
http://visualstudiomagazine.com/articles/2010/12/14/discarding-dependencies.aspx

Visual Studio Magazine Online

Classic VB Corner

Discarding Dependencies
Why tempt fate by making your application dependent upon an easily replaced
component? Karl Peterson shows how you can begin reducing external
dependencies in your VB apps.
December 14, 2010 · by Karl E. Peterson

The world's gone mad, it seems sometimes, with security concerns. Every time you
turn on the radio, look at a newspaper, or can't avoid listening to a politician, you will
to read or hear all about all the latest threat(s) you really ought to be scared of.

If you're not yet thoroughly paranoid, consider the wild notion that Microsoft could, if
they were so inclined, slowly erode the base of existing Classic VB applications out
there by simply breaking components they rely upon. Think that's crazy? I would
suggest that given an appropriate "security concern" they would likely not hesitate to
act. Search for killbits to see this theory in action in only a slightly different arena.

I'd like to suggest that there are a good number of easy steps you can take, to begin
reducing external dependencies. One of the simpler ones to drop is the common
dialogs ActiveX control. This control, comdlg32.ocx, is simply a wrapper around a
handful of API function calls. Nothing fancy at all, and yet it's used as a lazy
convenience by many.

Over a decade ago, Bruce McKinney wrote the classic Hardcore Visual Basic, which
Microsoft later granted permission to be republished on my website (when they
removed it from theirs). Bruce had a magical way with words. Not sure I have ever
read another programming book quite like that one. I will always wish I had his gift
there.

But we had a fundamental disagreement on the way all his code was so, well,
dependent on the rest of it. I guess this feeling was mainly based on Bruce's use of
typelibs for everything. In theory, typelibs could free the developer from the drudgery
of declares, but in practice it often meant more work when it came time to reuse
code.

So what I've done over the years was gradually, as I needed them, taken his common
dialog routines and extracted them from their dependencies. This final touch-up not
only freed me from comdlg32.ocx, but from any external at all. I can now drop the
desired module(s) directly into any project, and begin using the dialogs right away.

I'll be reposting these over the next few months on my site, as well as writing a bit
about them here. Taking the API calls outside the OCX not only offers total flexibility
in calling them, but in doing so it offers new capabilities with some of them.

http://visualstudiomagazine.com/articles/2010/12/14/discarding-dependencies.aspx�
http://visualstudiomagazine.com/�
http://blogs.msdn.com/b/vsod/archive/2009/06/05/visual-basic-6-controls-stop-working-after-security-advisory-960715.aspx�
http://msmvps.com/blogs/access/archive/2009/06/14/an-older-version-of-mscomm32-ocx-has-had-the-quot-kill-bit-quot-flag-set.aspx�
http://vb.mvps.org/hcvb.asp�

http://visualstudiomagazine.com/articles/2010/12/14/discarding-dependencies.aspx

So let's start with the ChooseFont dialog, since I brought up its new behavior in my
last column, and it's really one of the simplest. The declare is straight-forward:

Private Declare Function ChooseFont Lib "comdlg32.dll" _
 Alias "ChooseFontA" (pChoosefont As ChooseFont) As Long

To call ChooseFont, you just fill up a few elements of the following structure:

Private Type ChooseFont
 lStructSize As Long ' Filled with UDT size
 hWndOwner As Long ' Caller's window handle
 hDC As Long ' Printer DC/IC or NULL
 lpLogFont As Long ' Pointer to LOGFONT
 iPointSize As Long ' 10 * size in points of font
 Flags As Long ' Type flags
 rgbColors As Long ' Returned text color
 lCustData As Long ' Data passed to hook function
 lpfnHook As Long ' Pointer to hook function
 lpTemplateName As String ' Custom template name
 hInstance As Long ' Instance handle for template
 lpszStyle As String ' Return style field
 nFontType As Integer ' Font type bits
 iAlign As Integer ' Filler
 nSizeMin As Long ' Minimum point size allowed
 nSizeMax As Long ' Maximum point size allowed
End Type

Bruce wrapped this into a fairly tight little routine, which I've only embellished a bit.
The idea here is kind of cool. You call GetFontChoice by passing a Font object, which
is used as the starting point for initializing the dialog. This makes it very simple to
change the font in an existing control by simply passing its .Font property as this
single required parameter. The remaining optional parameters just fine tune how you
want the dialog to behave.

