad and edit out all path references, leaving only the actual
file names. When VB goes to load the project, it looks for them
in the current directory.

—Ron Schwarz, Mt. Pleasant, Michigan

VB3, VB4 16/32, VB5, VB6
Level: Beginning

USING THE FORMAT FUNCTION WITH
STRINGS
You’ll use the Format function most often with numbers, but it
can be useful when applied to strings as well. For example, you
can format a credit card number—which is held in a string vari-
able, even if it contains only digits—and subdivide the number
24 FEBRUARY 1999 Supplement to Visual Basic Programmer’s Journa
into four groups of four characters each, using a complex string
expression:

' X holds the sequence of 16 digits
CreditCardNum = Left$(x, 4) & " " & Mid$(x, 5, 4) & " " & _

Mid$(x, 9, 4) & " " & Right$(x, 4)

The Format function lets you accomplish the same result in
a more readable and efficient way:

CreditCardNum = Format$(x, "!@@@@ @@@@ @@@@ @@@@")
—Francesco Balena, Bari, Italy

VB6
Level: Intermediate

USE WINDOWLESS CONTROLS FOR
PERFORMANCE AND ECONOMY
VB6 comes with an ActiveX control named MSWLESS.ocx
(“Microsoft Windowless Controls 6.0”), which contains light-
weight equivalents for these standard controls:

WLText
WLFrame
WLCommand
WLCheck
WLOption
WLCombo
WLList
WLHScroll
WHVScroll

The controls have lower resource consumption than their
regular counterparts, as well as better performance. Because
they don’t have windows, they don’t have handles or DDE capa-
bility, and they can’t serve as containers. They’re also not in-
stalled automatically in the Visual Studio 6 setup, so you’ll need
to dig them off your CD manually.

—Ron Schwarz, Mt. Pleasant, Michigan

VB5, VB6
Level: Intermediate

TESTING COM INTERFACES AT RUN TIME
VB5 provides interface inheritance through the use of the Imple-
ments keyword. For example, CFullTimeEmployee can implement
the IEmployee interface. This interface might include basic in-
formation such as name, Social Security number, and date of
birth. Another class, CPartTimeEmployee, can also implement
the IEmployee interface. You can then write code against the
IEmployee interface without regard to the type of employee. To
supply additional functionality, you might create an IEmp2 in-
terface. To test whether an object is of a certain type, use the
TypeOf keyword at run time. The format is “TypeOf object Is
class/interface”. Here’s how to define two classes:

Class CFullTimeEmployee:
Implements IEmployee
Implements IEmp2
Class CPartTimeEmployee
Implements IEmployee
l http://www.devx.com

 101 TECH TIPS
For VB Developers For even more tricks and tips go to

 http://www.devx.com

Dim objMyFTE as New CFullTimeEmployee
Dim objMyPTE as New CPartTimeEmployee

Using TypeOf, you can query at run time which interfaces
these objects support:

Query Return
TypeOf objMyFTE Is CFullTimeEmployee True
TypeOf objMyFTE Is IEmployee True
TypeOf objMyFTE Is IEmp2 True
TypeOf objMyFTE Is CPartTimeEmployee False
TypeOf objMyFTE Is Object True
TypeOf objMyFTE Is IUnknown True

TypeOf objMyPTE Is CPartTimeEmployee True
TypeOf objMyPTE Is IEmployee True
TypeOf objMyPTE Is IEmp2 False
TypeOf objMyPTE Is Object True
TypeOf objMyPTE Is IUnknown True
TypeOf objMyPTE Is CFullTimeEmployee False

—Mark Tucker, Gilbert, Arizona

VB5
Level: Intermediate

USING LABEL CONTROL AS SPLITTER
Here’s a demo for using a Label control as a splitter between
two controls, as well as sample code for employing the splitter
in an Explorer-like application:

Option Explicit
Private mbResizing As Boolean

'flag to indicate whether mouse left
'button is pressed down

Private Sub Form_Load()
TreeView1.Move 0, 0, Me.ScaleWidth / 3, Me.ScaleHeight
ListView1.Move (Me.ScaleWidth / 3) + 50, 0, _

