
 101 TECH TIPS
For VB Developers

 For even more tricks and tips go to
 www.vbpj.com

Welcome to the Ninth Edition of the
VBPJ Technical Tips Supplement!
These tips and tricks were submitted by profes-
sional developers using Visual Basic 3.0 through
6.0, Visual Basic for Applications (VBA), and
Visual Basic Script (VBS). The editors at Visual
Basic Programmer’s Journal compiled the tips.
Special thanks to VBPJ Technical Review Board
member Karl E. Peterson for testing all the code.
Instead of typing the code published here,
download the tips for free from the Code section
on VBPJ ’s Web site at www.vbpj.com.

If you’d like to submit a tip to VBPJ, please send
it to User Tips, Fawcette Technical Publications,
209 Hamilton Ave., Palo Alto, California, USA,
94301-2500. You can also fax it to 650-853-0230 or
send it electronically to vbpjedit@fawcette.com.
Please include a clear explanation of what the
technique does and why it’s useful, and indicate if
it’s for VBA, VBS, VB3, VB4 16- or 32-bit, VB5, or
VB6. Please limit code length to 20 lines. Don’t
forget to include your e-mail and mailing address.
If we publish your tip, we’ll pay you $25 or extend
your VBPJ subscription by one year.

VB5, VB6
Level: Advanced

Restore Errant Focus to RichTextBox
If a RichTextBox control has the focus in a Multiple Document
Interface (MDI) child form, it doesn’t properly regain the focus
after your application loses and regains focus. To fix this, you
must subclass the MDI form and watch for the WM_ACTIVATE
event. Set a Public variable equal to the window handle of the
RichTextBox in its GotFocus event, and set that variable to zero
in its LostFocus event. Use the SetFocus API function to force
the focus to the RichTextBox:

'Module Code:
Private Declare Function CallWindowProc Lib _

"user32" Alias "CallWindowProcA" (ByVal _
lpPrevWndFunc As Long, ByVal hWnd As Long, _
ByVal Msg As Long, ByVal wParam As Long, _
ByVal lParam As Long) As Long

Private Declare Function SetFocusAPI Lib _
"user32" Alias "SetFocus" (ByVal hWnd As Long) As Long

Public Declare Function SetWindowLong Lib _
"user32" Alias "SetWindowLongA" (ByVal hWnd _
As Long, ByVal nIndex As Long, ByVal _
dwNewLong As Long) As Long

Private Declare Sub CopyMem Lib "kernel32" Alias _
"RtlMoveMemory" (Destination As Any, Source _
As Any, ByVal Length As Long)
AUGUST 1999␣ ␣ ␣ Supplement to Visual Basic Programmer’s Journal
Public Const WM_ACTIVATE = &H6
Public Const WA_INACTIVE = 0
Public Const GWL_WNDPROC = (-4)
Public origWndProc As Long
Public lFocusHandle As Long

Public Function AppWndProc(ByVal hWnd As Long, _
ByVal Msg As Long, ByVal wParam As Long, _
ByVal lParam As Long) As Long
Select Case Msg

Case WM_ACTIVATE
If WordLo(wParam) <> WA_INACTIVE Then

If lFocusHandle Then SetFocusAPI _
lFocusHandle

End If
End Select
AppWndProc = CallWindowProc(origWndProc, _

hWnd, Msg, wParam, lParam)
End Sub

Private Function WordLo(LongIn As Long) As Integer
Call CopyMem(WordLo, ByVal VarPtr(LongIn), 2)

End Function

'MDI Form code:
Private Sub MDIForm_Load()

origWndProc = SetWindowLong(Me.hWnd, _
GWL_WNDPROC, AddressOf AppWndProc)

End Sub

Private Sub MDIForm_Unload(Cancel As Integer)
SetWindowLong Me.hWnd, GWL_WNDPROC, origWndProc

End Sub

'MDIChild Form code:
Private Sub RichTextBox1_GotFocus()

lFocusHandle = RichTextBox1.hWnd
End Sub

Private Sub RichTextBox1_LostFocus()
lFocusHandle = 0

End Sub
—Matt Hart, Tulsa, Oklahoma

VB3 and up
Level: Beginning

Close All MDI Children Simply
This code allows you to close all the MDI child forms in an MDI
form at once. First, create a menu item in the MDI form, then
paste in this code:

Private Sub mnuCloseAll_Click()
Screen.MousePointer = vbHourglass
Do While Not (Me.ActiveForm Is Nothing)

Unload Me.ActiveForm
Loop
Screen.MousePointer = vbDefault

End Sub

Once the user clicks on that menu item, the MDI child forms
will close.

—Tai Choo Tack, Port Klang, Selangor, Malaysia

✰✰✰✰✰ Five Star Tip␣
1

 101 TECH TIPS
For VB Developers
VB4 16/32, VB5, VB6
Level: Beginning

Consolidate Global Data
We all know that using global variables in our projects is
not considered good programming practice. Nevertheless,
everyone does it. Sometimes you need to introduce public
variables for storing initialization (INI) file names, Registry
keys, shared constant values, and other common needs.
Well, you can consolidate all your public variables through
one public class, which encapsulates your variables. Store
global data inside this class as module-level variables and
constants or public Enums:

Option Explicit

Private m_sINIFile As String
Private Const QUERY_TIMEOUT As Long = 120

Private Sub Class_Initialize()
m_sINIFile = App.Path & "\" & App.Title & ".ini"

End Sub

Public Property Get INIFile() As String
INIFile = m_sINIFile

End Property

Public Property Get REGKey() As String
REGKey = "\SOFTWARE\MyKey"

End Property

Public Property Get QueryTimeOut() As Long
QueryTimeOut = QUERY_TIMEOUT

End Property

Set the class’s Instancing property to Private, so it’s not
visible to outside projects. After you expose the variables as
properties or enumerations of a class, you can create this class
on a module level or on a project level and use the data stored
in this class:

Dim objData As CProjectData
Set objData = New CProjectData

If Dir$(objData.INIFile, vbNormal) = "" Then
MsgBox objData.INIFile _

& " - INI file not found!"
End If

By doing this, you don’t have to memorize the names of
those public variables. As you type the name of your data class,
VB’s IntelliSense helps you pick the class properties you need.

—Oleg Melnikov, Los Angeles, California

VB4 32, VB5, VB6
Level: Intermediate

Show the Standard File Properties Dialog
If your program has an Explorer shell-style interface, you
probably want to supply the standard File | Properties dialog.
Do this by using the ShellExecuteEx API function:

Private Type SHELLEXECUTEINFO
cbSize As Long
fMask As Long
hWnd As Long

✰✰✰✰✰ Five Star Tip␣
2

lpVerb As String
lpFile As String
lpParameters As String
lpDirectory As String
nShow As Long
hInstApp As Long
lpIDList As Long
lpClass As String
hkeyClass As Long
dwHotKey As Long
hIcon As Long
hProcess As Long

End Type

Private Declare Function ShellExecuteEx Lib _
"shell32" (lpSEIAs SHELLEXECUTEINFO) As Long

Private Const SEE_MASK_INVOKEIDLIST = &HC

Private Sub Form_Click()
Call ShowFileProperties(_

"c:\windows\system\msvbvm50.dll")
End Sub

Private Sub ShowFileProperties(ByVal aFile As String)
Dim sei As SHELLEXECUTEINFO
sei.hWnd = Me.hWnd
sei.lpVerb = "properties"
sei.lpFile = aFile
sei.fMask = SEE_MASK_INVOKEIDLIST
sei.cbSize = Len(sei)
ShellExecuteEx sei

End Sub
—Matt Hart, Tulsa, Oklahoma

VB4 32, VB5, VB6
Level: Intermediate

Toggle ListView Headers Between Flat and 3-D
Whenever you want a ListView control with flat, nonclickable
headers, use this code to toggle the header style. Flat headers
don’t give users the impression of sortability that 3-D headers do:

Private Declare Function GetWindowLong Lib _
"user32" Alias "GetWindowLongA" (ByVal hWnd _
As Long, ByVal nIndex As Long) As Long

Private Declare Function SetWindowLong Lib _
"user32" Alias "SetWindowLongA" (ByVal hWnd _
As Long, ByVal nIndex As Long, ByVal _
dwNewLong As Long) As Long

Private Const GWL_STYLE = (-16)
Private Const LVM_FIRST = &H1000
Private Const LVM_GETHEADER = (LVM_FIRST + 31)
Private Const HDS_BUTTONS = &H2

Call ToggleHeader(ListView1.hWnd)

Private Sub ToggleHeader(lsvhWnd As Long)
Dim hHeader As Long, lStyle As Long
hHeader = SendMessage(lsvhWnd, _

LVM_GETHEADER, 0, ByVal 0&)
lStyle = GetWindowLong(hHeader, GWL_STYLE)
SetWindowLong hHeader, GWL_STYLE, lStyle Xor HDS_BUTTONS

End Sub
—Matt Hart, Tulsa, Oklahoma

✰✰✰✰✰ Five Star Tip␣
Supplement to Visual Basic Programmer’s Journal␣ ␣ ␣ AUGUST 1999

 101 TECH TIPS
For VB Developers

 For even more tricks and tips go to
 www.vbpj.com

VB6
Level: Intermediate

React to Font-Changed Events
Use WithEvents to perform an action when you change any
font properties of a specific control or form. Make sure you set
the OLE Automation reference in the References dialog:

' Declaration section
Private WithEvents fntAny As StdFont

Private Sub fntAny_FontChanged(ByVal PropertyName _
As String)
Select Case PropertyName

Case "Name"
' Perform specific action

Case "Size"
' Perform specific action

Case "Italic"
' Perform specific action

Case "Bold"
' Perform specific action

Case "Underline"
' Perform specific action

'...
'...
' Similarly, you can extend the
' functionality for each font property.

End Select
End Sub

You only have to assign any form or control’s Font reference
to fntAny. For example, if you want to trap the changes in the
form’s font attributes, add this code to the Form_Load event:

Set fntAny = Me.Font
' If a control, then Control.Font

—Badari Syam Mysore, Scotch Plains, New Jersey

VB4 32, VB5, VB6
Level: Beginning

Determine Which ListView Column was Checked
When using the ListView control in list mode (Listview.View =
lvwList), no property indicates which column the user clicked
on within the selected row. The ListView’s HitTest method
returns only a reference to the ListItem the user clicked on, not
the specific subitem. Use the SendMessage API function in the
ListView’s MouseUp or MouseDown event to provide this
information:

Private Declare Function SendMessage Lib _
"user32" Alias "SendMessageA" (ByVal hWnd As _
Long, ByVal wMsg As Long, ByVal wParam As _
Long, lParam As Any) As Long

Private Const LVM_SUBITEMHITTEST As Long = 4153

Private Type POINTAPI
X As Long
Y As Long

End Type

Private Type LVHITTESTINFO
pt As POINTAPI
lngFlags As Long
AUGUST 1999␣ ␣ ␣ Supplement to Visual Basic Programmer’s Journal
lngItem As Long
lngSubItem As Long

End Type

Private Sub ListView1_MouseUp(Button As Integer, _
Shift As Integer, X As Single, Y As Single)
Dim hti As LVHITTESTINFO
Dim lngRet As Long
hti.pt.X = X / Screen.TwipsPerPixelX
hti.pt.Y = Y / Screen.TwipsPerPixelY
lngRet = SendMessage(ListView1.hWnd, _

LVM_SUBITEMHITTEST, 0&, hti)
Debug.Print "Row=" & hti.lngItem,
Debug.Print "Col=" & hti.lngSubItem

End Sub
—Brian Pursley, Cincinnati, Ohio

VB4 32, VB5, VB6
Level: Intermediate

Convert File Size Into Proper Strings
Use this small API from the shlwapi (Shell Windowing API) DLL
that ships with Internet Explorer (IE) to help you convert file
size in bytes into proper strings such as “1.41 KB” or “1.32 MB.”
You need IE for this because it calls shlwapi.dll, which is
present on all NT4, Windows 95+IE, and Windows 98 systems:

Private Declare Function StrFormatByteSize Lib _
"shlwapi" Alias "StrFormatByteSizeA" (ByVal _
dw As Long, ByVal pszBuf As String, ByRef _
cchBuf As Long) As String

Public Function FormatKB(ByVal Amount As Long) As String
Dim Buffer As String
Dim Result As String
Buffer = Space$(255)
Result = StrFormatByteSize(Amount, Buffer, _

Len(Buffer))
If InStr(Result, vbNullChar) > 1 Then

FormatKB = Left$(Result, InStr(Result, _
vbNullChar) - 1)

End If
End Function

—Deepu Chandy Thomas, Kerala, India

VB3 and up
Level: Beginning

Create Better Button Arrows
Many times developers use a form’s default font arrow charac-
ters for To and From buttons between listboxes. To give your
app a nicer, more solid look, do what Microsoft does—use the
Marlett font, which is added by default to all Windows 95, 98,
and NT4 and later installations.

Instead of giving a To button the caption “>,” change the
font to Marlett and type “3” for the Caption property. Instead
of a From button being a skeletal “<,” use Marlett and type “4”
in the Caption property. For nice, solid Up and Down arrows,
use Marlett “5” and “6.”

—Robert Smith, Kirkland, Washington
3

 101 TECH TIPS
For VB Developers
VB3 and up
Level: Beginning

Return Focus After Button Click
Here’s an easy way to return the focus to a control after the
user clicks on a button on the screen. If you use the keyboard,
you can save time this way by not having to tab back to where
you were. First, create a module variable of type Control, and
call it mCtl. Next, in the GotFocus event of each input control,
set mCtl equal to the control that got the focus. When you want
to return the focus after the Click event, execute the SetFocus
method of mCtl:

Private mCtl As Control

Private Sub Command1_Click()
' perform normal button routine here, then
' return focus to previous control.
On Error Resume Next
mCtl.SetFocus

End Sub

Private Sub Text1_GotFocus()
Set mCtl = Text1

End Sub

Private Sub Text2_GotFocus()
Set mCtl = Text2

End Sub
—Ed Ordorica, Toledo, Ohio

VB4 32, VB5, VB6
Level: Intermediate

Enhance Development With Registry Edits
Here are a couple useful Registry edits to enhance your day-to-
day Visual Basic development. Save these Registry lines to a
text file with a REG extension, then double-click on the file to
merge it with your Registry.

Right-click on DLL register/unregister (make sure
RegSvr32.exe is on your path):

REGEDIT4
[HKEY_CLASSES_ROOT\dllfile\Shell\Register\command]
@="RegSvr32 \"%1\""
[HKEY_CLASSES_ROOT\dllfile\Shell\Unregister\command]
@="RegSvr32 /u \"%1\""

Right-click on OCX register/unregister:

REGEDIT4
[HKEY_CLASSES_ROOT\.ocx]
@="ocxfile"
[HKEY_CLASSES_ROOT\ocxfile]
@="OCX"
[HKEY_CLASSES_ROOT\ocxfile\shell\Register\command]
@="RegSvr32 \"%1\""
[HKEY_CLASSES_ROOT\ocxfile\shell\Unregister\command]
@="RegSvr32 /u \"%1\""

Right-click on OLEView to open a DLL or OCX in the OLE Viewer
utility (edit paths appropriately):

REGEDIT4
[HKEY_CLASSES_ROOT\dllfile\Shell\OleView\command]
@="c:\\Visual Studio\\Common\\Tools\\oleview.exe \"%1\""
4

[HKEY_CLASSES_ROOT\ocxfile\Shell\OleView\command]
@=":\\Visual Studio\\Common\\Tools\\oleview.exe \"%1\""

These shell extensions work for previous versions of VB as
well; simply change the commands and/or paths appropri-
ately. Editor’s Note: As with all Registry edits, be sure you either
have a current backup or can live with the consequences.