Public Function GetFontChoice(InitFont As Font, _
 Optional ByVal PrinterDC As Long = -1, _
 Optional ByVal hWnd As Long = -1, _
 Optional Color As Long = vbBlack, _
 Optional ByVal MinSize As Long = 0, _
 Optional ByVal MaxSize As Long = 0, _
 Optional Flags As ChooseFontFlags = 0) As Boolean

 Dim cf As ChooseFont
 Dim fnt As LogFont
 Dim fntname() As Byte

 ' Since we allow any flags to be passed in, we need to have
 ' a way to turn off flags not supported by this routine.
 ' (Some exercise left to the reader!)
 Const UnwantedFlags As Long = _
 CF_APPLY Or CF_ENABLEHOOK Or CF_ENABLETEMPLATE

 ' Make the code a bit more readable.
 Const PointsPerTwip As Long = 1440 / 72

 ' Flags can get reference variable or constant with bit flags.
 ' User may specify printer fonts with flag or hDC.

http://visualstudiomagazine.com/articles/2010/12/14/discarding-dependencies.aspx�
http://msdn.microsoft.com/en-us/library/ms646914%28VS.85%29.aspx�
http://visualstudiomagazine.com/articles/2010/10/14/honoring-hidden-fonts.aspx�
http://visualstudiomagazine.com/articles/2010/10/14/honoring-hidden-fonts.aspx�

http://visualstudiomagazine.com/articles/2010/12/14/discarding-dependencies.aspx

 If PrinterDC = -1 Then
 PrinterDC = 0
 If Flags And CF_PRINTERFONTS Then PrinterDC = Printer.hDC
 Else
 Flags = Flags Or CF_PRINTERFONTS
 End If

 ' Must have screen, printer, or both!
 If (Flags And CF_PRINTERFONTS) = 0 Then
 Flags = Flags Or CF_SCREENFONTS
 End If

 ' MinSize can be minimum size accepted
 If MinSize Then Flags = Flags Or CF_LIMITSIZE
 ' MaxSize can be maximum size accepted
 If MaxSize Then Flags = Flags Or CF_LIMITSIZE

 ' Put in required internal flags and remove unsupported
 Flags = (Flags Or CF_INITTOLOGFONTSTRUCT) And Not UnwantedFlags

 ' Initialize LOGFONT variable
 With InitFont
 fnt.lfHeight = _
 -(.Size * (PointsPerTwip / Screen.TwipsPerPixelY))
 fnt.lfWeight = .Weight
 fnt.lfItalic = .Italic
 fnt.lfUnderline = .Underline
 fnt.lfStrikeOut = .Strikethrough
 fntname = StrConv(.Name & vbNullChar, vbFromUnicode)
 Call CopyMemory(fnt.lfFaceName(0), fntname(0), Len(.Name) + 1)
 ' Other fields zero
 End With

 ' Initialize CHOOSEFONT variable
 cf.lStructSize = Len(cf)
 If hWnd <> -1 Then cf.hWndOwner = hWnd
 cf.hDC = PrinterDC
 cf.lpLogFont = VarPtr(fnt)
 cf.iPointSize = InitFont.Size * 10
 cf.Flags = Flags
 cf.rgbColors = Color
 cf.nSizeMin = MinSize
 cf.nSizeMax = MaxSize
 ' All other fields zero