(Me.ScaleWidth * 2 / 3) - 50, Me.ScaleHeight
Label1.Move Me.ScaleWidth / 3, 0, 100, Me.ScaleHeight
Label1.MousePointer = vbSizeWE

End Sub
Private Sub Label1_MouseDown(Button As Integer, Shift As _

Integer, X As Single, Y As Single)
If Button = vbLeftButton Then mbResizing = True

End Sub
Private Sub Label1_MouseMove(Button As _

Integer, Shift As Integer, X As _
Single, Y As Single)
'resizing controls while the left mousebutton is
'pressed down
If mbResizing Then

Dim nX As Single
nX = Label1.Left + X
If nX < 500 Then Exit Sub
If nX > Me.ScaleWidth - 500 Then Exit Sub
TreeView1.Width = nX
ListView1.Left = nX + 50
ListView1.Width = Me.ScaleWidth - nX - 50
Label1.Left = nX

End If
End Sub
Private Sub Label1_MouseUp(Button As Integer, _

Shift As Integer, X As Single, Y As Single)
mbResizing = False

End Sub
—Rajesh R. Vakharia, Mumbai, India
Suhttp://www.devx.com
VB3, VB4 16/32, VB5, VB6
Level: Beginning

ALWAYS USE CASE ELSE WITH SELECT
CASE
Select Case statements can lead to errors when the test expres-
sion in the Select Case line doesn’t yield a true result for any of
its individual Case expressions. Therefore, you should always
use a Case Else as the final Case within a Select Case statement.
This sample raises a custom error when an application invokes
the Select Case statement with an operation other than the four
basic ones:

Select Case Operation
Case "Addition"

Computer2 = dblNumber1 + dblNumber2
Case "Subtraction"

Computer2 = dblNumber1 - dblNumber2
Case "Multiplication"

Computer2 = dblNumber1 * dblNumber2
Case "Division"

Computer2 = dblNumber1 / dblNumber2
Case Else

Err.Raise 1, , "Wrong operation."
End Select

—Rick Dobson, Louisville, Kentucky

VB3, VB4 16/32, VB5, VB6
Level: Beginning

QUICKER TEXTBOX ADDITIONS
Consider these two examples of code that add a string to a
textbox.

Example 1:

Text1.text = Text1.text & MyString
Text1.SelStart = Len(Text1.text)

Example 2:

Text1.SelStart = Len(Text1.text)
Text1.SelText = MyString

In the first example, you must copy the complete text from
the textbox into a separate buffer to perform concatenation with
the string MyString. You then need to copy the resulting string
back to the textbox. This code requires allocating additional
memory and performing two copy operations.

The code in the second example does not need an additional
buffer. The concatenation of strings is executed inside the
textbox buffer without transferring the text first outside the
textbox and then back inside. This code is much faster and less
memory-extensive. This second approach has an additional ad-
vantage of setting an insertion point directly at the end of the
displayed text. In the first example, the insertion point is ini-
tially set to the beginning of the text, then transferred to the
end, causing the control to flicker on the screen.

—Krystyna Zyzdryn, Palm Beach Gardens, Florida
pplement to Visual Basic Programmer’s Journal FEBRUARY 1999 25

 101 TECH TIPS
For VB Developers
VB4 32, VB5, VB6
Level: Intermediate

MOVE THE CURSOR TO THE CENTER
Use this simple subroutine to move the mouse/cursor to the center
of an object. It’s useful for tab-like functions and default settings:

Private Declare Function SetCursorPos& Lib _
"user32" (ByVal x As Long, ByVal y As Long)

Private Declare Function GetWindowRect& Lib _
"user32" (ByVal hwnd As Long, lpRect As Rect)

Private Type Rect
left As Long
top As Long
right As Long
bottom As Long

End Type
Public Sub SetMouseFocus(ByVal Obj As Object)

Dim Rect As Rect
'Get the bounding rectangle for window
GetWindowRect Obj.hwnd, Rect
'Set the cursor position to the center of the object
SetCursorPos Rect.right - ((Rect.right - Rect.left) _

/ 2), Rect.bottom - ((Rect.bottom - Rect.top) / 2)
End Sub

Here’s an example:

Private Sub cmdQuit_Click()
' Move Cursor to command button "cmdAreYouSure"
SetMouseFocus cmdAreYouSure

End Sub
—Rich Myott, Colorado Springs, Colorado

VB4 16/32, VB5, VB6
Level: Intermediate

ASSURE COMPATIBILITY
When working with ActiveX DLLs, many VB programmers build a
reference DLL first, copy it to a subdirectory of the project direc-
tory, and set version compatibility to binary with a pointer to the
reference build. Many of these same programmers believe—or
have been taught—they can now forget about compatibility be-
cause VB prevents them from ever building an incompatible ver-
sion. They’re dead wrong. Suppose you later add a method to one
of the public classes in the project, which is defined as:

Public Sub DoSomething(Prm1 As String, Prm2 as Integer)

Version 2, which includes the new DoSomething method, is built
without VB complaining, because the new build is version-com-
patible. For example, you might modify and recompile client
applications to take advantage of the new method.

Suppose you change the Prm2 parameter of DoSomething
from Integer to Long to prevent an overflow error. Ordinarily,
such a change breaks backward compatibility. But, because the
reference build is version 1, which doesn’t have the DoSomething
method, VB assumes it’s completely new and happily builds
version 3. The truth, however, is that this change does break
compatibility, and all the client applications of version 2 crash
with runtime error 430, “Class doesn’t support Automation.”

Changing a parameter’s type isn’t the only way a program-
mer can fool VB into thinking it’s maintaining binary compatibil-
ity. In fact, removing or changing any method or property that
26 FEBRUARY 1999 Supplement to Visual Basic Programmer’s Journa
wasn’t in version 1 does it, as well as removing a class that wasn’t
in version 1.

When working with ActiveX DLLs, the only way to ensure on-
going compatibility is by updating your reference build after each
change in the interface(s) it exposes. You should always point
the reference to your last-shipped build, which assures that each
version is compatible with the last-shipped version.

—Thomas Weiss, Deerfield, Illinois

VB4 16/32, VB5, VB6
Level: Beginning

SET OBJECTS TO NOTHING
If you set objects to Nothing, then test their nothingness, this
suggestion might help you. If you declare an object as New and
later set it to Nothing, VB won’t set the object to Nothing. For
example, if you declare an object using this code:

Dim oSomeObject As New SomeClass

And later set it to Nothing using this code:

Set oSomeObject = Nothing

The object does terminate, but a new instance is immediately
instantiated, so it appears the object hasn’t been set to Nothing.
You can test this by going to the Immediate window and testing
‘?(oSomeObject = Nothing)’. It displays False.

If you declare an object and explicitly set it to New, you can
set the object to Nothing. For example, if you declare an object
using this code, the object will be set to Nothing:

Dim oSomeObject As SomeClass
Set oSomeObject = New SomeClass
'.... some code ...
Set oSomeObject = Nothing

—Rahuldeo S. Vadodkar, Kentwood, Michigan

VB4 32, VB5, VB6
Level: Beginning

SCRUB OUT UNUSED CONSTANTS
Low-level parsing in VB doesn’t come up every day. This routine
demonstrates how to search a VB module for dead module-level
constants with only a few lines of code. Reading the entire con-
tents of a file into a string variable is key to this approach:

Private Sub FindDeadConstants(ByVal PathAndFile As String)
Dim FileHandle As Integer
Dim FileContents As String
Dim PositionOfDeclaration As Long
Dim StartOfConstantName As Long
Dim EndOfConstantName As Long
Dim ConstantName As String
'open the file and read the contents
'into a string variable:
FileHandle = FreeFile
Open PathAndFile For Binary Access Read As FileHandle
FileContents = Input$(LOF(FileHandle), FileHandle)
Close FileHandle
'loop through all the module-level constants:
Do
l http://www.devx.com

 101 TECH TIPS
For VB Developers For even more tricks and tips go to

 http://www.devx.com

PositionOfDeclaration = InStr(PositionOfDeclaration _
+ 1, FileContents, "Private Const ")

If PositionOfDeclaration > 0 Then
'we've found a constant:
StartOfConstantName = PositionOfDeclaration _

+ Len("Private Const ")
EndOfConstantName = InStr(_

StartOfConstantName, FileContents, " ")
ConstantName = Mid$(FileContents, _

StartOfConstantName, EndOfConstantName _
- StartOfConstantName)

'if the constant is not
'referenced beyond its
'declaration, then it's dead:
If InStr(EndOfConstantName, FileContents, _

ConstantName) = 0 Then
lstDeadConstants.AddItem ConstantName

End If
End If

Loop Until PositionOfDeclaration = 0
End Sub

—Dave Doknjas, Surrey, British Columbia, Canada

VB3, VB4 16/32, VB5, VB6
Level: Beginning

TRACK MOUSEPOINTER CHANGES
If you develop large apps, this routine can help you keep a count
of calls to change the mousepointer. The routine, called
MouseStack, keeps a stack of those calls and resets the pointer
to the default when the stacks are equal or when a reset is forced.

Often, one routine sets the MousePointer to hourglass, then
calls another routine that also sets it to hourglass, then back to
default. However, you might not want it reset just yet. MouseStack()
changes the pointer back only if the counts of calls to hourglass
and default are equal, and/or the user calls MouseStack() with
vbResetMouse to set the pointer to the default:

Public Enum MousePointers
vbDefault = 0
'set pointer to default
vbHourglass = 11
'set pointer to hourglass
vbResetMouse = 99
'reset static variables, set pointer to default

End Enum
Public Sub MouseStack(nMouseSetting As MousePointers)

Static nHourglass As Integer
Static nDefault As Integer
' Based on the setting entered in,
'increment the proper variable
Select Case nMouseSetting

Case vbHourglass ' 11
nHourglass = nHourglass + 1

Case vbDefault ' 0
nDefault = nDefault + 1

Case Else
End Select
' If the variables are now equal, or
' a reset was called, reset the
' variables, and set the mouse
' pointer to the default
If (nHourglass = nDefault) Or (nMouseSetting _

= vbResetMouse) Then
nHourglass = 0
nDefault = 0
Screen.MousePointer = vbDefault
Shttp://www.devx.com
Exit Sub
End If
' If the difference is > 1, the
' pointer is already set to where it
' should be. Leave without setting
' pointer.
If (Abs(nHourglass - nDefault) > 1) Then Exit Sub
' If one is ahead, set the
' mousepointer to it
If (nHourglass > nDefault) Then

Screen.MousePointer = vbHourglass
Else

Screen.MousePointer = vbDefault
End If

End Sub
—T.J. (Tom) Gondesen, Tucker, Georgia

VB4 32, VB5, VB6
Level: Beginning

USE NATIVE TRACKSELECT IN
TREEVIEW AND LISTVIEW
You can make your TreeView or ListView control behave like a
menu so that as you move the mouse cursor over the items, the
highlighted item moves with the cursor. Use this code in the
TreeView or ListView’s MouseMove event:

Private Sub TreeView1_MouseMove(Button _
As Integer, Shift As Integer, x As Single, y As Single)
Dim AnyNode As Node
' HitTest returns a node object under the cursor
Set AnyNode = TreeView1.HitTest(x, y)

If Not AnyNode Is Nothing Then
Set TreeView1.DropHighlight = AnyNode
TreeView1.DropHighlight. Selected = True

End If
End Sub
Private Sub ListView1_MouseMove(Button _

As Integer, Shift As Integer, x As Single, y As Single)
Dim AnyItem As ListItem
'HitTest returns a node object under the cursor
Set AnyItem = ListView1.HitTest(x, y)
If Not AnyItem Is Nothing Then

Set ListView1.DropHighlight = AnyItem
ListView1.DropHighlight. Selected = True

End If
End Sub

—Arnel J. Domingo, Hong Kong

VB5, VB6
Level: Beginning

HUNT FOR DEVELOPERS
Want to see a list of the developers who worked on VB5 and
VB6? Try this: From VB’s View menu, select Toolbars, then Cus-
tomize…. In the resulting dialog, click on the Commands tab. In
the Categories list, select Help. Select “About Microsoft Visual
Basic” in the Commands list, and drag it to any menu or toolbar.
Right-click on the item you just dragged and rename it to “Show
VB Credits” (without the quotes). Then close the “Customize”
dialog and click on the “Show VB Credits” item.

—Phil Weber, Tigard, Oregon
upplement to Visual Basic Programmer’s Journal FEBRUARY 1999 27

 101 TECH TIPS
For VB Developers
VB6
Level: Intermediate

MAXIMIZE VB’S MDI MEMORY
If you use the VB development environment in MDI mode (the
default) and you like your code windows maximized, you might
have noticed that, unlike VB5, VB6 doesn’t remember this pref-
erence between sessions. To jog its memory, create a text file
containing this code, and name it MAXIMIZE.reg:

REGEDIT4
[HKEY_CURRENT_USER\Software\Microsoft\Visual Basic\6.0]
"MdiMaximized"="1"

Double-click on the file name to update your system registry.
Next time you start VB6, its code windows will maximize auto-
matically.

—Phil Weber, Tigard, Oregon

Visual Studio 6
Level: Beginning

ACCESS HELP MORE EASILY
Several developers have complained that in order to use Visual
Studio 6.0’s online help, they must keep the MSDN Library CD in
their CD-ROM drive, or copy all 680 MB to their hard disk. Fortu-
nately, this is not the case.

When you install Visual Studio’s MSDN Library, choose the
“Custom…” option. You can select which items, if any, you want
to install to your hard disk (VB6’s help requires about 12 MB).
You can access the help topics on your hard disk without using
the MSDN CD; you can still access from the CD any topics you
choose not to install.

—Phil Weber, Tigard, Oregon

Visual Studio 6
Level: Beginning

CUSTOMIZE HELP TOPICS
VB developers might wonder why, when they perform a search
in Visual Studio 6.0’s online help, they get help topics from other
Visual Studio languages such as Visual C++ and Visual FoxPro. If
you’re interested in only VB help topics, try this: In the Active
Subset combo box (located above the navigation tabs—Contents,
Index, and so on—in the left-hand pane), select Visual Basic
Documentation. If the navigation tabs are not visible, click on
the Show button in the toolbar, or select Navigation Tabs from
the View menu.

If you want to see partial or multiple subsets—say, VB docs
and Microsoft Knowledge Base articles—you can define your
own: Select Define Subset… from the View menu.

—Phil Weber, Tigard, Oregon
28 FEBRUARY 1999 Supplement to Visual Basic Programmer’s Journal
10 HOT VB WEB SITES
(besides DevX, of course <g>)

1. ADVANCED VISUAL BASIC
http://vb.duke.net
This tightly focused Visual Basic site features a collection of ar-
ticles, a discussion board, and an interface to WinError, a ser-
vice for interpreting Windows error numbers.

2. JOE GARRICK’S WORLD OF VISUAL BASIC
http://www.citilink.com/~jgarrick/vbasic
This site is loaded with useful information, reusable code, tips
and tricks, a Q&A section, and a search engine. The site special-
izes in database applications and offers several articles on data-
base programming and security.

3. VISUAL BASIC ONLINE
http://www.vbonline.com
This e-zine features tips and tricks, product reviews, and more.
You can purchase component software from the online catalog.

4. VISUALBASICSOURCE
http://www.kather.net/VisualBasicSource
This site features a large quantity of tips and code snippets, al-
though the organization and architecture of the site could use
some improvement.

5. CARL AND GARY’S HOME PAGE
http://www.cgvb.com
Carl and Gary’s Home Page, the first VB Web site, has been up-
dated to include a categorized list of links, as well as new sec-
tions on ASP development, JavaScript, Microsoft IIS, and more.

6. ACTIVE-X.COM
http://www.active-x.com
Active-X.com offers an extensive array of commercially devel-
oped components and links to their manufacturers’ Web sites.

7. ONE-STOP SOURCESHOP
http://www.mvps.org/vb
This site features various techniques for manipulating the Win-
dows API from VB, including a really useful one for deciphering
error codes.

8. VBNET
http://www.mvps.org/vbnet
This easy-to-use site contains an assortment of about 70 VB code
tips, a FAQ listing, articles, VB links, and a few files to download.

9. COOL VISUAL BASIC
http://www.beadsandbaubles.com/coolvb/index3.shtml
This site’s value lies in its message boards and help desk. You’ll
also find product reviews and a list of links to VB-oriented com-
panies and developers.

10. VB HELPER
http://www.vb-helper.com
VB Helper is a useful site for beginning and intermediate VB pro-
grammers to browse and learn. It features several how-to articles
and a number of example code files available for download.
http://www.devx.com