—Richard Hundhausen, Boise, Idaho

VB4 32, VB5, VB6
Level: Beginning

Catch Every TabStrip Click Event
You might have noticed that if you click on a TabStrip tab, then
move the mouse pointer until it’s no longer over the TabStrip
without releasing the mouse button, the Click event doesn’t
fire even though the tab is changed. To detect this behavior,
use this code:

Private Sub TabStrip1_MouseUp(Button As Integer, _
Shift As Integer, X As Single, Y As Single)
If X < 0 Or X > TabStrip1.Width Or _

Y < 0 Or Y > TabStrip1.Height Then
TabStrip1_Click

End If
End Sub

This calls the Click event code if you do not release the mouse
button above the TabStrip. You can’t just put the Click han-
dling code in the MouseUp event because then keyboard tab
changes wouldn’t work.

—Matt Hart, Tulsa, Oklahoma

VB4 32, VB5, VB6
Level: Intermediate

Display Taskbar Icons for Borderless Forms
When you create a borderless form in VB (BorderStyle = 0) and
make it visible to the taskbar (ShowInTaskbar = True), only the
form’s caption shows and the form’s icon is invisible. To
display the icon, you must add a system menu to the form by
modifying the style. This also gives you the ability to right-click
on the taskbar button and see a standard system menu, but the
items in it won’t work unless you subclass the form and handle
the system menu Click events yourself.

Add this code to the Declarations section of a form:

Private Declare Function GetWindowLong Lib _
"user32" Alias "GetWindowLongA" (ByVal hWnd _
As Long, ByVal nIndex As Long) As Long

Private Declare Function SetWindowLong Lib _
"user32" Alias "SetWindowLongA" (ByVal hWnd _
As Long, ByVal nIndex As Long, ByVal _
dwNewLong As Long) As Long

Private Const GWL_STYLE = (-16)
Private Const WS_SYSMENU = &H80000

Add this code to the Form_Load event:

Dim lStyle As Long
lStyle = GetWindowLong(hWnd, GWL_STYLE) Or WS_SYSMENU
SetWindowLong hWnd, GWL_STYLE, lStyle

—Matt Hart, Tulsa, Oklahoma
Supplement to Visual Basic Programmer’s Journal␣ ␣ ␣ AUGUST 1999

 101 TECH TIPS
For VB Developers

 For even more tricks and tips go to
 www.vbpj.com

VB4 16/32, VB5, VB6
Level: Intermediate

Link List Contents to ListIndex in Another List
I recently needed to create two listboxes, where the items
displayed in the second listbox depend upon the item selected
in the first listbox. After seeing the amount of code it took to do
this using standard arrays, I came up with a better solution using
array functions that reduced the amount of code by half. As an
added benefit, using array functions makes it easy to add items
to the listboxes—you don’t need to modify any array dimen-
sions, which makes the code much less error-prone. For ex-
ample, to add the item “Candy Bars” to the first listbox, simply
insert the subarray into the main array; nothing else is needed:

Array(3, "Candy Bars", "Milky Way", "Baby Ruth", _
"Almond Joy")

The code uses one subarray for each item in the first listbox.
The elements of each subarray are the number of items for the
second listbox, followed by the item for the first listbox,
followed by the items for the second listbox.

To test the code, start a Standard EXE project and put two list-
boxes on the form, keeping the default names of List1 and List2:

Option Explicit

Private varArray As Variant
Private varSubArray As Variant

Private Sub Form_Initialize()
varArray = Array(Array(4, "Fruit", "Apples", _

"Oranges", "Peaches", "Pears"), Array(5, _
"Vegetables", "Peas", "Beans", "Corn", _
"Beets", "Onions"), Array(3, _
"Dairy Products", "Milk", "Cream", "Butter"))

End Sub

Private Sub Form_Load()
Dim intIndex1 As Integer
With List1

For intIndex1 = 0 To UBound(varArray)
varSubArray = varArray(intIndex1)
.AddItem varSubArray(1)

Next intIndex1
.ListIndex = 0

End With
End Sub

Private Sub List1_Click()
Dim intIndex2 As Integer
With List2

varSubArray = varArray(List1.ListIndex)
.Clear
For intIndex2 = 0 To varSubArray(0) - 1

.AddItem varSubArray(intIndex2 + 2)
Next intIndex2
.ListIndex = 0
.Refresh

End With
End Sub

This code works with VB5 and VB6, and should work with any
version that supports the Array function.

—Paul Carlson, Fort Collins, Colorado
AUGUST 1999␣ ␣ ␣ Supplement to Visual Basic Programmer’s Journal
VB4 32, VB5, VB6
Level: Intermediate

Strip Comments off Strings Returned by
GetPrivateProfileString
Windows doesn’t treat comments in INI files the same way VB
does in code. Typically, comments must be on a single line of
their own. When calling the GetPrivateProfileString function, if
the requested entry contains a Rem statement—such as “; this
is a rem’d statement”—the entire entry, value and comment,
will be returned.

If your code anticipates the entry without comment, confu-
sion could result from a user entering a comment following the
entry rather than on a separate line. Use this VB code example
to properly receive a return using the GetPrivateProfileString
function call under any circumstance:

Private Declare Function GetPrivateProfileString _
Lib "kernel32" Alias "GetPrivateProfileStringA" (ByVal _
lpApplicationName As Any, ByVal lpKeyName As _
Any, ByVal lpDefault As String, ByVal _
lpReturnedString As String, ByVal nSize As _
Long, ByVal lpFileName As String) As Long

Private Sub Form_Click()
Dim IniString As String
Dim sDefault As String
Dim lReturn As Long

sDefault = "n/a"
' allocate sufficient buffer
IniString = String$(260, 0)
lReturn = GetPrivateProfileString("DB", _

"Path", sDefault, IniString, _
Len(IniString), "c:\test.ini")

If lReturn > 0 Then
IniString = Left$(IniString, lReturn)
Debug.Print IniString

' added to strip out trailing comments
If InStr(IniString, ";") > 0 Then

IniString = Trim$(Left$(IniString, _
InStr(IniString, ";") - 1))

If InStr(IniString, vbTab) > 0 Then
IniString = Trim$(Left$(IniString, _

InStr(IniString, vbTab) - 1))
End If

End If
Else

IniString = sDefault
End If
Debug.Print IniString

End Sub
—R. Van Volkenburgh, Keller, Texas

VB4 32, VB5, VB6, VBA
Level: Beginning

Sharing Files Between VB and VBA
You can easily share files such as standard code, form, and
class modules (BAS, FRM, and CLS files, respectively) between
VB and VBA by using the appropriate menu commands. Within
VB, select Project, then Add File… to import the desired file
into a VB project. No action is necessary to export a VB file
from a project because the files are maintained separately in
Windows. Within VBA, select Import, then File… from the VB
5

 101 TECH TIPS
For VB Developers
Editor menu, or right-click on a folder in the Project Explorer
and select Import File… from the popup menu. Because these
files are stored inside the VBA application’s file, such as in an
Excel Workbook, you must export these files to a folder before
another VB project can import them. To export a file from
within VBA, right-click on the file in the Project Explorer and
select Export File… from the popup menu. You will then see a
prompt to select the folder where you want to put the file.

—John M. Dennis, South Lyon, Michigan

VB6
Level: Beginning

Change the Setup Wizard Background Color
VB6’s Setup Wizard generates gradient blue background
screens, as do wizards in previous versions of VB. However, an
undocumented setting gives you the opportunity to see instal-
lation programs with other background colors. Open the
SETUP.lst file generated by the Setup Wizard and add this line
in the Setup section:

[Setup]
Color=N

N can be:
0: Black
1: Red background
2: Green
3: Yellow
4: Classical Blue
5: Magenta
6: Light blue
7: Gray
8: Red, but gradient reversed—top of screen is darker
and more

—Pierre Metras, Mont Royal, Quebec, Canada

VB3 and up
Level: Beginning

Clear a Masked Edit Box
To blank out the text in a masked edit box, make sure the string
you assign uses underscores matching the mask. It’s difficult to
maintain code when you have to change a mask; you have to find
all the locations where you cleared the masked edit control in
your code. To fix this problem, simply get rid of the mask, clear
the contents, then restore the mask. Use this subroutine to clear
the text of any masked edit box; just pass in the control:

Public Sub ClearMaskEdBox(oMaskEdBox As MaskEdBox)
Dim sTemp As String
With oMaskEdBox

sTemp = .Mask
.Mask = ""
.Text = ""
.Mask = sTemp

End With
End Sub

'Sample Call:
Private Sub cmdClear_Click()

ClearMaskEdBox MaskEdBox1
MaskEdBox1.SetFocus

End Sub
—E.J. Osis, Sterling Heights, Michigan
6

VB4 16/32, VB5, VB6
Level: Intermediate

Use UDTs for Irregular Arrays
If you use variable-length strings and/or dynamic arrays in a
user-defined type (UDT), the actual data does not become part
of the structure. Instead, four-byte pointers are stored in the
structure, and the actual data is stored separately. Therefore,
it doesn’t matter if the strings and/or arrays in variables A and
B are different sizes; the type size is the same, assuming A and
B are of the same UDT.

It also means that if you create an array with a UDT that itself
includes dynamic arrays, any “inside” array inside one element of
the “outside” array is physically distinct from the corresponding
“inside” array of any other “outside” array element. Therefore,
code along these lines is perfectly fine:

Type AnotherType
Something As Integer
SomethingElse As Long

End Type

Type SomeType
Something As Integer
InsideArr() As AnotherType
SomethingElse As Long

End Type

Sub Test()
' set up outside array
ReDim OutsideArr(1 To 4) As SomeType
' set up inside arrays
ReDim OutsideArr(1).InsideArr(1 To 3)
ReDim OutsideArr(2).InsideArr(1 To 7)
ReDim OutsideArr(3).InsideArr(-4 To 0)
ReDim OutsideArr(4).InsideArr(1 To 3, 2 To 14)

End Sub

You can use this code to create psuedo-multidimensional,
nonrectangular arrays, or arrays in which more than one
dimension is resized using ReDim Preserve. Both are impos-
sible with ordinary multidimmed arrays.

—Robert Alan Gustafson II, Butler, Pennsylvania

VB3 and up
Level: Beginning

Start Up in Your Code Folder
I keep all my projects in a particular directory such as C:\work.
When I save or open up a new project, I want the File dialog box
to start at the directory C:\work. By default, it starts at the VB
install directory, which is something like C:\Program
Files\Microsoft Visual Studio\VB98. I don’t save any projects
in the same directory with the VB executable.

To get your project to open in the desired directory, change
the “Start in” textbox in the shortcut for Microsoft Visual Basic
to C:\work. It saves a mountain of clicks.

—Christian Gilstrap, Gilbert, Arizona

VB4 32, VB5, VB6
Level: Intermediate

Customize Colors and Fonts for Statusbar Panels
You can easily customize the fonts and colors in individual
statusbar panels using a PictureBox control and an API call.
Each statusbar panel can display a Picture object, so you can
Supplement to Visual Basic Programmer’s Journal␣ ␣ ␣ AUGUST 1999

 101 TECH TIPS
For VB Developers

 For even more tricks and tips go to
 www.vbpj.com

use an invisible PictureBox control with the background, font,
and foreground elements you want and assign that PictureBox
image to the Picture object of a statusbar panel. The Panel
object exposes a Width property, but not a Height property.
The SendMessage API function can retrieve that height. Place
a PictureBox on a form and set its Name to picStatus, set
AutoRedraw to True, and set Visible to False. Change the Font
object of the statusbar to a Panel’s preferences before calling
the PanelText procedure:

Private Type RECT
Left As Long
Top As Long
Right As Long
Bottom As Long

End Type

Private Declare Function SendMessage Lib "user32" Alias _
"SendMessageA" (ByVal hWnd As Long, ByVal wMsg _
As Long, ByVal wParam As Long, lParam As Any) As Long

Private Const WM_USER = &H400
Private Const SB_GETRECT = (WM_USER + 10)

Private Sub PanelText(sb As StatusBar, Index As Long, _
aText As String, bkColor As Long, fgColor As Long)
Dim R As RECT
SendMessage sb.hWnd, SB_GETRECT, Index - 1, R
With picPanel

Set .Font = sb.Font
.Move 0, 0, (R.Right - R.Left + 1) * _

Screen.TwipsPerPixelX, (R.Bottom - _
R.Top + 1) * Screen.TwipsPerPixelY

.BackColor = bkColor

.Cls

.ForeColor = fgColor
picPanel.Print aText
sb.Panels(Index).Text = aText
sb.Panels(Index).Picture = .Image

End With
End Sub

Private Sub Form_Load()
PanelText StatusBar1, 1, "Panel Message", _

QBColor(1), QBColor(15)
End Sub

—Matt Hart, Tulsa, Oklahoma

VB4 32, VB5, VB6, VBA
Level: Beginning

Create Rich, Colorful Text
Call this sub to insert text of any color at the current insert
point of a RichTextBox:

Private Sub ColorText(rtb As RichTextBox, Color _
As Long, Text As String)
Dim lR As Long, lG As Long, lB As Long

lR = (Color Mod &H100)
lG = (Color \ &H100) Mod &H100
lB = (Color \ &H10000) Mod &H10000
rtb.SelRTF = "{{\colortbl;\red" & CStr(lR) & "\green" & _

CStr(lG) & "\blue" & CStr(lB) & ";}" & "{\cf1 " & Text & "}}"
End Sub

—Graeme Anderson, Blackburn, Australia
AUGUST 1999␣ ␣ ␣ Supplement to Visual Basic Programmer’s Journal
VB4 32, VB5, VB6
Level: Intermediate

Proper MouseLeave Detection
I have read many tips about using MouseMove events to create
an Explorer-like coolbar look. The problem is that if your
button is located close to the main form’s border and you
move the mouse too fast, the pointer jumps to the desktop or
to another window without firing a Form_MouseMove event,
and your button still has the “active” look.

The Command1_MouseMove event allows you to intercept
the moment when the mouse pointer moves in or passes over the
button, and you can easily assign an “active” picture to the button
within this event. But you cannot intercept the moment when the
pointer leaves the button using Form_MouseMove or any other
Control_MouseMove or LostFocus event. To do this, you need to
use two Windows APIs: SetCapture and ReleaseCapture.
SetCapture directs all mouse events to the button, so you can trap
the mouse at any point on the screen. ReleaseCapture releases
mouse events, restoring standard behavior. The only thing you
have to do with these APIs is check the pointer’s coordinates to
determine when it leaves the button:

Declare Function ReleaseCapture Lib "user32" () As Long
Declare Function SetCapture Lib "user32" (ByVal _

hWnd As Long) As Long

Private Sub SSCommand1_MouseMove(Button As _
Integer, Shift As Integer, X As Single, Y As Single)
Dim ret As Long
Static flagInside As Boolean

If X < 0 Or X > SSCommand1.Width Or _
Y < 0 Or Y > SSCommand1.Height Then
' pointer is out
flagInside = False
ret = ReleaseCapture()
SSCommand1.Picture = _

ImageList1.ListImages("gray").Picture
SSCommand1.BevelWidth = 0

Else
' pointer is in
If flagInside = False Then

flagInside = True
ret = SetCapture(SSCommand1.hWnd)
SSCommand1.Picture = ImageList1.ListImages(_

"color").Picture
SSCommand1.BevelWidth = 1

End If
End If

End Sub

As you can see, you don’t need to use any other events except
SSCommand1_MouseMove.

Use the flagInside variable to prevent the icon from blinking
while the pointer passes over the button. While you drag the
mouse over the button, the MouseMove event fires repeat-
edly. You don’t need to assign the “active” picture every time
if it has already been assigned.

—Alex Klikouchin, Toronto, Ontario, Canada
7

 101 TECH TIPS
For VB Developers
VB5, VB6
Level: Beginning

Make a Form Stay on Top Redux
Many routines use the SetWindowPos API to always keep a
form on top. Most require the user to remember several
nonintuitive arguments. I’ll not only show you how to simplify
the arguments, but I’ll also illustrate the usefulness of the new
Enum function. Enums have several advantages: Possible
argument values are listed for you in the IDE using Microsoft’s
IntelliSense, the arguments are listed in the Object Browser,
and Enums are included automatically in the type library when
used in a class module. This all translates into easier program-
ming and more code reuse:

'Paste this code into a module
Private Declare Function SetWindowPos Lib _

"user32" (ByVal hWnd As Long, ByVal _
hWndInsertAfter As Long, ByVal X As Long, _
ByVal Y As Long, ByVal cx As Long, ByVal cy _
As Long, ByVal wFlags As Long) As Long

Private Const SWP_NOMOVE = &H2
Private Const SWP_NOSIZE = &H1
Private Const SWP_SHOWWINDOW = &H40
Private Const SWP_NOACTIVATE = &H10

Public Enum WindowPos
vbTopMost = -1&
vbNotTopMost = -2&

End Enum

Public Sub SetFormPosition(hWnd As Integer, _
Position As WindowPos)
Const wFlags As Long = SWP_NOMOVE Or _

SWP_NOSIZE Or SWP_SHOWWINDOW Or SWP_NOACTIVATE
If Position = vbTopMost or Position = vbNotTopMost Then

SetWindowPos hWnd, Position, 0, 0, 0, 0, wFlags
End If

End Sub

'Add two command buttons to a form; then paste in this code
Private Sub Command1_Click()

'Makes form topmost
SetFormPosition Me.hWnd, vbTopMost

End Sub

Private Sub Command2_Click()
'Restore form to normal position
SetFormPosition Me.hWnd, vbNotTopMost

End Sub
—Jared A. Faulkner, Roxana, Illinois

VB6
Level: Advanced

Native Registry Access Fails Under MTS
VB provides an easy way to access the Registry with the built-
in GetSetting and SaveSetting functions. These functions read
and write information to the HKEY_CURRENT_USER\
Software\VB and VBA Program area of the Registry. VB6
makes it easy to create DLLs that can run in Microsoft Trans-
action Server (MTS) on an NT Server. A problem occurs,
however, when you create an ActiveX DLL that uses GetSetting
or SaveSetting in a DLL running on an NT Server that has no
current user.
8

In MTS, you can set up a user under the Identity tab of the
Property settings for an MTS package. Selecting a user under
the Identity tab is supposed to allow your DLL to run even if
there is no currently logged-in user on the server. However,
even with that user identified in MTS, your DLL still fails to run
if it uses GetSetting or SaveSetting. Apparently, the VB DLL is
unable to locate the HKEY_CURRENT_USER hive of the Regis-
try if there is no current user. No error is returned to your
calling app, while a variety of errors can be generated on the
server in the event log, related to errors in MTS. The only
workarounds seem to be either not using Registry settings
(use hard-coded values or read a text file instead) or avoiding
VB’s native Registry functions and calling the API Registry
functions directly to store and retrieve information in some
other part of the Registry, such as HKEY_LOCAL_MACHINE.

Editor’s Note: A third option, for the masochists out there,
might be to load a given user’s hive programmatically. See the
Microsoft Knowledge Base article Q168877 for details.

—Edward Chicca, La Plata, Maryland

VB5, VB6
Level: Intermediate

Support Enumeration in Your Collection Classes
To create a collection class you can use with the For Each...Next
syntax, add a subroutine that looks like this:

Private myCollection As Collection

Public Property Get NewEnum() As IUnknown
Set NewEnum = myCollection.[_NewEnum]

End Property

Click on the Tools menu and select Procedure Attributes.
Select the NewEnum procedure from the combo box. Click on
the “Advanced >>” button. In the ProcedureID field, enter the
value -4. Check the “Hide this member” checkbox. Now you can
use the For Each...Next syntax with your collection class in the
same way as a standard collection.

—Russell Jones, Conroe, Texas

VB4 16/32, VB5, VB6
Level: Intermediate

Speed Up String Operations
It’s often faster to perform string operations with byte arrays
than with 32-bit VB’s native double-byte character strings.
Even when using 16-bit VB4’s single-byte character strings, it’s
still often faster to convert to byte arrays before intense
processing. Compare the speed at which these two proce-
dures execute and you’ll be amazed. Paste this code into the
default form of a new project to see the difference:

Private Sub Form_Click()
Dim s As String
Dim i As Integer
s = String$(50000, "1")
Debug.Print Time
For i = 1 To 100

Call countCharString(s, Asc("1"))
Next
Debug.Print Time
For i = 1 To 100

Call countCharByte(s, Asc("1"))
Next
Debug.Print Time
Supplement to Visual Basic Programmer’s Journal␣ ␣ ␣ AUGUST 1999

 101 TECH TIPS
For VB Developers

 For even more tricks and tips go to
 www.vbpj.com

End Sub

Function countCharString(s As String, _
charASCIIValue As Integer) As Long
Dim i As Long
For i = 1 To Len(s)

If Asc(Mid$(s, i, 1)) = charASCIIValue Then
countCharString = countCharString + 1

End If
Next

End Function

Function countCharByte(s As String, _
charASCIIValue As Integer) As Long
Dim b() As Byte
Dim i As Long
#If Win32 Then

b = StrConv(s, vbFromUnicode)
#Else

b = s
#End If

For i = 0 To UBound(b)
If b(i) = charASCIIValue Then

countCharByte = countCharByte + 1
End If

Next
End Function

This optimization doesn’t apply to all string operations. De-
pending on the nature of your problem, you’ll see anything
from fantastic improvement to slight degradation. Be sure to
test both ways.

—Russell Jones, Conroe, Texas

VB4 32, VB5, VB6
Level: Intermediate

MCI Supports Multiple CD-ROMs
The Media Control Interface (MCI) can easily support multiple
CD audio devices. You simply specify the drive letter in the
MCI open command. To eject the CD from any drive, first place
a listbox on a form. To detect which drives are CD-ROMs, place
this code in the form’s General Declarations section:

Private Declare Function GetDriveType Lib _
"kernel32" Alias "GetDriveTypeA" (ByVal _
nDrive As String) As Long

Private Declare Function mciSendString Lib _
"winmm.dll" Alias "mciSendStringA" (ByVal _
lpstrCommand As String, ByVal _
lpstrReturnString As String, ByVal uReturnLength _
As Long, ByVal hWndCallback As Long) As Long

Private Const DRIVE_CDROM = 5

The following code in the Form_Load event fills the listbox
with available CD-ROM drives. Note that the code does
not detect whether the CD-ROM drive can actually eject the
CD. Use the “capabilities can eject” MCI command to deter-
mine that:

Private Sub Form_Load()
Dim k As Long
For k = Asc("A") To Asc("Z")

If GetDriveType(Chr$(k) & ":") = DRIVE_CDROM Then
AUGUST 1999␣ ␣ ␣ Supplement to Visual Basic Programmer’s Journal
List1.AddItem Chr$(k) & ":"
End If

Next
End Sub

Place this code in the List1_DblClick event to eject the CD:

Private Sub List1_DblClick()
mciSendString "open " & List1.List(List1.ListIndex) & _

" type cdaudio alias cdaudio", vbNullString, 0, 0
mciSendString "set cdaudio door open", vbNullString, 0, 0
mciSendString "close cdaudio", vbNullString, 0, 0

End Sub
—Matt Hart, Tulsa, Oklahoma

VB5, VB6
Level: Beginning

Enumerate a Dictionary Object
Although the Dictionary object does not have an enumerator,
it does have an Items method that returns a Variant array. You
can use the For...Each construct on the array:

Dim vItem As Variant
Dim dict As Scripting.Dictionary

Set dict = New Scripting.Dictionary
dict.Add "Item1", "Item data 1"
dict.Add "Item2", "Item data 2"
dict.Add "Item3", "Item data 3"

For Each vItem In dict.Items
Debug.Print vItem

Next

Set dict = Nothing

Before you can use the Dictionary object in your applica-
tion, you must set a Project Reference to the Microsoft Script-
ing Runtime (scrrun.dll).

—Steve Griffs, Niskayuna, New York

VB3 and up
Level: Beginning

Avoid IIf Inefficiencies
The IIf function—which returns one of two values determined
by logical test—has this syntax: IIf(Expression, TruePart,
FalsePart). At first, it might seem like an ideal shortcut for an
If…Else...End If block. However, IIf is designed to execute both
the True part and the False part. To verify, copy this into your
Debug window and press enter:

? IIf(True, MsgBox("True Part"), MsgBox("False Part"))

Obviously, it’s extremely inefficient—and possibly error-
inducing—to place functions in the True and False parts of IIf,
because they are both executed. In general, always use a
standard If…Else…End If block instead.

—William Wen, New York, New York
9

 101 TECH TIPS
For VB Developers
VB5, VB6
Level: Beginning

Find the Last Modified Date of a Web Page
Microsoft’s Internet Transfer Control (MSInet.ocx) is a great
tool to use to automate the Web. However, how do you know
you’re looking at an updated version of a Web page? Use
OpenURL to navigate to a page, then use the GetHeader
function to retrieve the entire HTML header, from which you
can get the last modified date:

Dim x As String
Inet1.OpenURL("www.devx.com")
x = Inet1.GetHeader
Debug.Print x
MsgBox Mid$(x, InStr(1, x, "Date:") + Len("Date:"), 30)

Or you can request the desired header: “Date” in this case:

Inet1.OpenURL("www.devx.com")
MsgBox Inet1.GetHeader("Date")

—William Wen, New York, New York

VB4 32, VB5, VB6
Level: Intermediate

Align Text on a Command Button
If you’ve ever wanted to align text on a command button and
found you can do it only by using spaces in the caption, there are
a couple of constants that can help you do this with the
SetWindowLong API Call. Add this code to a standard BAS
module, then call it at will, passing the command button and the
desired combination of vertical and horizontal alignment values:

Option Explicit

Private Declare Function GetWindowLong Lib _
"user32" Alias "GetWindowLongA" (ByVal hWnd _
As Long, ByVal nIndex As Long) As Long

Private Declare Function SetWindowLong Lib _
"user32" Alias "SetWindowLongA" (ByVal hWnd _
As Long, ByVal nIndex As Long, ByVal _
dwNewLong As Long) As Long

Private Const BS_LEFT As Long = &H100
Private Const BS_RIGHT As Long = &H200
Private Const BS_CENTER As Long = &H300
Private Const BS_TOP As Long = &H400
Private Const BS_BOTTOM As Long = &H800
Private Const BS_VCENTER As Long = &HC00

Private Const BS_ALLSTYLES = BS_LEFT Or BS_RIGHT _
Or BS_CENTER Or BS_TOP Or BS_BOTTOM Or BS_VCENTER

Private Const GWL_STYLE& = (-16)

Public Enum bsHorizontalAlignments
bsLeft = BS_LEFT
bsRight = BS_RIGHT
bsCenter = BS_CENTER

End Enum

Public Enum bsVerticalAlignments
bsTop = BS_TOP
bsBottom = BS_BOTTOM
bsVCenter = BS_VCENTER
10
End Enum

Public Sub AlignButtonText(cmd As CommandButton, _
Optional ByVal HStyle As bsHorizontalAlignments = bsCenter, _
Optional ByVal VStyle As bsVerticalAlignments = bsVCenter)

Dim oldStyle As Long

' get current style
oldStyle = GetWindowLong(cmd.hWnd, GWL_STYLE)

' clear existing alignment setting(s)
oldStyle = oldStyle And (Not BS_ALLSTYLES)

' set new style and refresh button
Call SetWindowLong(cmd.hWnd, GWL_STYLE, _

oldStyle Or HStyle Or VStyle)
cmd.Refresh

End Sub
—Sam Huggill, Colchester, England

VB5, VB6
Level: Beginning

Retrieve Localization Strings
Use this API function wrapper to retrieve localization and
personalization information:

Private Declare Function GetLocaleInfo Lib _
"kernel32" Alias "GetLocaleInfoA" (ByVal _
Locale As Long, ByVal LCType As Long, ByVal _
lpLCData As String, ByVal cchData As Long) As Long

Public Function WinLocaleInfo(ByVal lnfoType As _
Long) As String
Dim sLCData As String
Dim nRet As Long

nRet = GetLocaleInfo(0, lnfoType, sLCData, 0)
If nRet Then

sLCData = Space$(nRet)
nRet = GetLocaleInfo(0, lnfoType, _

sLCData, Len(sLCData))
If nRet Then

WinLocaleInfo = Left$(sLCData, nRet)
End If

End If
End Function

Here are some of the handier parameters you can use for
information:

LOCALE_SCURRENCY = &H14
' local monetary symbol
LOCALE_SDATE = &H1D
' date separator
LOCALE_SDAYNAME1 = &H2A
' long name for Monday
LOCALE_SDECIMAL = &HE
' decimal separator

—Brian Morris, Woonsocket, Rhode Island
Supplement to Visual Basic Programmer’s Journal␣ ␣ ␣ AUGUST 1999

 101 TECH TIPS
For VB Developers

 For even more tricks and tips go to
 www.vbpj.com

VB5, VB6
Level: Beginning

Alpha Resource IDs Can Spell Trouble
Resource files are a great way to store text strings and images,
but beware—use of a resource file can override the property
setting for your application’s icon. When Windows needs an
icon to represent your application, it always grabs the first one
available.

You can use the VB Resource Editor add-in to store icons.
Normally, VB assigns an ID of “1” to the icon you assign as the
application default. However, if you assign alphanumeric IDs
in the Resource Editor, instead of using only numerics, the
icon used for your application will be the first one listed under
Icons. I always preface the desired application icon’s ID with
the string “AAA” to ensure that it remains first alphabetically.

—Al Meadows, Oklahoma City, Oklahoma

VB4 16/32, VB5, VB6
Level: Beginning

Ask the Form Itself Whether it’s Loaded
Occasionally you initialize a form but don’t load it. You might
do this to read in initial application Registry values. After that,
any references to control properties on the form automatically
cause your Form_Load event to fire, whether or not you
intended to fire the Form_Load event. If you want to know
programmatically whether your form has been loaded, imple-
ment these steps.

Add a private Boolean variable to your form and call it
m_bLoaded:

Option Explicit

Dim m_bLoaded as Boolean

Add Property Let and Get procedures to provide public read
and write access to your form’s internal m_bLoaded variable:

Public Property Get Loaded() As Boolean
Loaded = m_bLoaded

End Property

Public Property Get Let(ByVal bLoaded As Boolean)
m_bLoaded = bLoaded

End Property

Add this line of code to your form’s Load event:

Me.Loaded = True

To see whether your form is loaded from other modules or
other forms, use this code:

If FormName.Loaded = True Then
' Do stuff that can only be done if the form
' has been loaded (i.e., set control properties)

EndIf

Using this code helps prevent you from accidentally firing the
Form_Load event.

—Scott McFadden, Oklahoma City, Oklahoma
AUGUST 1999␣ ␣ ␣ Supplement to Visual Basic Programmer’s Journal
VB4 32, VB5, VB6
Level: Intermediate

Locate the Temp Folder
In your apps, do the right thing: Use the computer’s Temp
folder to hold your temporary files. To find that location, paste
this code into the Declarations section of a form:

Private Declare Function GetTempPath Lib _
"kernel32" Alias "GetTempPathA" (ByVal _
nBufferLength As Long, ByVal lpBuffer As _
String) As Long

Private Const MAX_PATH = 260

Public Property Get TempPathLocation() As String
Dim sBuffer As String
sBuffer = Space(MAX_PATH)
If GetTempPath(MAX_PATH, sBuffer) <> 0 Then

TempPathLocation = Left$(sBuffer, _
InStr(sBuffer, vbNullChar) - 1)

Else
TempPathLocation = ""

End If
End Property

This routine returns the computer’s established Temp folder. If
none has been established, an empty string is returned, which
may be interpreted as the current directory. Be sure to use Kill
on all created temp files when you’re through with them.

—Robert Smith, Kirkland, Washington

VB4 32, VB5, VB6
Level: Intermediate

Make Sure MsgBox is on Top
When you implement the Always on Top feature with
VB forms using SetWindowPos and HWND_TOPMOST, mes-
sage boxes are shown below the topmost form. To overcome
this, you can use the vbSystemModal constant in the MsgBox
function’s Style attribute. This forces the message box to show
on top of the Always on Top form. This is necessary only with
the 32-bit versions of VB.

—Srinivasa S. Sivakumar, Chicago, Illinois

VBA
Level: Beginning

Catalog Your Graphics
I needed a printed catalog of GIF images in a directory. So I
wrote a routine that creates a new document, and inserts an
image for each GIF file in the directory, along with its name and
size. When the routine has finished, you can print or save the
document (for the complete code listing, download the RTF
file for this supplement under the Code section on VBPJ ’s Web
site, www.vbpj.com). This code does not check whether the
image fits on the page; in my case all the images were small, such
as Web buttons and rules.

—Richard Gardiner, Chicago, Illinois
11

 101 TECH TIPS
For VB Developers
VB3 and up
Level: Beginning

Perform Complex Tests in the Immediate Window
If you’ve ever tried to type a small program into the Immediate
window or the Debug window in Access, you might have found
that the style of VB programming you use in most of your code
didn’t work there. For example, this code doesn’t work when
you type it into the Debug window because one of the state-
ments takes more than a single line:

Dim rs As Recordset
Set rs = CurrentDb.OpenRecordset("SELECT * FROM MyTable")
If rs.RecordCount = 0 Then

Beep
Debug.Print "Hello"

ElseIf rs.Updatable Then
DoThis()
DoThat()

End If

You should almost always use Option Explicit when writing
regular code, but it is neither necessary nor available in the
Immediate window. You never need to declare a variable, as in
the first line of the previous snippet. When you refer to a
variable name for the first time, it is implicitly created. Remem-
ber that Variants of type Object are late-bound, which means
you don’t see the AutoSyntax box for implicitly created object
variables.

Using the colon executes more than one statement on a
single line:

Debug.Print "A" : Beep

For example, this code prints an “A” in the Immediate window
and then beeps. By itself, this isn’t highly valuable, but using
the colon construct in the right place allows you to reformat
most VB statements for the Immediate window.

To handle the multiple-line If...ElseIf...Else...End If construct
in the Immediate window, use a single-line If...Else...Then
construct—nested, if necessary—with the colon construct.
The syntax single-line version of the If statement is simple:

If <condition> Then <statement> [Else <statement>]

Notice there is no End If or ElseIf clause, and the Else clause is
optional. Here is the previous snippet, correctly formatted for
the Immediate window with ElseIf replaced by a nested If:

Set rs = CurrentDb.OpenRecordset("SELECT * FROM MyTable")
If rs.RecordCount = 0 Then Beep : Debug.Print _

"Hello" Else If rs.Updatable Then DoThis() : DoThat()

Editor’s Note: Line continuation characters also aren’t allowed
in the Immediate window, although they’re required in this
example to fit the supplement’s layout.

Be careful when converting If statements from multiple-
line to single-line. Unusual or complex nesting might require
special logic.

The colon also allows you to perform loops in the Immedi-
ate window. VB declares the looping variable implicitly:

For Each v In MyCollection : ? v.Description : Next v

—Chase Saunders, Bath, Maine
12
VB3 and up
Level: Beginning

Perform Faster String Manipulations
Are you dealing with strings you have to parse if you want to
drop one special character or change it into another? Keep this
trick in mind. Even though this code seems to work fine, there
is one minor problem that can cause headaches. The time you
spend in memory allocation (line 7) increases dramatically in
relation to the length of the processed string:

Dim m_newtext, m_oldtext As String
Dim i As Integer, m_c As String
m_newtext = ""
For i = 1 To Len(m_oldtext)

m_c = Mid(m_oldtext, i, 1)
If ParseTestFunction(m_c) Then

m_newtext = m_newtext & m_c
End If

Next i

Use this code instead:

Dim m_newtext, m_oldtext As String
Dim i As Integer, m_c As String
Dim j As Integer
m_newtext = m_oldtext
j = 1
For i = 1 To Len(m_oldtext)

m_c = Mid(m_oldtext, i, 1)
If ParseTestFunction(m_c) Then

Mid(m_newtext, j, 1) = m_c
j = j + 1

End If
Next I
If j > 1 Then

m_newtext = Left(m_newtext, j - 1)
Else

m_newtext = ""
End If

You can use the same technique when you parse for substrings.
The improvement is obvious for large strings. Implement this
with a 30K string and see the difference. It looks like a lot more
code, but inserting a character into an existing string is always
much faster than appending it.

—Sorinel Ticrea, Minneapolis, Minnesota

VB3 and up
Level: Beginning

Take Care When You Declare
This is a common error among C programmers who have
recently switched to VB. This code would result in A and B as
Variant variables and only C as an Integer variable:

Dim a, b, c As Integer

Here’s the proper way to declare these variables:

Dim a As Integer, b As Integer, c As Integer

Or:

Dim a%, b%, c%
—Philip Lee, Foster City, California
Supplement to Visual Basic Programmer’s Journal␣ ␣ ␣ AUGUST 1999

 101 TECH TIPS
For VB Developers

 For even more tricks and tips go to
 www.vbpj.com

VB4 16/32, VB5, VB6
Level: Intermediate

Generate Business Object Classes
I often include a module called Utilities.bas in my projects. It
contains routines that are not directly used by the application,
but instead are invoked in the Debug window, usually to
generate code snippets for the project.

For example, I have a routine that generates the skeleton of
a class whose properties are mapped to the fields of a table,
view, or stored procedure—as in the Business Object class
described in Deborah Kurata’s book Doing Objects in Microsoft
Visual Basic 5.0 (pp. 476-479, Que, 1999, ISBN: 1562765779).
Writing the code for this class is tedious, especially when the
table has many fields. Imagine writing all the Get and Let
property subs for a table with 20 or 30 fields (for the complete
code listing, download the RTF file for this supplement under
the Code section on VBPJ ’s Web site, www.vbpj.com).

If I want to write a class for the Person table, for example,
I go to the Debug window and type:

GenTableClass "Person"

I then cut and paste the generated code to my target class
module.

—Arnel J. Domingo, Hong Kong

VB3 and up
Level: Intermediate

Add a Document Name to Your Printouts
I wanted to distinguish between different print jobs. I tried to
find a way to set the print job name that appears in the printer
queue, but even some nasty API calls didn’t work well. I found
a simple trick, though it works only after compiling to an EXE:

Dim sAppTitle As String

sAppTitle = App.Title
App.Title = "What ever Print Job Name you wish"

' Start Printing....

' End Printing
Printer.EndDoc
App.Title = sAppTitle

—Yoram Shechori, Netanya, Israel

VB3 and up
Level: Beginning

Set Tab Order in a Hurry
Setting up the control tab order can be unruly—a sore point
with many VB developers. In fact, in Jeff Hadfield’s recent
editorial, “Five Things You Hate About VB6” [Editor’s Note,
VBPJ April 1999], it’s listed as one of the top five things people
hate most about VB.

I’ve never understood this; it’s never been a big deal to me.
But many people are shocked when I show them how I lay out
tab orders, and are even embarrassed they didn’t think of it
themselves. I don’t worry about the tab order until I’ve placed
all the controls on the form, then I order them.

Now for the slam in the face: Think backwards. While
viewing your form, click on the control you want to be the last
control in the tab order. Highlight the TabIndex property in the
Properties window and change it to zero. Now click on the

✰✰✰✰✰ Five Star Tip␣
AUGUST 1999␣ ␣ ␣ Supplement to Visual Basic Programmer’s Journal
control that you want to have the focus before that one, and
repeat the process. Repeat this process until you reach the
control that should have focus when the form opens.

Here’s why this works: VB does most of the work for you. VB
automatically reassigns the tab orders if you change the
TabIndex property of a control. Because you started by setting
the tab index of the last control first, VB increments the last
control’s tab index as you set the rest of the controls. It’s a heck
of a lot easier to set the tab index to zero while you’re going
through the order. I can rip through a form with more than 50
controls in about two minutes using this technique.

—James Bragg, Tulsa, Oklahoma

VB4 16/32, VB5, VB6
Level: Beginning

Supply Users with More Icon Choices
In the past, VB allowed an app to have only one icon. However,
resource files expose any contained icons to Windows. Simply
add the icons you wish to show to a RES file and add the RES
file to your project. Then compile the app, make a shortcut to
it, and open the Shortcut tab under the Properties window
with a right click and select Properties. Press the Change Icon
button and voila!—all the icons are there to choose from.

—Michael Lewis, Chaing Mai, Thailand

VB5, VB6
Level: Beginning

Create a Password-Protected Database
In the Winter 1998/1999 edition of Getting Started with Visual
Basic, the Ask the VB Pro column contains a tip from Phil
Weber with the title “Protect Data from Prying Eyes.” This tip
says you can use Access 7.0 to protect your database files with
a password and then use this password in your applications to
open the database file.

The tip works perfectly. But what if you don’t have Access
7.0, or you need the application to create a protected database?
Here’s a tip that does the job. When you create your database
use this code, and pay attention to the connect parameter:

Dim wsAccount As Workspace
Dim dbAccount As Database

Set wsAccount = DBEngine.Workspaces(0)
Set dbAccount = _

wsAccount.CreateDatabase("mydatabase.mdb", _
dbLangGeneral & ";pwd=TOP SECRET", dbVersion30)

You now have a database with a password. You can replace the
words “TOP SECRET” with any you choose, depending on the
level of encryption you desire to use. To open the file:

sPassword = "TOP SECRET"
Set db=OpenDatabase("mydatabase.mdb", False, _

False, ";pwd=" & sPassword)
—José Arturo Ramirez Guzman, Coatzacoalcos,

Veracruz, Mexico
13

 101 TECH TIPS
For VB Developers
VB5, VB6
Level: Intermediate

Detect Unused Objects
Improper use of objects and object references can cause your
application’s objects to stay resident in memory. Such “memory
leaks” often causes system performance degradation and
prevents your application from scaling well over time. Instead
of using complex system utilities and third-party tools to
detect such “bad code” in your application, you can put VB5/
VB6’s event technology to work for you.

Create an ActiveX DLL—such as ListObjects.dll—with a
single class: ResidentObjs.cls. Add a method to raise an event.
You may call this subroutine DetectAllObjects. Declare an
event in the Declarations section of the class:

Option Explicit
Public Event ObjectNotification()

Public Sub DetectAllObjects()
DoEvents ' let the system do its job.
RaiseEvent ObjectNotification()

End sub

In your application, add a reference to ListObjects.dll to
your project. Then declare a global variable in a BAS module
as a ResidentObjs type, and instantiate this object variable at
Application startup:

Sub Main()
Set oListObject = New ListObject.ResidentObjs

End Sub

In each class of your project, you must declare a ResidentObjs
variable using WithEvents. Set this object variable to the
global variable upon class initialize or some other class func-
tion that is called each time you create an object of that class.
In the event function, you can add any code that warns you
about the current object instance. For example, you can add
Debug.Print, or some code that writes the class name to a file.

At any suitable point in your project code, you can call
DetectAllObjects(). The number of times the event function
gets called is the number of objects resident in your memory
at that time. To zero in on only some of the main classes, you
can limit the DLL object declaration to only those classes.

How does this work? Events are a form of anonymous
broadcast messages. They are sent to every object instance in
your application. Hence, this simple yet powerful mechanism
can detect invalid objects. In fact, you can step into the code
to actually see the event function being called several times.

—Rahul Pandhe, Hayward, California

VB3 and up
Level: Intermediate

Translate Color Values Faster
This tip is an update to “Translate Color Values,” which
appeared in the last edition of this supplement [“101 Tech Tips
for VB Developers,” Supplement to VBPJ, February 1999]. That
method converted numbers to strings, then performed string
manipulation to get individual RGB values. This solution uses
a concept near and dear to C programmers—unions—and is
an order of magnitude faster.

With the RGB function, VB provides a neat and valuable tool
for converting separate Red, Green, and Blue values into a
single Long color value. However, VB doesn’t provide any way
14
to convert this color value back to its constituent RGB values.
Enter the much-feared LSet command, which copies the stor-
age of one user-defined type (UDT) onto another.

Put this code in a module:

Public Type RGB_TYPE
R As Byte
G As Byte
B As Byte
Filler As Byte

End Type

Private Type RGB_FULL_TYPE
lngRGB As Long

End Type

Public Function ToRGB(ByVal vlngColor As Long) As RGB_TYPE
Dim udtRGBFull As RGB_FULL_TYPE
udtRGBFull.lngRGB = vlngColor
' Poor man's C Union
LSet ToRGB = udtRGBFull

End Function

To use this function, put a picture in a form’s Picture property,
and insert this code:

Private Sub Form_MouseUp(Button As Integer, _
Shift As Integer, X As Single, Y As Single)
Dim udtRGB As RGB_TYPE
udtRGB = ToRGB(Point(X, Y))
With udtRGB

Me.Caption = "R=" & .R & " G=" & .G & " B=" & .B
End With

End Sub

Click on different places on the picture. VB3 users must return
the values differently, because before VB4 VB didn’t support
the return of a UDT.

—Richard Lindauer, Stroudsburg, Pennsylvania

VB4 32, VB5, VB6
Level: Intermediate

Generic ListBox Columns Routine
Use the SendMessage API to set tab stops in a VB listbox by
creating these declarations and this routine in a module:

Private Declare Function SendMessage Lib _
"user32" Alias "SendMessageA"(ByVal hWnd As _
Long, ByVal wMsg As Long, ByVal wParam As _
Long, lParam As Any) As Long

Private Const LB_SETTABSTOPS = &H192

Public Sub SetListTabStops(ListHandle As Long, _
ParamArray ParmList() As Variant)
Dim i As Long
Dim ListTabs() As Long
Dim NumColumns As Long

ReDim ListTabs(UBound(ParmList))
For i = 0 To UBound(ParmList)

ListTabs(i) = ParmList(i)
Next i
NumColumns = UBound(ParmList) + 1

Call SendMessage(ListHandle, LB_SETTABSTOPS, _
Supplement to Visual Basic Programmer’s Journal␣ ␣ ␣ AUGUST 1999

 101 TECH TIPS
For VB Developers

 For even more tricks and tips go to
 www.vbpj.com

NumColumns, ListTabs(0))

End Sub

Call the routine in Form_Load to set the tab stops where
MyListBox is the listbox and the tab stop will be around the
12th character. Generally speaking, TabStop divided by four
equals roughly the number of characters per column:

Call SetListTabStops(lstMyListBox.hWnd, 48)

If more columns are needed, simply add them to the function call:

Call SetListTabStops(lstMyListBox.hWnd, 48, 74, 100)

Add items to the listbox using vbTab to separate columns:

lstMyListBox.AddItem "Column1" & vbTab & "Column2"
—Jim Farrell, Lincolnshire, Illinois

VB4 32, VB5, VB6
Level: Advanced

Set Error Level in DOS
Use this code to set the error level in DOS, or as I use it, to
return a calculated date:

Private Declare Sub ExitProcess Lib "kernel32" (_
ByVal uExitCode As Long)

Sub Main()
Dim lngDate As Long
Dim intCmd As Integer
intCmd = 0

' Check CommandLine for parameters
If Command <> "" Then

intCmd = Val(Command)
End If

' Format date and convert to Long
lngDate = CLng(Format$(Now + intCmd, "yymmdd"))
ExitProcess lngDate

End Sub

Compile the program and save it as VB_Day.exe. For example,
make a DOS batch file, and test the program:

@echo off
rem *** Calulate date from VB_Day
VB_Day -1
SET MyDay=%ERRORLEVEL%
echo Today - 1 = %MyDay%

VB_Day 7
SET MyDay=%ERRORLEVEL%
echo Today + 7 = %MyDay%

VB_Day
SET MyDay=%ERRORLEVEL%
echo Today is = %MyDay%

Do not call ExitProcess from anywhere but the end of Sub
Main, and only after releasing all object references. ExitProcess
has the same practical effect on your application as VB’s End
statement, with the added “bonus” of also shutting down the
IDE if you’re not running a compiled EXE.

—Peter André, Malmö, Sweden
AUGUST 1999␣ ␣ ␣ Supplement to Visual Basic Programmer’s Journal
VB4 16/32, VB5 VB6
Level: Beginning

Use IsLoaded to Check for Forms
The IsLoaded function tests to determine if any instances of a
form are already loaded or exist in memory:

If IsLoaded("frmMyForm") Then
Debug.Print "frmMyForm is loaded"

End If

Public Function IsLoaded(sForm As String)
Dim Frm As Form
For Each Frm In Forms

If Frm.Name = sForm Then
IsLoaded = True
Exit For

End If
Next

End Function
—Geir Arnesen, Oslo, Norway

VB4 32, VB5, VB6
Level: Beginning

Assign Toolbar Button Images at Run Time
When developing applications, quite often you end up experi-
menting with different toolbar icons to test how well they
serve their purpose. If you change an icon in an ImageList, you
have to de-assign this ImageList from your toolbar and you
lose all your image assignments. Instead of doing this repeat-
edly, use the same key values in your buttons and images.

Use this code to assign images to your buttons. For me it
has been a time-saver:

Dim myButton As Button

On Error Resume Next

With Toolbar1
.ImageList = ImageList1
For Each myButton In .Buttons

myButton.Image = myButton.Key
Next

End With
—Lasse Rantanen, Kantvik, Finland

VB5, VB6
Level: Beginning

Access Your Help and INI Files Within VB
In small projects I am involved with, I frequently access
project-related INI files and help files. At times I work with
identical databases on Access and SQL Server, so I need to
keep changing the data-source name (DSN) entry in the INI
file. Or when I update the help file due to some change in the
program, I simply include these files (INI or RTF) as related
documents in the project. To do this, use the Project|Add
File menu option and select the Add As Related Document
checkbox in the file-open dialog. VB automatically opens the
associated application (Notepad/Word) when you double-
click on these files.

—Ravindra Okade, Plainsboro, New Jersey
15

 101 TECH TIPS
For VB Developers
VB4 32, VB5, VB6
Level: Intermediate

ActiveX Can’t Create Which Object?
When working on a large VB application that uses hundreds of
COM objects, the “429 can’t create object” error doesn’t give
you much help in determining which object could not be
created. You can get around this limitation by writing a func-
tion to wrap the VB runtime CreateObject function:

Public Function CreateObject(sProgID as string) As Object
On Error Goto CreateErr

' Call the VB runtime CreateObject function
Set CreateObject = VBA.CreateObject(sProgId)

Exit Function
CreateErr:

' return the error with the name of the object
' that could not be created
Err.Raise Err.Number, _

"CreateObject Wrapper", Err.Description & _
": '" & sProgID & "'"

End Function

With this wrapper function, you get the 429 error and the name
of the object that could not be created.

—Kelley L. Larsen, Monroe, Washington

VB4 32, VB5, VB6
Level: Intermediate

Leverage Office to Spellcheck RichText
Integrate Microsoft Word 97’s spellchecking capability into VB
apps while maintaining formatting within a rich textbox. To
test this code:

1. Create a standard EXE project in VB.
2. Add the RichTextBox control from the Components menu.
3. Add a reference to the Microsoft Word 8.0 Object Library.
4. Drop a RichTextBox and a CommandButton onto the form.
5. Rename the RichTextBox to rtfText.
6. Change the caption of the CommandButton to Spell Check.
7. In the Click event of the CommandButton, add the next code

listing.
8. Save and run the project.
9. Type some text in the RTF box and click on the Command-

Button to check the spelling.

On Error GoTo SpellCheckErr
Dim oWord As Object

Set oWord = CreateObject("Word.Application")

'Save the RTF Box contents to a temporary file
rtfText.SaveFile "C:\TEST.RTF", rtfRTF

'Open the saved document and spellcheck it
oWord.Documents.Open ("C:\TEST.RTF")
oWord.ActiveDocument.SpellingChecked = False
oWord.Options.IgnoreUppercase = False
oWord.ActiveDocument.CheckSpelling

'Save the changes to the RTF file & close
oWord.ActiveDocument.Save
oWord.ActiveDocument.Close
16
oWord.Quit

'Load the changes back to the rtf text box.
rtfText.LoadFile "C:\TEST.RTF", rtfRTF

Set oWord = Nothing
Screen.MousePointer = vbDefault
MsgBox "Spell Check is complete", _

vbInformation, "Spell Check"
Exit Sub

SpellCheckErr:
MsgBox Err.Description, vbCritical, "Spell Check"
Set oWord = Nothing

—Rohit Kapoor, Gaithersburg, Maryland

VB5, VB6
Level: Beginning

Insert Persistent Breakpoints
VB won’t let you save a breakpoint when you have a lengthy
debugging session. Use Debug.Assert to create persistent
breakpoints that trigger when you are in the environment, but
not in the compiled program. Just insert “Debug.Assert False”
where you want the breakpoint.

This technique is also useful to ensure different branches
of the code are debugged. When coding, insert these persis-
tent breakpoints in every section of the code you know needs
to be tested by stepping through it, and delete the breakpoints
once you have verified that the section works as intended.

—Tore Bostrup, Columbia, South Carolina

VB3 and up
Level: Beginning

Count Substrings
This little routine demonstrates how easily you can determine
the number of substrings within a string, given any specified
separator character(s). Pass the string to be parsed, and the
separator, which might be multiple characters long, and DCount
returns the number of substrings:

Public Function DCount(ByVal vData As String, _
SP As String) As Integer
Dim x As Integer
Dim n As Integer
If vData = "" Or SP = "" Then Exit Function
vData = Trim(vData)
n = 1
DCount = 1
Do

x = InStr(n, vData, SP, vbTextCompare)
If x > 1 And x < (Len(vData) - Len(SP)) Then

DCount = DCount + 1
End If
n = x + Len(SP)

Loop Until x = 0
End Function

s = "GTL-00030/22*M121222*C001"
cnt = DCount(s ,"*") -> cnt=3
cnt = DCount(s ,"/") -> cnt=2
cnt = DCount(s ,"0") -> cnt=7

—Tan Shing Ho, Kuala Lampur, West Malaysia
Supplement to Visual Basic Programmer’s Journal␣ ␣ ␣ AUGUST 1999

 101 TECH TIPS
For VB Developers

 For even more tricks and tips go to
 www.vbpj.com

VB4 32, VB5, VB6
Level: Intermediate

Determine Visible Part of a Window
Programmers often need to know whether only a part of a
window is visible. This can require a difficult calculation with
coordinates. Use this routine to easily determine the visible
part of your window or any control that has an hWnd property:

Option Explicit

Public Type RECT ' Declare API type
Left As Long
Top As Long
Right As Long
Bottom As Long

End Type

' Declare API functions:
Private Declare Function InvalidateRect Lib _

"user32" (ByVal hWnd As Long, lpRect As _
RECT, ByVal bErase As Long) As Long

Private Declare Function GetUpdateRect Lib _
"user32" (ByVal hWnd As Long, lpRect As _
RECT, ByVal bErase As Long) As Long

Private Declare Function GetClientRect Lib _
"user32" (ByVal hWnd As Long, lpRect As _
RECT) As Long

Public Function GetVisibleRect(ByVal hWnd As _
Long, lpRect As RECT) As Boolean
Dim lpClientRect As RECT

Call GetClientRect(hWnd, lpClientRect)
Call InvalidateRect(hWnd, lpClientRect, False)
GetVisibleRect = GetUpdateRect(hWnd, lpRect, False)

End Function
—Meszaros Akos, Szalonkau, Hungary

VB5, VB6
Level: Intermediate

Construct Shortcut to an Interface
When using a class that implements an interface, it can be
frustrating to have to create two variables to reference all the
properties of both the interface class and the implemented
class. For example, if the CEmployee class implements the
IPerson interface, then you need two variables:

Dim Emp1 As CEmployee
Dim Person1 As IPerson

Set Emp1 = New CEmployee
Set Person1 = Emp1

Person1.Name = "Joe Smith"
Emp1.HireDate = "1/1/1998"

Instead, create a method in the CEmployee class that returns
itself as the interface object:

Public Function AsIPerson() As IPerson
Set AsIPerson = Me

End Function

Now you can rewrite the preceding code using just one object
AUGUST 1999␣ ␣ ␣ Supplement to Visual Basic Programmer’s Journal
variable:

Dim Emp1 As CEmployee

Set Emp1 = New CEmployee

Emp1.AsIPerson.Name = "Joe Smith"
Emp1.HireDate = "1/1/1998"

—Matthew Janofsky, Lawrenceville, Georgia

VB4 32, VB5, VB6
Level: Beginning

Toggle Toolbar Captions Using Tag
Many applications have an option to show the toolbars as text
and image or text-only. I have seen programmers handle this
with two toolbars and show them based on the user’s selec-
tion. This code uses only one toolbar. The only requirement is
to store the desired Caption in each button’s Tag property.
This technique works only if you are not changing the toolbar
button’s Tag at run time:

' tbmain is the only toolbar. At design time, the
' caption of buttons are left blank.
Sub HideShowToolbarText(bShowText As Boolean)

Dim i As Integer

For i = 1 To tbMain.Buttons.Count
tbMain.Buttons(i).Caption = IIf(_

bShowText, tbMain.Buttons(i).Tag, "")
Next i

End Sub

Private Sub mnuToolbarImageText_Click()
mnuToolbarImageText.Checked = Not _

mnuToolbarImageText.Checked
HideShowToolbarText (mnuToolbarImageText.Checked)

End Sub
—Kanthi Chonachalarn, Lake In The Hills, Illinois

VB5, VB6
Level: Advanced

Use Pointers to Parents
When trying to navigate through a complex class hierarchy
from any given instance of an object, it’s useful to be able to
reference its parent. But how do you clean up any circular
references when terminating the objects? Here is a simple way
to retrieve a parent object using the undocumented ObjPtr
function in VB:

' Code for clsChild Class
Option Explicit

Private Declare Sub CopyMemory Lib "kernel32" _
Alias "RtlMoveMemory" (dest As Any, source _
As Any, ByVal numBytes As Long)

Private lngParent As Long

Property Set Parent(Frm As Form)
' obtain a pointer to the object
lngParent = ObjPtr(Frm)

End Property

Property Get Parent() As Form
17

 101 TECH TIPS
For VB Developers
Dim frmobj As Form
CopyMemory frmobj, lngParent, 4
Set Parent = frmobj
CopyMemory frmobj, 0&, 4

End Property

To test the object’s new Parent property, create a new form
and add a button called cmdTest. Place this code in the
button’s Click event:

Option Explicit

Private Sub cmdTest_Click()
Dim loChild As New clsChild
With loChild

Set .Parent = Me
MsgBox .Parent.Caption

End With
End Sub

Because the child class only contains the pointer to the
parent’s memory, there are no circular references to resolve.

—Jeff Turner, Loami, Illinois

VB3 and up
Level: Intermediate

Debug Print in an EXE
Contrary to common belief, Debug.Print statements are not
always removed from an executable. This behavior can be
demonstrated easily. Open a new project, place a single
CommandButton on the default form, and add this code:

Public Function DebugTime()
MsgBox "Caught!"

End Function

Private Sub Command1_Click()
Debug.Print DebugTime

End Sub

Compile the program to an EXE, run, and click on the button.
Unexpectedly, the message box appears. This is obviously a
contrived example, but it’s easy to imagine cases where
Debug.Print is used to print the return value of a function, for
example. If variables are passed as ByRef parameters, and if
the function alters the value of those variables, this error is
propagated through to the executable, and might be extremely
difficult to find. The morals of this tip are:

• Pass parameters ByVal unless you’re certain you’re not
going to change them, or you’re using them as “output”
parameters.
• Be careful when using Debug.Print. It might be doing more
than you think.

—John Cullen, Pedroucos, Portugal

VBA
Level: Beginning

Streamline Math in VBA
It’s possible to streamline some calculation procedures in
Excel and add calculation capabilities that don’t exist in Word.
Unfortunately, most textbooks on VB for Office 97 are focused
on nonmathematical features such as text formatting or graphic
displays. This situation creates a significant challenge for
18
those who want to use VB macros for their superior math-
ematical capabilities, because the method for referencing
numerical values in a cell of a Word table is significantly
different from referencing a cell in an Excel spreadsheet. If
you’re sufficiently persistent and a little clairvoyant, you can
figure out the correct syntax from the Help found in the VB
editors for Excel and Word. You can also get an almost com-
plete set of hints on the subject from Microsoft Office 97: Visual
Basic Programmer’s Guide by The Microsoft Corporation
(Microsoft Press, 1997, ISBN: 1572313404). However, these are
the only examples I know of that spell it out explicitly. They
calculate the sum of cubes of the values for the first eight cells
of column 1 and place the result in the ninth cell of column 1.

For Word VBA:

Sub columnmath()
Dim x As Long, i As Long
Dim myTable As Table
Dim myStr As String

x = 0
Set myTable = ActiveDocument.Tables(1)
For i = 1 To 8

x = x + myTable.Cell(i, 1).Range.Calculate ^ 3
Next i
myStr = Str(x)
myTable.Cell(9, 1).Range.InsertAfter (myStr)

End Sub

For Excel VBA:

Sub columnmath()
Dim x As Long, i As Long
Sheets("Sheet1").Activate
x = 0
For i = 1 To 8

x = x + Cells(i, 1).Value ^ 3
Next i
Range("a9").Value = x

End Sub

Although this calculation can be done entirely within the
capabilities of Excel, it would take up an extra column. The
calculation can’t be done at all within Word. In trying to make
sense out of it all, consider that Word VBA has a nonintuitive
syntax for referencing cells. To read the value of a cell, the
terminal word must be Calculate. To write a value into a cell,
it must first be converted to a string, and the nonintuitive
terminal InsertAfter must be used. Tables are numbered con-
secutively in a Word document; therefore the Word example
deals with the first table in the document. Each sheet of an
Excel workbook is just one big table; therefore, the Excel
example deals with the first sheet of the workbook. In the Excel
example, the Range(“a9”) could be replaced by Cells(9,1), or
one of several other variants involving the use of Range.

—Peter Gottlieb, Los Angeles, California

VB6
Level: Intermediate

Expose MultiUse Classes in ActiveX Control Projects
A lesser-known, new feature in VB6 is the ability to have
MultiUse and GlobalMultiUse classes within an ActiveX con-
trol project. This is useful if you have ActiveX controls and
creatable classes you want to expose from the same project.
Supplement to Visual Basic Programmer’s Journal␣ ␣ ␣ AUGUST 1999

 101 TECH TIPS
For VB Developers

 For even more tricks and tips go to
 www.vbpj.com

There was no way to do this in VB5. In VB6, it’s as easy as
adding a class module to your ActiveX control project. Unfor-
tunately, there’s no way to do the converse; you can’t have a
public user control in an ActiveX DLL project. So, if you want
creatable classes and public user controls in the same project,
you have to make it an ActiveX Control project. If you prefer
your component to be a DLL instead of an OCX, just rename the
file; internally, an OCX is the same as a DLL.

—Russell Davis, Garden Grove, California

VB4 32, VB5, VB6
Level: Beginning

Enumerate Treeview Nodes Recursively
Trying to parse a set of TreeView nodes and their children’s
nodes and their children’s nodes can be confusing. This algo-
rithm makes the process easier. Recursion describes an algo-
rithm that can call itself. This is especially useful in COM’s
object hierarchy. Collections that can reference other collec-
tions can be easily handled with a recursive procedure.

To begin the recursion, place this code in a CommandButton
labeled “View Nodes.” Here you create a variable to store the
results of the procedure and start the recursion, and also
display the results when the routine is finished:

Dim N As Node, aNodes As String, lLevel As Long
Set N = TreeView1.SelectedItem
If N.Children Then aNodes = "+" & N.Text Else aNodes = N.Text
EnumChildren N, aNodes, lLevel
MsgBox aNodes

Next is the recursive procedure. It calls itself after changing
the Node parameter, and the lLevel variable is incremented at
the beginning of the routine and decremented at the end. This
variable determines the distance to tab from the beginning of
the display line, and therefore shows the nodes in the proper
child-parent relationship:

Sub EnumChildren(N As Node, aNodes As String, lLevel As Long)
lLevel = lLevel + 1
Dim nC As Node
If N.Children Then

Set nC = N.Child
Do

If nC.Children Then
aNodes = aNodes & vbCrLf & String$ _

(lLevel, vbTab) & "+" & nC.Text
Else

aNodes = aNodes & vbCrLf & String$ _
(lLevel, vbTab) & nC.Text

End If
EnumChildren nC, aNodes, lLevel
If nC.Index = N.Child.LastSibling. Index Then Exit Do
Set nC = nC.Next

Loop
End If
lLevel = lLevel - 1

End Sub
—Matt Hart, Tulsa, Oklahoma
AUGUST 1999␣ ␣ ␣ Supplement to Visual Basic Programmer’s Journal
VB4 32, VB5, VB6
Level: Advanced

Generate Unique String IDs
If you need unique string IDs and don’t have a sure-fire way
of either generating or guaranteeing the generated ID is unique,
then you need a Universally Unique ID (UUID) or Globally Unique
ID (GUID) as Microsoft calls them. A UUID is a 128-bit number
that’s generated based on a time value and your computer’s
network interface card (NIC) and is guaranteed to be unique
(at least within your network and until about the year 3400).

This routine generates UUIDs and converts them into 36-
byte strings. Just paste this code into a module:

Option Explicit

Private Declare Function UuidCreate Lib _
"rpcrt4.dll" (pId As UUID) As Long

Private Declare Function UuidToString Lib _
"rpcrt4.dll" Alias "UuidToStringA" (uuidID _
As UUID, ppUuid As Long) As Long

Private Declare Function RpcStringFree Lib _
"rpcrt4.dll" Alias "RpcStringFreeA" _
(ppStringUuid As Long) As Long

Private Declare Function CopyMemory Lib _
"kernel32.dll" Alias "RtlMoveMemory" (pDst _
As Any, pSrc As Any, ByVal nSize As Long) As Long

Private Type UUID
Data1 As Long
Data2 As Long
Data3 As Long
Data4(8) As Byte

End Type

Public Function GenUuid(sUuid As String) As Boolean
Const RPC_S_OK As Long = 0
Const SZ_UUID_LEN As Long = 36
Dim uuidID As UUID
Dim sUid As String
Dim ppUuid As Long

sUid = String(SZ_UUID_LEN, 0)
If UuidCreate(uuidID) = RPC_S_OK Then

If UuidToString(uuidID, ppUuid) = RPC_S_OK Then
CopyMemory ByVal sUid, ByVal ppUuid, SZ_UUID_LEN
If RpcStringFree(ppUuid) = RPC_S_OK Then

sUuid = sUid
GenUuid = True

End If
End If

End If
End Function

Use the function like this:

Dim sId As String
Call GenUuid(sId)
MsgBox "Id is " & sId

I’m sure you can find better uses for the ID than just displaying
it. But be aware that these numbers have the potential to
uniquely identify the machine on which they were generated,
raising security concerns. Depending on your customers and
how you use the ID, this might not be an issue for you.

—Edward Lennox, Toronto, Ontario, Canada
19

 101 TECH TIPS
For VB Developers
VB4 32, VB5, VB6
Level: Intermediate

Share Variables Between Multiple Apps
Sometimes it’s necessary to share variables between multiple
instances of an application. For example, you might want to
share a database connection. Here’s how: Create an ActiveX
EXE with an exposed MultiUse class named Class1. An ActiveX
DLL won’t work because it’s running in-process within each
client. Include a module in the project and declare the required
variable you want to share in this module as a public variable.

The code in an ActiveX DLL looks like this:

'**** Module code *****
Global gCon As Database
Global glngNrOfObjects As Long

'**** Code in Class ****
Public Property Set DBConn(Con As Database)

Set gCon = Con
End Property
Public Property Get DBConn() As Database

Set DBConn = gCon
End Property

Private Sub Class_Initialize()
' this variable keeps count of objects created
glngNrOfObjects = glngNrOfObjects + 1

End Sub
Private Sub Class_Terminate()

' decrease object count
glngNrOfObjects = glngNrOfObjects - 1

' if no objects exist, close the connection
If glngNrOfObjects = 0 Then

If Not gCon Is Nothing Then
gCon.Close
Set gCon = Nothing

End If
End If

End Sub

Now reference this ActiveX EXE in your project and use it.
Here’s how I did it:

'** Code in application using the ActiveX EXE **

Dim clsDBConn As Class1

Private Sub Form_Load()
Set clsDBConn = New Class1
' set the connection, when first object is created
If clsDBConn.DBConn Is Nothing Then

Set clsDBConn.DBConn = _
Workspaces(0).OpenDatabase("\temp\db1.mdb")

End If
End Sub

Private Sub Form_Unload(Cancel As Integer)
Set clsDBConn = Nothing

End Sub

You don’t need to include the code to count the object in-
stances and close the database if your variable is a simple
one—that is, if it’s not an object reference. Also, in that case,
change the Property Set to Property Let.
20
Both the projects have a reference to DAO because they’re
using the database object.

—Ravindra Okade, Plainsboro, New Jersey

VB5, VB6
Level: Beginning

Check It Out
First swallow your food, then open the Object Browser (F2) in
either VB5 or VB6, select the VBRUN library, and read the
definition of ContainedControls.

—Edward Lennox, Toronto, Ontario, Canada

VB5, VB6
Level: Intermediate

Add Your Icon to the Add-Ins Menu
Say you’ve written a cool add-in for the VB design environ-
ment. It’s got its own menu item in the Add-Ins menu, and when
you click on it, your add-in launches with a snazzy icon on its
titlebar. Wouldn’t it be great if you could have that icon
displayed next to your add-in’s menu item, too? Well, you can.
Convert the icon to a 16-by-16 bitmap (because icons won’t
work in this process) and either add the bitmap to your app’s
resource file or drop it into an invisible Image control on your
main form. This code assumes you’re using an Image control.
Use this in your Connect class’s AddToAddInCommandBar
method:

Dim cbMenuCommandBar As Office.CommandBarButton
Dim cbMenu As Object
' See if we can find the Add-Ins menu
Set cbMenu = VBInstance.CommandBars("Add-Ins")
If Not cbMenu Is Nothing Then

' Add it to the command bar
Set cbMenuCommandBar = cbMenu.Controls.Add(1)
' Set the caption
cbMenuCommandBar.Caption = "My Add-in"
' Paste an image
Clipboard.Clear
Clipboard.SetData frmAddIn.imgMenuPic.Picture
cbMenuCommandBar.PasteFace
Set AddToAddInCommandBar = cbMenuCommandBar

End If
—Ben Baird, Twin Falls, Idaho

VB4 32, VB5, VB6
Level: Advanced

Load Tree Subnodes on Demand
Here’s a quick way to drop a drive’s folder hierarchy into a
TreeView control. The advantage to using this method is that
folders are enumerated only when a node is expanded, so your
app won’t waste time adding folders the user will never look at.
A dummy item is added to each folder to get a plus sign on the
node, but the item is removed when the node is expanded or
simply disappears if the folder has no subdirectories. This
code assumes your TreeView is named tvFiles and you have a
button named cmdEnum on the form. The TreeView is con-
nected to an ImageList whose first image is a folder icon (for
the code listing, download the RTF file for this supplement
under the Code section on VBPJ ’s Web site, www.vbpj.com).

—Ben Baird, Twin Falls, Idaho
Supplement to Visual Basic Programmer’s Journal␣ ␣ ␣ AUGUST 1999

 101 TECH TIPS
For VB Developers

 For even more tricks and tips go to
 www.vbpj.com

VB4 32, VB5, VB6
Level: Intermediate

Translate OLE_COLOR to Actual RGB Value
Have you ever tried to pass a VB system color constant—such
as vbButtonFace—to an API call that asks for a color? I fre-
quently need to use system colors for GDI calls, and prefer to
use the VB system color constants. The problem is that GDI
doesn’t know what to do with them and the resultant color is
always black. The solution is simple: Use the OleTranslateColor
API, which takes any of these constants and converts them to
literal RGB colors GDI can understand. I usually package the
API in a simple wrapper as well:

Private Declare Function OleTranslateColor _
Lib "oleaut32.dll" (ByVal lOleColor As Long, _
ByVal lHPalette As Long, lColorRef As Long) _
As LongPublic Function TranslateColor(inCol _
As OLE_COLOR) As Long
Dim retCol As Long
OleTranslateColor inCol, 0&, retCol
TranslateColor = retCol

End Function

From that point on, simply call TranslateColor() with a system
color constant to get the color you need. Furthermore, if a
standard RGB value is passed to TranslateColor, it returns unal-
tered, so you don’t have to worry about whether a color value
you’re storing is a system constant or an actual color value.

—Ben Baird, Twin Falls, Idaho

VB4 32, VB5, VB6
Level: Intermediate

Remove Unwanted System Menu Options
You’ve probably wanted to limit the normal operations of a
form, such as resizing it, preventing it from being minimized or
maximized, or allowing it to be closed only when you say so.
The trick is to remove the control menu that corresponds to
the functionality you want to limit. For example, when you
remove the Size menu from the Control menu, the user won’t
be able to resize your form. The same goes for Minimize,
Maximize, and Move. For the code to add to a BAS module,
download the RTF file for this supplement under the Code
section on VBPJ ’s Web site, www.vbpj.com.

Then, when you load your form, call VBRemoveMenu with
one of the menu enumerations:

VBRemoveMenu Me, rmMaximize

Not only will the menu be removed from the Control menu, but
the corresponding functionality of the form will be removed as
well. Because the menus are removed by ordinal position,
remove them in descending order if you want to remove more
than one. For example:

Private Sub Form_Load()
Call VBRemoveMenu(Me, rmClose)
Call VBRemoveMenu(Me, rmMaximize)

End Sub
—Earl Damron, Louisville, Kentucky
AUGUST 1999␣ ␣ ␣ Supplement to Visual Basic Programmer’s Journal
VB4 32, VB5, VB6
Level: Intermediate

Display Proprietary Information in a WebBrowser
Control Without an HTML File
When using the WebBrowser control in VB, you might want to
present information without having that data accessible to the
end user. In this case, you can simply insert the HTML code
directly into the control. First create a blank document within the
control, then set the HTML text directly—you don’t need an
external HTML file. This method also protects your HTML code;
if users choose to View Source, all they see is “<HTML></HTML>”:

Private Sub Form_Load()
Dim strHTMLText As String
' Create a blank document in the WebBrowser control
WebBrowser1.Navigate2 "about:Blank"
' Web browser may take awhile to process each command
DoEvents
On Error GoTo WaitAwhileLonger
' Set the backcolor here
WebBrowser1.Document.body.bgcolor = "#000000"
' Set the HTML Text through code or from a Database
strHTMLText = "<html>" & vbCrLf & _

"<head>" & vbCrLf & _
"<title>Common Controls Replacement" & _
"Project</title>" & vbCrLf & _
"</head>" & vbCrLf & "<body>" & _
"<p align=""center"">_
<font face=""Arial"" size=""5"" " & _
"color=""#FFFFFF"">_
The Common Controls " & _
"Replacement Project</p>" _
& "<p align=""center""> _
" & _
"<img " & "src=" _
"http://www.mvps.org/ccrp/images/banner/" _
& "ccrplogo.gif"" _
alt=""Visit the CCRP's Internet Site." _
" " & "border=""0""></p></body>" & _
vbCrLf & "</html>"

strHTMLText = strHTMLText & "<head>" & vbCrLf
' Send the HTML Text to directly to the
' WebBrowser Control
WebBrowser1.Document.body.innerhtml = strHTMLText

Exit Sub

WaitAwhileLonger:
Debug.Print Hex(Err.Number), Err.Description
DoEvents
Resume

End Sub

The WebBrowser control sometimes needs a little “encourage-
ment” to fully finish the last task assigned before you can
proceed with the next. That’s the purpose of the error trap,
which allows the WebBrowser a chance to catch its breath
before attempting operations again.

—Ramon Guerrero, Garland, Texas

✰✰✰✰✰ Five Star Tip␣
21

 101 TECH TIPS
For VB Developers
VB5, VB6
Level: Advanced

Swap Strings Faster
Here’s a cool way to swap strings:

Declare Sub CopyMemory Lib "kernel32" Alias _
"RtlMoveMemory" (Destination As Any, _
Source As Any, ByVal Length As Long)

Sub SwapString(String1 As String, String2 _
As String)
Dim Save As Long
' This code swaps the string descriptors, not
' the data. StrPtr returns the address of the
' first character in a string. VarPtr returns
' the address of a string's descriptor, which
' is 4 bytes long and contains the address of
' the first character in the string. StrPtr
' and VarPtr are undocumented VB functions.
Save = StrPtr(String1)
Call CopyMemory(ByVal VarPtr(String1), _

ByVal VarPtr(String2), 4)
Call CopyMemory(ByVal VarPtr(String2), _

Save, 4)
End Sub

Even for short strings, this is faster than the traditional method:

Sub SwapString(String1 As String, String2 As String)
Dim Save As String
Save = String1
String1 = String2
String2 = Save

End Sub

But as the strings grow in length, the speed difference gets
more and more dramatic.

—Thomas Weiss, Deerfield, Illinois

VB3 and up
Level: Beginning

Make More Versatile Trim Functions
One of the nice things about VB is the ability to redefine most
of the built-in commands. For example, you can extend the
functionality of the Trim family of commands. LTrim and
RTrim remove leading and trailing spaces from a string, but it
also would be useful to remove other nonprinting characters,
such as tabs, or carriage return/line feed pairs that might be
present after reading in a text file. This code does exactly that
by removing all leading and trailing characters with an ASCII
value less than or equal to that of a space character:

Public Function Trim(ByVal inString As String) As String
Trim = RTrim(LTrim(inString))

End Function

Public Function RTrim(ByVal inString As String) As String
Dim nPos As Long
nPos = Len(inString)
If nPos > 0 Then

Do While (Asc(Mid$(inString, nPos, 1)) <= 32)
nPos = nPos - 1
If nPos = 0 Then Exit Function

Loop
RTrim = Left$(inString, nPos)
22
End If
End Function

Public Function LTrim(ByVal inString As String) As String
Dim nPos As Long, nLen As Long
nLen = Len(inString)
If nLen > 0 Then

nPos = 1
Do While Asc(Mid$(inString, nPos, 1)) <= 32

nPos = nPos + 1
If nPos = nLen Then Exit Function

Loop
LTrim = Mid$(inString, nPos)

End If
End Function

—John Cullen, Pedroucos, Portugal

VB3 and up
Level: Beginning

Create Nested Folders in One Call
Suppose you need to create a tree of directories, all at once, in
code. For example, you could create the tree C:\1stDir\2ndDir\
3rdDir\4thDir with one call simply by feeding that path, as a
string, into this procedure:

Public Function MkDirs(ByVal PathIn As String) As Boolean
Dim nPos As Long
MkDirs = True 'assume success
If Right$(PathIn, 1) <> "\" Then PathIn = PathIn + "\"
nPos = InStr(1, PathIn, "\")
Do While nPos > 0

If Dir$(Left$(PathIn, nPos), _
vbDirectory) = "" Then
On Error GoTo Failed

MkDir Left$(PathIn, nPos)
On Error GoTo 0

End If
nPos = InStr(nPos + 1, PathIn, "\")

Loop
Exit Function

Failed:
MkDirs = False

End Function

If any part of the path already exists, the routine creates only
the new part. This routine works on strings representing local
and mapped drives—those with a letter, colon, and backslash
at the beginning. If the drive designation is left out, the direc-
tories are created starting at the default directory on the
current drive.

—Frederick Rothstein, Trenton, New Jersey

VB4 16/32, VB5, VB6
Level: Intermediate

Calculate Date/Time Differences in Multiple Units
VB’s DateDiff function works fine when you want to know the
difference between two dates for a specific interval. To get the
number of days between now and Christmas, you can use:
DateDiff("d", Now, "25 Dec"). Sometimes you want to find the
difference using more than one interval—for example, you
might want to know the months and days until a special event,
or the hours and minutes between two times. The DateIntervals
routine allows you to pass in two dates and your own variables
for the intervals you want. The routine fills the variables with
Supplement to Visual Basic Programmer’s Journal␣ ␣ ␣ AUGUST 1999

 101 TECH TIPS
For VB Developers

 For even more tricks and tips go to
 www.vbpj.com

the largest full interval of the desired type, less any other
intervals you request. To get the hours and minutes between
9 a.m. and 5:15 p.m., pass in two times and two variables, using
commas to skip over the larger intervals you don’t need:

DateIntervals "9:00am", "5:15pm", , , , Hours, Minutes

Upon returning, Hours holds 8, and Minutes holds 15. The
results are always positive numbers, up to the limits of the
DateDiff function:

Public Sub DateIntervals(ByVal Date1 As Date, _
ByVal Date2 As Date, ParamArray Prams())
' Returns the greatest full interval (yr, mo,
' day, hr, min, sec) between two dates
' Calling procedure supplies variable(s) for
' the desired interval(s)
' Ex1: DateIntervals Birthday, Now, Yr, Mo,
' Dy, Hr, Mn, Sec <Exactly how old are you?
' Ex2: DateIntervals Now, "25 Dec", , , Days
' <How many days until Christmas?
' LFS: 1999 for VBPJ

If UBound(Prams) < 0 Then Exit Sub

Dim Temp As Date
Dim i As Long, itr As String * 1
Const interval = "mdhns"

If (DateValue(Date1) = 0) Xor _
(DateValue(Date2) = 0) Then

' Assume today if one is a time and the other
' is a date...

If DateValue(Date1) = 0 Then _
Date1 = Date1 + DateValue(Now)

If DateValue(Date2) = 0 Then _
Date2 = Date2 + DateValue(Now)

End If
If Date1 > Date2 Then

' Swap dates if first is after second...
' Temp = Date1
Date1 = Date2
Date2 = Temp

End If
If Not IsMissing(Prams(0)) Then

Prams(0) = Year(Date2) - Year(Date1)
Temp = DateAdd("yyyy", Prams(0), Date1)
Prams(0) = Prams(0) + (Temp > Date2)
Date1 = DateAdd("yyyy", Prams(0), Date1)
If UBound(Prams) < 1 Then Exit Sub

End If
For i = 1 To IIf(UBound(Prams) > 5, 5, UBound(Prams))

If Not IsMissing(Prams(i)) Then
itr = Mid$(interval, i, 1)
Prams(i) = DateDiff(itr, Date1, Date2)
Prams(i) = Prams(i) + (DateAdd(itr, _

Prams(i), Date1) > Date2)
Date1 = DateAdd(itr, Prams(i), Date1)

End If
Next i

End Sub
—Larry Serflaten, Monticello, Minnesota
AUGUST 1999␣ ␣ ␣ Supplement to Visual Basic Programmer’s Journal
VB3 and up
Level: Beginning

Don’t Guess Sizes
It’s often useful to know the space occupied by a form’s
caption or menu bars—for example, for positioning or resizing
a form. VB doesn’t give direct access to this information, but
a quick call to one of the Windows API functions does the job.
Add these declarations to the General section of a form. Or add
them to a separate module, in which case you make the
declarations Public:

' for 16-bit Windows, ...
' Lib "user" (ByVal nIndex as Integer) as Integer
Private Declare Function GetSystemMetrics Lib _

"user32" (ByVal nIndex As Long) As Long
Private Const SM_CYCAPTION = 4
Private Const SM_CYMENU = 15

Use this code to employ the function:

' menubar height in pixels
MenuHeight = GetSystemMetrics(SM_CYMENU)
' caption bar height in pixels
CaptionHeight = GetSystemMetrics(SM_CYCAPTION)

Note that these height values are in pixels, so you multiply
them by Screen.TwipsPerPixelY to convert the value to twips.
Search MSDN online or your own SDK docs for GetSys-
temMetrics to see the hundred or so other useful values this
single API function can return.

—John Cullen, Pedroucos, Portugal

VB3 and up
Level: Beginning

Embed Double Quotation Marks
When you try to insert a string with single quotation mark into
a text field of an Access or Oracle table, you get an error. But
you can use the Chr(34) function to embed double quotation
marks in a string passed to the Jet database engine:

Private Sub CmdTest_Click()
Dim dbCustomer As Database
Dim strSql As String
Dim strCustID As String
Dim strFirstName As String
Dim strAddress As String
Set dbCustomer = OpenDatabase("myconnect", _

dbDriverNoPrompt, False, _
"odbc;uid=scott;pwd=tiger;dsn=myconnect")

strCustID = "A003"
strFirstName = "Annie"
strAddress = "Reflection's"
strSql = "insert into CUSTOMER values('" & _

strCustID & "'" & ",'" & strFirstName & _
"'," & Chr(34) & strAddress & Chr(34) & ")"

dbCustomer.Execute (strSql)
dbCustomer.Close

End Sub

For more information on this problem, see article Q147687 in
the Microsoft Knowledge Base.

—Mini Gopinath, San Ramon, California
23

 101 TECH TIPS
For VB Developers
VB3 and up
Level: Beginning

Watch Out for Root Installs
Be careful when reading the Path property of the App object.
If the path is in a subdirectory, the resulting string terminates
with the name of the subdirectory—for example,
"C:\dir_x\dir_y\dir_z". Unfortunately, if the path happens to
be the root directory, the resulting string terminates with a
backslash—such as "C:\". The difference between the two is
the possible terminating backslash.

If you use App.Path to find a program-related file, you need
to add the backslash before the file name, except if the path is
the root directory:

strFullFileName = App.Path & IIf(Right$(_
App.Path, 1) = "\", "", "\") & strFileName

If this code is too tiresome to type, use this AppPath function:

Public Function AppPath() As String
' NOTE: Replace all occurrences of "App.Path"
' with "AppPath"
Dim strAppPath As String
strAppPath = App.Path
If (Right$(strAppPath, 1) <> "\") Then

strAppPath = strAppPath & "\"
End If
AppPath = strAppPath

End Function

If you automatically append a backslash to every App.Path call
and the path happens to be the root directory, you get the
uninformative error message, “Run-time error '5': Invalid pro-
cedure call.”

—Andrew J. Marshall, Fairfax, Virginia

VB3 and up
Level: Beginning

Toggle Textbox Word Wrap at Run Time
On page 2 of “101 Tech Tips for VB Developers” [Supplement to
VBPJ, August 1998], the first item is “Change the Appearance
Property of a Text Box at Run Time.” Here’s a similar trick that’s
more useful and needs few lines of code. I believe it’s compatible
with all VB platforms, with no platform-specific routines or
functions, Property Let or Get procedures, or API calls.

The textbox’s Appearance property’s limitation applies to
the MultiLine and ScrollBars properties as well: these proper-
ties cannot be set at run time. But you can implement a
functional Word Wrap feature for a textbox by deceiving the
mind into believing these properties are changeable at run
time. Place two textboxes on a form, leaving them named Text1
and Text2. Use the menu editor to create a menu called Text
(mnuText) and a menu element called Word Wrap
(mnuTextWrapToggle). Set Text1’s properties as MultiLine =
True and ScrollBars = 2 - Vertical. Set Text2’s properties as
MultiLine = True and ScrollBars = 3 - Both. Then add this code
in the appropriate events:

Private Sub Form_Load()
' Add sufficient text to Text2 for demo purposes
Text2.Text = "Word upon "
Text2.SelStart = Len(Text2.Text)
For i = 0 To 100

Text2.SelText = "word upon "
24
Next i
Text2.SelText = "word."
Text2.ZOrder 0

End Sub

Private Sub Form_Resize()
' Make text boxes resize with form
Text1.Move 0, 0, .ScaleWidth, .ScaleHeight
Text2.Move 0, 0, .ScaleWidth, .ScaleHeight

End Sub

Private Sub mnuTextWrapToggle_Click()
' Toggle word wrapping On or Off
mnuTextWrapToggle.Checked = Not _

mnuTextWrapToggle.Checked
If mnuTextWrapToggle.Checked Then

Text1.Text = Text2.Text
Text1.ZOrder 0 'Make topmost

Else
Text2.Text = Text1.Text
Text2.ZOrder 0 'Make topmost

End If
End Sub

—George W. Hetherington, Newcastle Upon Tyne, England

VB4 16/32, VB5, VB6
Level: Beginning

Q&D Way to Hide the Mouse Pointer
Here’s a quick and easy way to hide the mouse pointer without
using an API call: Don’t hide it. Instead, use a custom pointer
that’s 100 percent transparent. Create an icon that has nothing
but a flood of the “transparent” color—any icon editor should
be able to create one. Set this icon as the Screen object’s
MouseIcon property. When you want to hide the pointer, set
the Screen’s MousePointer property to vbCustom (99). The
pointer is still on the screen, but there’s nothing to see. You
can still move the mouse, and click on objects, albeit with
some difficulty. This demo program toggles the pointer on and
off with each click of the Command1 button:

Private Sub Form_Load()
' Set the Form's MouseIcon property at
' design time so there is no external file to
' load at run time.
Screen.MouseIcon = Me.MouseIcon

End Sub

Private Sub Command1_Click()
If Screen.MousePointer = vbCustom Then

Screen.MousePointer = vbDefault
Command1.Caption = "Hide"

Else
Screen.MousePointer = vbCustom
Command1.Caption = "Show"

End If
End Sub

You can click on Command1, and drag the invisible pointer to
select text in the textbox. This is ideal for a screen saver, where
you want to react to mouse events but don’t want to show a
pointer and don’t want to bother with API calls.

—Bob Ashcraft, Winchester, Virginia
Supplement to Visual Basic Programmer’s Journal␣ ␣ ␣ AUGUST 1999

 101 TECH TIPS
For VB Developers

 For even more tricks and tips go to
 www.vbpj.com

VB4 16/32, VB5, VB6
Level: Intermediate

Autoinstantiation Isn’t Automatic
The Tip entitled “Declare Your Objects Properly” [“101 Tech
Tips for VB Developers,” Supplement to VBPJ, August 1998,
page 23] stated, “Never declare an Object variable as New,”
which can be good advice in many circumstances. It went on
to erroneously state, “If you do, you’ll always increment the
reference count of the object, regardless of whether you use
it.” This statement is incorrect. When using an As New decla-
ration, an object is not instantiated until it’s first used. Run this
test as proof. The reference count is not incremented and the
object will not be created until the TestMethod method is
invoked:

'---In Form1
Private Sub Form_Load()

Dim TestObject As New Class1
MsgBox "1) The object has been declared but not used."
TestObject.TestMethod

End Sub

'----In Class1
Private Sub Class_Initialize()

MsgBox "2) The object has now been instantiated."
End Sub

Public Function TestMethod()
MsgBox "3) The method is being invoked."

End Function

Beware—this lazy object instantiation comes at a price.
Each time the object is used, the code checks whether the
object has been instantiated. The checking creates a perfor-
mance hit, especially for frequently used objects. This tech-
nique also can obscure the location where the object is being
instantiated, which can make code harder to read and bugs
harder to find. For these reasons, it’s usually better not to
declare objects using As New. However, in some situations, the
delayed instantiation offered by an As New declaration can be
helpful. One appropriate situation involves objects used spo-
radically in an application. For example, if an object is used only
in error handling, the developer can’t predict where, when, or
even if the object will be instantiated. In cases like this, the As
New declaration might be ideal. The object won’t be created
until it is used, and if it’s not needed it won’t be created.

—Rick Lindstrom, Shelton, Connecticut

VB3 and up
Level: Beginning

Make Menus at Run Time
Many programmers forget that menu items act like controls,
too. For example, you can set their Caption, Enabled, and Visible
properties as you can with other controls. If you give a menu
item an Index property, you can also create and remove menus
at run time using the Load and Unload statements. Using these
methods, you can make menus with a variable number of items.

—Rod Stephens, Boulder, Colorado
AUGUST 1999␣ ␣ ␣ Supplement to Visual Basic Programmer’s Journal
VB4 32, VB5, VB6
Level: Intermediate

Create an ODBC Entry
You can create, edit, or delete your program’s ODBC entry
automatically. This code checks if an ODBC source has been
made; if not, it configures one according to your program’s
specification. To edit or remove an existing ODBC source,
change the fRequest parameter to the ODBC_CONFIG_DSN or
ODBC_REMOVE_DSN values, respectively:

Declare Function SQLConfigDataSource Lib _
"ODBCCP32.DLL" (ByVal hwndParent As Long, _
ByVal fRequest As Long, ByVal lpszDriver _
As String, ByVal lpszAttributes As String) As Long

Public Sub MakeODBCDataSource()
Const ODBC_ADD_DSN = 1
' Add data source
Const ODBC_CONFIG_DSN = 2
' Configure (edit) data source
Const ODBC_REMOVE_DSN = 3
' Remove data source
Const vbAPINull As Long = 0&
' NULL Pointer
Dim lngRet
' Check if it has been done, only do this once
If GetSetting(App.ExeName, "options", _

"ODBCSetup", "No") = "No" Then
Dim sDriver As String
Dim sAttributes As String
sDriver = "Microsoft Access Driver (*.mdb)"
sAttributes = sAttributes & "DSN=MyDSN" & Chr$(0)
sAttributes = sAttributes & _

"DBQ=C:\Temp\Myfile.mdb" & Chr$(0)
lngRet = SQLConfigDataSource(vbAPINull, _

ODBC_ADD_DSN, sDriver, sAttributes)
SaveSetting App.ExeName, "options", _

"ODBCSetup", "Yes"
End if

End Sub
—Dan Newsome, received by e-mail

VB4, VB5, VB6
Level: Beginning

Use SQL Statement in DAO
When using DAO, if you use a DataControl to populate a bound
grid quickly, it’s better to send the control’s RecordSource
property a full SQL statement instead of passing a DAO
Recordset object reference to the DataControl’s RecordSet
property. When you pass a reference to a created Recordset
object, the DataControl essentially reverse-engineers the
Recordset object to SQL to figure field headers and other
information. Once the DataControl hits the 255-character limit,
it generates an error that implies there was a problem in your
SQL statement (that doesn’t exist). However, if you pass a long
and complex SQL string to the control’s RecordSource prop-
erty, the control doesn’t do any analysis—it simply generates
the result and displays it in bound controls.

—Robert Smith, Kirkland, Washington
25

 101 TECH TIPS
For VB Developers
VB3 and up
Level: Beginning

Use DAO Code for Non-Jet Sources
DAO still has a number of features that make it wonderful,
especially for ISAM-based apps. For example, it’s simple to use
DAO code against non-Jet data sources such as Text(csv) and
HTML tables with no MDB linking or importing required. Just use
the correct ISAM specifier as part of the OpenDatabase method:

Dim db As Database
Dim tDef As TableDef
Dim Fld As Field
Set db = Workspaces(0).OpenDatabase("C:\MyDBFs", _

False, False, "dBase III;")
For Each tDef In db.TableDefs

Debug.Print "Table: " & tDef.Name
For Each Fld In tDef.Fields

Debug.Print Fld.Name
Next

Next
db.Close
Set db = Nothing

For dBase III, dBase IV, Text, Excel 3 or 4, and HTML sources,
the “Database” is the path to the directory in which the
“tables” (files) are located. For Excel 5 (Excel 95) and Excel 97,
the Database argument must be fully qualified to include the
XLS file because later Excel files are workbooks that encapsu-
late worksheets the way Access encapsulates its tables. For
more information, see the VB online help for the Connect
(DAO) property and note that the specifier for Excel 97 is
“Excel 8.0;” not “Excel97;” as the help page says.

—Robert Smith, Kirkland, Washington

VB3 and up
Level: Beginning

Find Matching Records as you Type
You can construct a search box to find information as you type
using the textbox’s Change event. A SQL statement with the
Like operator and an “*” added to the end gives you the
matching record as you type. This example uses option but-
tons to allow searches in different fields. I have used this
feature in several programs—some with more than 4,000
records—and it is quite fast:

Private Sub searchbox_Change()
On Error Resume Next
Select Case True

Case Option1.Value
Data1.Recordset.FindFirst _

"[accountnumber] Like '" & _
searchbox.Text + "*" & "'"

Case Option2.Value
Data1.Recordset.FindFirst _

"[customername] Like '" & _
searchbox.Text + "*" & "'"

Case Option3.Value
Data1.Recordset.FindFirst _

"[businesstype] Like '" & _
searchbox.Text + "*" & "'"

End Select
End Sub

—Barry Rudd, Waycross, Georgia
26
VB3 and up
Level: Beginning

Manage SQL Statements with a Resource File
Managing SQL statements in your code can get unwieldy in a
large app. The job is simpler when you use either a resource
file or constants to store the SQL’s basic structure and a
couple of functions. In this code, you replace the “?” in the
query’s parameter spot with actual criteria and return a com-
pleted SQL statement ready to run:

' Get the formatted stored proc or SQL to use
' Parameters:
' sSQL String Stored procedure, '?'
' indicate placeholders
' sVarList Paramarray
' List of values to replace, SHOULD MATCH
' THE NO. OF PLACEHOLDERS.
' Return:
' String Modified SP/SQL to use
'---
Public Function GetSQL(ByVal sSQL As String, _

ParamArray sVarList()) As String
Dim iPos As Integer
Dim i As Integer
For i = LBound(sVarList) To UBound(sVarList)

iPos = InStr(sSQL, "?")
If iPos <> 0 Then

sSQL = Left$(sSQL, iPos - 1) & _
ParseForSQL(sVarList(i)) & _
Mid$(sSQL, iPos + 1)

End If
Next i
GetSQL = sSQL

End Function
—Chun Wong, Morden, England

VB5 (with ADO), VB6, VBA
Level: Intermediate

List All Row-Returning Objects With
adSchemaTables
The Connection object’s OpenSchema method permits your
application to browse the collections available through an
ADO connection without enumeration. The method returns a
recordset with fields characterizing the members of a collec-
tion. The output from the OpenSchema method with an
adSchemaTables query type against the Jet 4.0 data provider
contains information about local tables, linked tables, pass-
through queries, system tables, and the Access table. You can
specify any of more than 30 query type arguments to gather
information about the contents of an OLE DB data source.
Besides the adSchemaTables query type, selected others re-
turn information about familiar database objects such as
check constraints, indexes, primary keys, foreign keys, proce-
dures, and views. This listing reveals how you can use the
OpenSchema method with the Jet 4.0 provider to list the views
available through a connection:

Public Sub OpenSchemaX()
Dim cnn1 As New ADODB.Connection
Dim rstSchema As ADODB.Recordset
cnn1.Open _

"Provider=Microsoft.Jet.OLEDB.4.0;" & _
"Data Source=C:\Program Files\" & _
"Microsoft Office\Office\Samples\Northwind.mdb;"
Supplement to Visual Basic Programmer’s Journal␣ ␣ ␣ AUGUST 1999

 101 TECH TIPS
For VB Developers

 For even more tricks and tips go to
 www.vbpj.com

Set rstSchema = cnn1.OpenSchema(adSchemaTables)
' Print just views; other selection criteria
' include TABLE, LINK, PASS-THROUGH, ACCESS
' TABLE, and SYSTEM TABLE
Do Until rstSchema.EOF

If rstSchema.Fields("TABLE_TYPE") = "VIEW" Then
Debug.Print "View name: " & _

RstSchema.Fields("TABLE_NAME") & vbCr
End If
rstSchema.MoveNext

Loop
rstSchema.Close
cnn1.Close

End Sub
—Rick Dobson, Louisville, Kentucky

VB6, VBA
Level: Beginning

Instant Recordset Contents With the
GetString Method
The GetString method replaces a pair of nested loops. If the
defaults are acceptable, you can use the method without any
arguments. This makes for a simple way to extract values from
a recordset. Although nested loops can help you grasp how the
columns within a row combine, the GetString method can
achieve a similar result in single line. It accomplishes this
without even one loop, whereas you need two loops to enu-
merate the columns within a row automatically.

The GetString method, which returns a recordset as a
string, can take up to five arguments. This sample illustrates
the use of three of those arguments. Designate the adClipString
constant as the first argument, which is your only choice for
this argument. It specifies the format for representing the
recordset as a string. The second argument specifies the
number of recordset rows to return—five, in this case. Leaving
this argument blank would enable the method to return all the
rows in the recordset. The third argument designates a semi-
colon delimiter for the columns within a row (the default
column delimiter is a tab):

Sub NoEasyLoop()
Dim rsCustomers As Recordset
Set rsCustomers = New ADODB.Recordset
rsCustomers.Open "customers", _

"Provider=Microsoft.Jet.OLEDB.4.0;" & _
"Data Source=C:\Program Files\" & _
"Microsoft Office\Office\Samples\Northwind.mdb;"

' Print records without a loop
Debug.Print rsCustomers.GetString(adClipString, 5, "; ")
rsCustomers.Close

End Sub

The fourth and fifth arguments, neither of which appears in the
sample, specify a column delimiter and an expression to
represent null values. The default values for these arguments
are a carriage return and a zero-length string.

—Rick Dobson, Louisville, Kentucky

VB3 and up
Level: Beginning

End Your Applications Gracefully
Although you can use the End statement to halt execution
immediately, it’s likely to prevent memory and system re-
sources from being released. Instead, try unloading all forms
AUGUST 1999␣ ␣ ␣ Supplement to Visual Basic Programmer’s Journal
and setting all globally defined objects to Nothing to shut down
your application. Here’s a routine you can adapt to end your
application more gracefully than using the End statement:

Function ExitApplication() As Long
' PURPOSE:
' Unloads all forms, releases all file locks,
' and destroys all user-defined objects Returns:
' 0 on success
' >0 on Failure

Dim i As Integer
Dim lngRetVal As Long
' Initialize routine
On Error GoTo ExitApplication_EH1
ExitApplication = 0 ' assume success
lngRetVal = 0
' Unload all forms
For i = Forms.Count - 1 To 0 Step -1

Unload Forms(i)
Next
' Destroy all "global" objects
Set gobjUser = Nothing
Set gobjSession = Nothing

ExitApplication_Exit:
On Error Resume Next
Close ' release any file locks
DoEvents
ExitApplication = lngRetVal
Exit Function

ExitApplication_EH1:
lngRetVal = Err
Resume ExitApplication_Exit

End Function
—Jim De Carli, Southbury, Connecticut

VB4 and up
Level: Beginning

Avoid Missing References
Occasionally you might get an error message such as “Connec-
tion to type library or object library for remote process has
been lost. Press OK for dialog to remove reference,” “Unde-
fined Function,” or “Can’t find project or library.” You get this
kind of error for two reasons: Either the type library for your
component project is not available or the GUID of your
component’s type library has changed. The right solution
varies depending on the situation, but here’s a quick fix to try
first.

Choose Project | References to open the References dialog
box. (In VB4, choose Tools | References.) Scan through the list
of available references, looking for any with a description that
begins with the text “Missing.”

For every entry marked as missing, note which component
it refers to. When you highlight the entry, the fully qualified
path to the component is displayed at the bottom of the dialog.
Make a note of this file specification because you will need it
later. Clear the selection, and repeat these steps for any other
missing reference. Then click on the OK button to close the
dialog.

Open the References dialog box again. Find each of the
entries you previously cleared and select them. If an entry is no
longer listed in the dialog, use the Browse button to select the
file that entry refers to. Once all references have been
reselected, click on the OK button to close the dialog. Then
rerun your project.

—Jim De Carli, Southbury, Connecticut
27

 101 TECH TIPS
For VB Developers
VB3 and up
Level: Intermediate

Use Fill Properties With API Functions
The GDI drawing functions honor VB’s Fill properties. For
example, when you use the Polygon API function, the system
fills the polygon using the current FillStyle and FillColor prop-
erties. Use these properties to specify how to fill the polygon
instead of using GDI’s more complicated pens and brushes.

—Rod Stephens, Boulder, Colorado

VB3 and up
Level: Beginning

Compare Floating-Point Numbers Safely
Single and Double variables usually don’t store values exactly,
so you can’t safely compare them for equality. For example, in
this code, rounding makes VB think that a - b = 0.2000008, so the
If statement is never satisfied:

Dim a As Single
Dim b As Single

a = 40
b = 39.8
If a - b = 0.2 Then

MsgBox "a = b"
Else

MsgBox "a <> b"
End If

To see if two floating-point values are equal, subtract them and
compare the absolute value of the result to some small value:

If Abs((a - b) - 0.2) < 0.0001 Then ...
—Rod Stephens, Boulder, Colorado

VB5, VB6
Level: Intermediate

Avoid In-Process Component Conflicts
Each time you create an in-process component, a base address
is recorded. When your VB application loads the component,
the component is placed in a memory location according to its
base address. If two components have the same base address,
a conflict occurs, and time is wasted as all the offsets within the
second component are adjusted. Base address conflicts are
somewhat common because many people rely on using the
default values when developing their components.

To specify a new base address for your component, use the
Compile tab in the Project Properties dialog. The base address
is entered in the DLL Base Address textbox. The default value is
&H11000000, but the operating system can accept any value
from &H1000000 and &H80000000. Because the operating sys-
tem doesn’t like to have components loaded above 2 gigabytes
(the high-end value of &H80000000), the maximum value for the
base address is effectively 2 gigabytes minus the size of your
component rounded up to the nearest 64K multiple.

—Jim De Carli, Southbury, Connecticut
28
VB4 and up
Level: Intermediate

Use Properties to Keep Controls Private
With object-oriented design, avoid referencing a form’s con-
trols from anywhere outside the form. The controls should be
considered private. If you need to get to information in a
control, establish a form property for it, and have the Property
Let and Property Get procedures manage the control’s value.

Suppose you have a form named frmOptions that uses
five option buttons—named optFormat(0) through optFor-
mat(4)—to allow the user to specify a format type for a report.
You need to find the format type from outside the form (say
from a BAS module). With old-fashioned VB syntax, you would
access the format type like this:

For nIndex = 0 To 4
If frmOptions.optFormat(nIndex) Then

nFormatNumber = nIndex
Exit For

End If
Next nIndex

But what if you later have to change either the control name
or the number of option buttons? Or what if you have to switch
to a combo box holding the format types because they in-
crease in number and start varying? In that case, code from
outside the form—such as the lines above—would all have to
change. Instead, at the outset, add a property to the form to
allow outside code to fetch the format type. You could call the
property FormatType:

Public Property Get FormatType () As Long
For nIndex = 0 To 4

If optFormat(nIndex) Then
FormatType = nIndex
Exit For

End If
Next nIndex

End Property

Now calling code from outside the form can get the format type
with a single line:

nFormatNumber = frmOptions.FormatType

If you now have to change the controls for the format type,
adjust the property procedure—inside frmOptions—to re-
flect the changes. For example, if you switch to a combo box,
the property procedure would look something like this:

Public Property Get FormatType () As Long
FormatType = cboFormat.ListIndex

End Property

Calling code—from outside frmOptions—doesn’t need to
change at all. Ideally, the property procedures would contain
some error checking, which I have left out for simplicity. You
would also want Property Let procedures for setting the
controls from outside the form. The small amount of addi-
tional work in creating the property procedure, instead of
accessing the controls directly, can provide a big payoff in
maintainability.

—Billy Hollis, Nashville, Tennessee
Supplement to Visual Basic Programmer’s Journal␣ ␣ ␣ AUGUST 1999

 101 TECH TIPS
For VB Developers

 For even more tricks and tips go to
 www.vbpj.com

VB3 and up
Level: Beginning

Use Mid$ on the Left Side of an Assignment
I’m always surprised when VB programmers don’t know an old
trick from QuickBASIC: Using the Mid$ function on the left side
of an assignment. Here’s an example:

Dim sName as string
sName = "Jack Smith, Jr."
Mid$(sName, 6, 5) = "Jones"

When this code is finished, sName contains “Jack Jones, Jr.”.
This use of Mid$ is a lot easier—and a lot faster—than the way
I’ve seen other VB programmers do the same operation:

sName = left$(sName, 6) & "Jones" & right$(sName, 4)
—Billy Hollis, Nashville, Tennessee

VB3 and up
Level: Beginning

Force Arguments to be Passed by Value
When you pass parameters to a function or procedure, the VB
default is to pass them by reference unless the procedure or
function’s declaration specifies ByVal. But sometimes you
want to pass a parameter by value, regardless of what the
procedure’s declaration specifies. In that case, put an extra set
of parentheses around each argument you want to pass by
value. The parentheses cause the argument to be passed by
value, even though the procedure’s declaration might show
the parameter is passed by reference.

Assuming the sub or function’s parameter is defined as
being passed by reference, pass the parameter by value with
this code:

intValue = FindValue((intStart), blnFlag)
ShowValue(strText) or Call ShowValue((strText))

To pass the parameter by reference:

intValue = FindValue(intStart, blnFlag)
ShowValue strText or Call ShowValue(strText)

—Fan Wang, Tampa, Florida

VB4 16/32, VB5, VBA
Level: Intermediate

Use Checkboxes Instead of Option Buttons in a Group
Checkbox and option button controls function similarly but
with an important difference: A user can select any number of
checkbox controls on a form at the same time, but can select
only one option button control in a group at one time.

A small piece of code allows the user to select only one
checkbox in a group at any given time. This change is useful
when you want to use checkboxes instead of option buttons.
Create a control array of checkboxes named chkOption. These
controls can be inside a frame or directly on the form. Place
this code in the control array’s Click event:

Private Sub chkOption_Click(Index As Integer)
Dim i As Integer
Static blnIntChg As Boolean
If blnIntChg = False Then 'user clicked it

blnIntChg = True
'to stop racing when internally other
AUGUST 1999␣ ␣ ␣ Supplement to Visual Basic Programmer’s Journal
'checkboxes are changed
For i = 0 To chkOption().UBound

chkOption(i).Value = IIf(i = Index, 1, 0)
Next i
blnIntChg = False
'Ready for next user click

End If 'external change
End Sub

The code sets the clicked-on checkbox to 1 and all others to
zero. When this code sets the Value property of the checkboxes,
the Click event gets called as many times as the number of
controls. To prevent a racing condition and subsequent stack
fault, the code sets the blnIntChg flag to True when the user
causes the Click event to fire. The internal calls to Click events
are ignored. When all checkboxes have been set or reset, the
code resets the flag for the next user click.

—Debashish Roy, Cleveland, Ohio

VB6
Level: Intermediate

Put Unbound Data Into the Data Report’s Page
and Report Sections
If you’ve tried putting live data into the Data Report Designer’s
nondetail sections, you learned that bound controls are a no-
no. Here’s how you can put any data from any database into
these sections without binding it to the Data Report directly.
By placing labels in the sections where you want the data to
appear, you can change their Caption properties in code to
reflect the data desired.

First make sure you have a form in your app. Then in the
form where the report is launched—for example, frmAux—put
one label for each data item you want to see in the restricted
report sections on the form.

Create a data source or use one previously created, such as
DED, ADODC, or ADO recordsets, and make all the necessary
changes for putting the data you want to see into the report.
Bind this data source to the textbox you created. Write code
similar to this in the Initialize event of the Data Report. In this
sample, “Sections(5)” is the Report Footer:

With frmAux
DataReport1.Sections(5).Controls(_

"lblCreditsTot").Caption = .Text1(1).Text
DataReport1.Sections(5).Controls(_

"lblPaysTot").Caption = .Text1(2).Text
DataReport1.Sections(5).Controls(_

"lblLoansTot").Caption = .Text1(3).Text
End With

—Erwin Cortagerena, Capital Federal, Argentina
29