 If ChooseFont(cf) Then
 GetFontChoice = True
 Flags = cf.Flags
 Color = cf.rgbColors
 With InitFont
 .Bold = cf.nFontType And BOLD_FONTTYPE
 '.Italic = cf.nFontType And ITALIC_FONTTYPE
 .Italic = fnt.lfItalic
 .Strikethrough = fnt.lfStrikeOut
 .Underline = fnt.lfUnderline
 .Weight = fnt.lfWeight
 .Size = cf.iPointSize / 10
 .Name = TrimNull(StrConv(fnt.lfFaceName, vbUnicode))
 End With
 Else

http://visualstudiomagazine.com/articles/2010/12/14/discarding-dependencies.aspx�

http://visualstudiomagazine.com/articles/2010/12/14/discarding-dependencies.aspx

 ' CommDlgExtendedError returns 0 for Cancel, <>0 for errors.
 Debug.Print _
 "CommDlgExtendedError = &h"; Hex$(CommDlgExtendedError())
 GetFontChoice = False
 End If
End Function

The first third of the GetFontChoice function merely twiddles flags, based on what was
passed in the optional parameters. The CHOOSEFONT structure that we pass to the
ChooseFont function contains a pointer to a LOGFONT structure that's used to initialize
the dialog selections for things like facename, size, bold, italic and so on.

A bit of gymnastics is required to properly build these structures in the middle section
of the routine, because we need to do the Unimess (Unicode-to-ANSI) conversion
ourselves, since we're passing a pointer to one structure from within another. But it all
comes together and finally we make the call to ChooseFont. A successful return means
we just reassign the chosen attributes to the InitFont object, and our client is off and
running. It sounds like a lot of work, but to actually use this in an application is as
simple as dropping the module in and calling it like this:

 Dim Color As Long
 Dim Flags As ChooseFontFlags
 ' Simplest possible way to call the ChooseFont API,
 ' by wrapping it up in a single routine and passing
 ' the font object we want to change.
 With Label1
 ' Set the flags we want to use.
 Flags = CF_SCREENFONTS Or CF_NOVERTFONTS _
 Or CF_EFFECTS Or CF_SCALABLEONLY
 ' Only the color needs special handling, since that's
 ' an attribute of the label and not the font.
 Color = .ForeColor
 If GetFontChoice(.Font, , Me.hWnd, Color, , , Flags) Then
 ' Success!
 .ForeColor = Color
 End If
 End With

Here I used a Label control to demonstrate, by passing its .Font object for the
GetFontChoice function to update with a call to ChooseFont. Note that the only
"attribute" of the .Font object that needs special handling is its color, because that's
actually an attribute of the control not the font. If "any color you'd like, as long as it's
black" will do, the whole call can be reduced to a one-liner.

I hope to get all my common dialog wrapper updates out on the web soon. Please see
the Dialogs sample on my site, and watch it for updates as new columns come out
here.

http://visualstudiomagazine.com/articles/2010/12/14/discarding-dependencies.aspx�
http://msdn.microsoft.com/en-us/library/ms646832%28v=VS.85%29.aspx�
http://msdn.microsoft.com/en-us/library/dd145037%28v=VS.85%29.aspx�
http://vb.mvps.org/vfred/unimess.asp�
http://vb.mvps.org/samples/Dialogs�

http://visualstudiomagazine.com/articles/2010/12/14/discarding-dependencies.aspx

About the Author
Karl E. Peterson wrote Q&A, Programming Techniques, and various other columns for
VBPJ and VSM from 1995 onward, until Classic VB columns were dropped entirely in
favor of other languages. Similarly, Karl was a Microsoft BASIC MVP from 1994
through 2005, until such community contributions were no longer deemed valuable.
He is the author of VisualStudioMagazine.com's new Classic VB Corner column. You
can contact him through his Web site if you'd like to suggest future topics for this
column.

1105 Redmond Media Group
Copyright 1996-2010 1105 Media, Inc. View our Privacy Policy.

http://visualstudiomagazine.com/articles/2010/12/14/discarding-dependencies.aspx�
http://visualstudiomagazine.com/columns/columnist.aspx?columnistsid=64�
http://vb.mvps.org/�
http://redmondmediagroup.com/�
http://1105media.com/privacy.aspx�

